Laboratory for Nuclear Science At Avery Point aka Laboratory for Astrophysics http://astro.uconn.edu

The Algebraic Cluster Model (ACM) and Cluster Shell Model (CSM) *

Moshe Gai, University of Connecticut, http://astro.uconn.edu, moshe.gai@uconn.edu

Theory (ACM, CSM):

- 1. ACM: ⁸Be,¹²C,¹⁶O,²⁰Ne The *D*3*h* Symmetry: ¹²C,²⁰Ne
- 2. CSM: ⁹Be, ¹³C, ²¹Ne
- 3. The *D*3*h*' Symmetry: ¹³C, ²¹Ne <u>Phenomenology (CSM):</u>
- 4. Conjectured Hole States: ⁷Be, ¹⁹F
- 5. Conjectured Particle-Hole States: ⁸Be

Experiments:

- 1. The Hoyle Rotational Band (UConn-OTPC)
- 2. The *D*3*h* Symmetry: ¹²C (UConn-Birmingham)
- 3. Search for 2⁺, 3⁻ states in ¹²C (Warsaw TPC)
- 4. Search for Rotational Bands in ⁸Be (SHU/ISS)
- * Supported by the U.S. Department of Energy, Office of Science, Nuclear Physics Grants Number DE-FG02-94ER40870.

The XIV LATIN-AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, UNAM, Mexico City, June 20, 2024

Algebraic Models

Deformed State: $(\theta_1, \theta_2, \theta_3, \beta, \gamma) \rightarrow U(6)$

J. Chem. Phys., Vol. 77, No. 6, 15 September 1982

Radiative Width of Molecular-Cluster States

Yoram Alhassid and Moshe Gai

A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06511

and

George F. Bertsch

Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48823 (Received 5 August 1982)

Molecular states are characterized by enhanced electromagnetic deexcitations of many different multipolarities. The expected enhancement of E1, E2, and E3 transitions is examined by deriving molecular sum rules for radiative deexcitation widths and via a dimensionality approach. The enhancement of the E1 transitions is the most striking.

PACS numbers: 21.60.Gx, 23.20.Ck, 25.40.Lw

"Molecular shape, when expanded in spherical harmonics, require substantial higher order terms": (Enhanced E1, E2, E3, E4...)

\mathcal{D}_{3h} Symmetry in ¹²C:

Spectrum of the (Symmetric) Triangular Spinning Top:

<u>Molecular Physics:</u> H3⁺ Molecule <u>Hadron Structure:</u> Three Quark Model <u>Nuclear Structure:</u> ¹²C Three Alpha-Particles

Rotation-Vibration Spectrum of theThree Alpha Triangular Spinning TopU(7) Model/ D3h SymmetryR. Bijker and F. Iachello; Ann. Phys. 298(2002)334

R. Smith, M. Gai, D.K. Schweitzer, S.R. Stern and M.W. Ahmed, Nature Communications, 12, 5920 (2021). https://www.nature.com/articles/s41467-021-26179-x

Line Shape Analysis (CO₂ Gas)

Machine Learning

UConn-TUNL Optical Readout TPC (O-TPC) ${}^{12}C(\gamma,3\alpha)$

B(EL): ACM/ D₃h Symmetry B(EL: 0⁺ → L) = $(\frac{Ze\beta^L}{3})^2 \frac{2L+1}{4\pi} [3 + 6P_L(-\frac{1}{2})]$ B(E2: 0⁺ → 2⁺) = $(Ze)^2 \frac{1}{4\pi} \frac{5}{4}\beta^4$ B(E3: 0⁺ → 3⁻) = $(Ze)^2 \frac{1}{4\pi} \frac{35}{8}\beta^6$ B(E4: 0⁺ → 4⁺) = $(Ze)^2 \frac{1}{4\pi} \frac{81}{64}\beta^8$ (β Determined from g.s. radius) <u>**R-Matrix Fit:</u>** Γγ(1⁻) = 29 ± 2.1 meV B(E1) = 6.5x10⁻⁵ W.u. (O-TPC Data) Γγ(2⁺) = 182 $^{+43}$ -53 meV B(E2) = 1.2 W.u.</u>

At 12.5 MeV Broad ($\Gamma \approx 1$ MeV): 1⁻, 2⁺ and 3⁻? B(E1) = 10⁻⁴ W.u., B(E2) = 1 W.u. B(E3) = 1 W.u. Ratio of Γγ (eV) x (2J+1): E1/E2/E3 = 1/8/0.003

 $A1/A2/A3 = 1/3/0.05 \rightarrow A3: 2-5\%$ sensitivity (at our limit) $A1/A2 \approx O(1)$

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter Fermionic Molecular Dynamic Model (FMD), Phys. Rev. lett. 98, 032501 (2007)

UConn-Birmingham

D.J. Marin-Lambarri, R. Bijker, M. Freer, M. Gai, Tz. Kokalova, D.J. Parker, C. Wheldon, Phys. Rev. Lett. 113, 012502 (2014)

Summary for the shape of ¹²C/ Courtesy of Masaaki Kimura, RIKEN

M.K. and Y. Taniguchi, EPJA 60, (2024)

2

y[tm]

-2

 $^{12}C(\gamma, \alpha_0)^8Be(g.s.) E1 + E2 (1^- \& 2^+ ?)$ Kristian C.Z. Haverson, SHU, 2023

 $E_{\gamma} = 13.1 \, [MeV]$

 \mathcal{D}_{3h} ' Symmetry in ¹³C:

PHYSICAL REVIEW LETTERS

Volume 122, Issue 16

26 April 2019

On the Cover

A 13 C nucleus modeled as a triangle of three *a* particles plus an additional neutron.

From the article Evidence for Triangular D_{3h}' Symmetry in ¹³C R. Bijker and F. lachello Phys. Rev. Lett. **122**, 162501 (2019)

View Issue

β = distance of α to 3 body c.m.

Figure 26: Single-particle energies in a cluster potential with D_{3h} symmetry calculated with $V_0 = 13.3$ MeV, $V_{0,so} = 16.9$ MeV fm², $\alpha = 0.0872$ fm⁻². Reproduced from [61] with permission.

Evidence for Triangular \mathcal{D}_{3h} ' Symmetry in ¹³C, R. Bijker, F. Iachello, Phys. Rev. Lett. 122, 162501 (2019)

TABLE I. B(EL) values in ¹²C and ¹³C in W.U. [15].

	B(EL)	Exp	Th
¹² C	$B(E2; 2^+_1 \to 0^+_1)$	4.65 ± 0.26	4.8
	$B(E3; 3^1 \to 0^+_1)$	12 ± 2	7.6
¹³ C	$B(E2; 3/2^{-}_{1} \rightarrow 1/2^{-}_{1})$	3.5 ± 0.8	4.8
	$B(E2; 5/2^1 \to 1/2^1)$	3.1 ± 0.2	3.2
	$B(E3; 5/2^+_1 \to 1/2^1)$	10 ± 4	4.3

$$B(E2: 0^+ \to 2^+) = (Ze)^2 \frac{5}{4\pi} \frac{1}{4} \beta^4$$
$$B(E2: J', K \to J, K) = (Ze)^2 \frac{5}{4\pi} \beta^4 (J', K, 2, 0 \mid J, K)^2$$

C_2 ' Symmetry in ⁹Be:

V. Della Rocca, R. Bijker, F. Iachello, Nucl. Phys. A 966(2017)156 V. Della Rocca, F. Iachello, Nucl. Phys. A 973(2018)1

Molecular orbits (Many Center Shell Model) ¹³C ⁹Be

¹³C: Enhanced B(E1), B(E2), B(E3)... and Parity doublets

Hole States in Clustering? A Phenomenological Study

(The Cluster Shell Model)

Particle-Hole States in Clustering?

Philip R. Page, R-Matrix Analysis: ⁸Be*(21.5 MeV) is a 3⁻ Phys. Rev. C 72, 054312 (2005).

ISOLDE Solenoidal Spectrometer (ISS) Collaboration

Robin Smith, Liam Gafney, September 21, 2020

Most intense 11 MeV/u ⁷Be beam: ~6 x 10⁶/sec

HIE-ISOLDE: Experiment IS692 (15 Shifts + 13 Days irradiation: ⁷Be production), November 2023

Conclusions: Molecular Nuclear Physics

- 1. The Algebraic Cluster Model, A new chapter in Cluster Physics
- 2. The Cluster Shell Model, An extension of the Shell Model To molecular orbits
- **3.** Tantalizing Phenomenology of conjectured CSM Hole and CSM Particle-Hole States (Awaiting theoretical formulation)