Reactions with weakly bound nuclei around the Coulomb barrier

Leandro Gasques

Universidade de São Paulo

IFUSP

CNPq

FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

Outline

- 1. Motivation
- 2. LAFNA (Open Laboratory for Nuclear Physics & Applications)
- 3. Scientific program: Measurements and Results
- 4. Conclusions

Why are we still doing research with electrostatic accelerators?

⊕

To switching magnet

Analyser magnet

Why are we still doing research with electrostatic accelerators?

... develop into applications related to health, materials science, biology and medicine, aerospace technologies, and many others ...

Optical model

Complex potential:

$$V = V + iW$$
 $\left(-\frac{\hbar^2}{2\mu}\nabla^2 + U - E\right)\Psi = 0$

1

The São Paulo potential:

$$V_{SPP} = \int \rho_1(r_1)\rho_2(r_2)V_0\delta(\vec{R} - \vec{r_1} + \vec{r_2})e^{-4v^2/c^2}d\vec{r_1}d\vec{r_2}$$
$$v^2 = \frac{2}{\mu}E_k(R) = \frac{2}{\mu}[E - V_C(R) - V_{SPP}(R, E)]$$

$$\rho = \rho_0 \left[1 + e^{(r - R_0)/a} \right]^{-1}$$

PHYSICAL REVIEW C covering nuclear physics Highlights Recent Accepted Collections Authors Referees Search Press About Toward a global description of the nucleus-nucleus interaction

L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. De Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Cândido Ribeiro, E. S. Rossi, Jr., and C. P. Silva Phys. Rev. C 66, 014610 - Published 17 July 2002

Optical model

Complex potential:

$$\boldsymbol{U} = \boldsymbol{V} + \boldsymbol{i}\boldsymbol{W} \qquad \left(-\frac{\hbar^2}{2\mu}\nabla^2 + \boldsymbol{U} - \boldsymbol{E}\right)\boldsymbol{\Psi}$$

1

0

1

= 0

The São Paulo potential:

$$V_{SPP} = \int \rho_1(r_1)\rho_2(r_2)V_0\delta(\vec{R} - \vec{r_1} + \vec{r_2})e^{-4v^2/c^2}d\vec{r_1}d\vec{r_2}$$
$$v^2 = \frac{2}{\mu}E_k(R) = \frac{2}{\mu}[E - V_C(R) - V_{SPP}(R, E)]$$

$$\rho = \rho_0 \left[1 + e^{(r - R_0)/a} \right]^{-1}$$

PHYSICAL REVIEW C

covering nuclear physics

Highlights Recent Accepted Collections Authors Referees Search Press About

Toward a global description of the nucleus-nucleus interaction

L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. De Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Cândido Ribeiro, E. S. Rossi, Jr., and C. P. Silva Phys. Rev. C **66**, 014610 – Published 17 July 2002 L. R. Gasques - PhD thesis - 2003

Besides the elastic scattering, other processes may occur ...

Weakly-bound nuclei - Cluster structure

https://www.nndc.bnl.gov/nudat3/

Weakly-bound nucleus = larger probability to breakup

Weakly-bound nucleus = larger probability to breakup

Breakup followed by transfer

Nature should be simple... but apparently it is not

BALiN (Breakup Array for Light Nuclei)

Breakup followed by transfer

⁸B + ¹²⁰Sn breakup

nature communications

Article

https://doi.org/10.1038/s41467-022-34767-8

0

Breakup of the proton halo nucleus ⁸B near barrier energies

Received: 22 June 2022	L. Yang ^{1,2} , C. J. Lin ^{1,3} , H. Yamaguchi ^{2,4} , A. M. Moro ^{5,6} , N. R. Ma ^{1,2} ,		
Accepted: 7 November 2022	D. X. Wang ¹ , K. J. Cook ^{0,7,8,21} , M. Mazzocco ^{0,9,10} , P. W. Wen ¹ , S. Hayakawa ^{0,2} , J. S. Wang ^{0,11} , Y. Y. Yang ¹² , G. L. Zhang ¹³ , Z. Huang ¹³ , A. Inoue ¹⁴ , H. M. Jia ¹ ,		
Published online: 23 November 2022	D. Kahl ^{® 15} , A. Kim ¹⁶ , M. S. Kwag ¹⁷ , M. La Commara ¹⁸ , G. M. Gu ¹⁷ , S. Okamoto ¹⁹ ,		
Check for updates	 C. Parascandoto, D. Pierroutsakou⁻⁰, H. Shimizu², H. H. Sun¹, M. L. Wang¹³, F. Yang¹ & F. P. Zhong^{1,3} 		

LAFNA - IF - USP

30B beamline

Image from Juicing Vegetables

¹⁰B + ¹²⁰Sn @ 40 MeV

2018

16 pseudo-telescopes

¹⁰B + ¹²⁰Sn @ 40 MeV

²⁴ E_T (MeV)

5.791 MeV

Coupled-channel calculations

Coupled-channel calculations

Weakly-bound nuclei - Cluster structure

Weakly-bound nuclei - Cluster structure

\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	
2016	2022	2023	
Inclusive measurements		Exclusive measurements	
^{6,7} Li + ¹²⁰ Sn		6,7Li + ¹⁹⁶ Pt	
^{6,7} Li + ¹²⁴ Sn		^{6,7} Li + ¹¹⁹ Sn	
^{10,11} B + ¹²⁰ Sn		^{10,11} B + ¹¹⁹ Sn	
¹⁰ B + ¹⁹⁷ Au		^{12,13} C + ⁶⁴ Zn	
		^{12,13} C + ^{119,120} Sn	

- Large granularity
- Large geometric efficiency

2023

Large area 16 strips telescopes (1000 + 300 + 20 microns)

⁷Li+¹¹⁹Sn @ 24 MeV

¹⁰B+¹¹⁹Sn @ 40 MeV

Sum of all 256 pixels ¹⁰B+¹¹⁹Sn @ 40 MeV

Sum of all pixels ¹⁰B+¹¹⁹Sn @ 40 MeV

Sum of all 256 pixels ¹⁰B+¹¹⁹Sn @ 40 MeV

¹¹B+¹¹⁹Sn @ 40 MeV

Experimental campaign 17-28 of April 2023

Sum of all 256 pixels ¹¹B+¹¹⁹Sn @ 40 MeV

Sum of all 256 pixels ¹¹B+¹¹⁹Sn @ 40 MeV

- Several reactions have been investigated at LAFNA
- The simultaneous description of many reaction processes are a good benchmark for nuclear potential models
- All in all, coupled-channel calculations provide a reasonable description of the data

- Several reactions have been investigated at LAFNA
- The simultaneous description of many reaction processes are a good benchmark for nuclear potential models
- All in all, coupled-channel calculations provide a reasonable description of the data

The development of instrumentation is extremely important and must go on

Students are very welcome for joining our research group!

Thank you !

Forthcoming

Forthcoming

OSCAR (hOdoscope of Silicons for Correlations and Analysis of Reactions)

D. Dell'Aquila et. al., NIM A877, 227 (2018)

Si PIN photodiodes

INFN - USP collaboration (MOU)

Building 2 pieces

OSCAR - HOdoscope of Silicons for Correlations and Analysis of Reactions

64 pseudo telescopes

SSSSD (W1-SS): Single Sided Silicon Strip Detector - 16 strips - 20µm **16 - Si Pin diodes** 10x10mm

OSCAR - HOdoscope of Silicons for Correlations and Analysis of Reactions

OSCAR - HOdoscope of Silicons for Correlations and Analysis of Reactions

SSSSD (W1-SS): Single Sided Silicon Strip Detector - 16 tiras - 20µm **16 - Si Pin diodes** 10x10mm Hamamatsu - S3590 series Photosensitive area = 10x10mm Computer Physics Communications 267 (2021) 108061

Contents lists available at ScienceDirect
Computer Physics Communications
www.elsevier.com/locate/cpc

São Paulo potential version 2 (SPP2) and Brazilian nuclear potential (BNP) $^{\bigstar,\bigstar \bigstar}$

L.C. Chamon^{a,*}, B.V. Carlson^b, L.R. Gasques^a

^a Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
 ^b Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP, Brazil

Code Ocean webpage: https://codeocean.com/capsule/9505815/tree/v1

Code: Regina.f

Files: distribution.dat & density.dat