Precision studies of n beta decay in Nab and pNab

Dinko Počanić

Physics, University of Virginia

19 June 2024

14th Latin American Symp. on Nucl. Phys. Appl. UNAM, Mexico City, Mexico 17–21 June 2024

Outline

- Beta decay, esp. of the *neutron*, and the Standard Model,
- Physics motivation for Nab and pNab,
- Principles of measurement in the Nab experiment,
- Status and plans for Nab,
- pNab as extension of Nab,
- Summary and outlook.

Quark-lepton (Cabibbo) universality and β decays

The basic weak-interaction V-A form (e.g., μ decay):

 $\mathcal{M} \propto \langle e | \ell^lpha |
u_e
angle o ar{u}_e \gamma^lpha (1-\gamma_5) u_
u$

is replicated in hadronic weak decays

 $\mathcal{M} \propto \langle p | h^{lpha} | n
angle
ightarrow ar{u}_p \gamma^{lpha} (G_V - G_A \gamma_5) u_n \quad ext{with} \quad G_{V,A} \simeq 1 \; .$

Departure from $G_V = 1$ (**CVC**) comes from weak quark (Cabibbo) mixing: $G_V = G_\mu \cos \theta_C (= G_\mu V_{ud}) \quad \cos \theta_C \simeq 0.97$

3 q generations lead to the Cabibbo-Kobayashi-Maskawa (CKM) matrix (1973): $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ad} & V_{bb} & V_{ab} \end{pmatrix}$

Quark-lepton (Cabibbo) universality and β decays

The basic weak-interaction V-A form (e.g., μ decay):

 $\mathcal{M} \propto \langle e | \ell^lpha |
u_e
angle o ar{u}_e \gamma^lpha (1 - \gamma_5) u_
u$

is replicated in hadronic weak decays

 $\mathcal{M} \propto \langle p | h^{lpha} | n
angle
ightarrow ar{u}_p \gamma^{lpha} (G_V - G_A \gamma_5) u_n \quad ext{with} \quad G_{V,A} \simeq 1 \; .$

Departure from $G_V = 1$ (**CVC**) comes from weak quark (Cabibbo) mixing: $G_V = G_\mu \cos \theta_C (= G_\mu V_{ud}) \quad \cos \theta_C \simeq 0.97$

3 q generations lead to the Cabibbo-Kobayashi-Maskawa (CKM) matrix (1973): $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

CKM unitarity cond.: $\Delta V^2 = 1 - (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2) \stackrel{?}{=} 0$, \leftarrow [best test available!] stringently tests the SM. Until 2004 appeared violated by $\sim 3\sigma$!

D. Počanić (UVa Physics)

Dynamics and observables

Basic beta decay Lagrangian for a baryon

D. Počanić (UVa Physics)

Dynamics and observables

udu

udd n

D. Počanić (UVa Physics)

Basic beta decay Lagrangian for a baryon

$$\mathcal{L}_{W}(x) = -\frac{G_{F}}{\sqrt{2}} V_{ud} \left[\bar{\psi}_{p}(x) \gamma^{\mu} (1 + \lambda \gamma^{5}) \psi_{n}(x) \right] \left[\bar{\psi}_{e}(x) \gamma_{\mu} (1 - \gamma^{5}) \psi_{\nu}(x) \right]$$

$$= -\frac{1}{\sqrt{2}} \left[\bar{\psi}_{p}(x) \gamma^{\mu} (g_{V} + g_{A} \gamma^{5}) \psi_{n}(x) \right] \left[\bar{\psi}_{e}(x) \gamma_{\mu} (1 - \gamma^{5}) \psi_{\nu}(x) \right]$$

$$\overline{V}_{e} \qquad \text{where} \boxed{g_{V} = G_{F} V_{ud} = G_{F} G_{V}}_{e} \text{ and } \boxed{g_{A} = G_{F} V_{ud} \lambda = G_{F} G_{A}}_{e}.$$

(for our purposes, infinitely well determined in μ decay)

 $\lambda\simeq -1.272$ (from correlations in neutron decay)

Rate of neutron decay/lifetime is given by:

$$\Gamma = \frac{1}{\tau_n} = (1+3\lambda^2) \frac{G_F^2 V_{ud}^2}{2\pi^3} f_{\text{Fermi}}^{Z=1}(E_{\text{max}})$$

Extracting V_{ud} from *n* decay

Evaluating the preceding relation we get:

$$egin{aligned} |V_{ud}|^2 &= rac{4908.7(1.9)\, ext{sec}}{ au_n(1+3\lambda^2)}, \ ext{or} \ au_n^{-1} &= ext{const.}(G_V^2+3G_A^2) \end{aligned}$$

Extracting V_{ud} from *n* decay

Evaluating the preceding relation we get:

$$|V_{ud}|^2 = rac{4908.7(1.9) \,
m sec}{ au_n(1+3\lambda^2)}, \
m or$$

 $au_n^{-1} =
m const.(G_V^2+3G_A^2)$

We therefore need to measure:

- \blacktriangleright neutron lifetime τ_n (counting neutrons)
- ratio $\lambda = G_A/G_V$ (decay correlations)

 G_v

Extracting V_{ud} from *n* decay

Evaluating the preceding relation we get:

$$|V_{ud}|^2 = rac{4908.7(1.9) \,
m sec}{ au_n (1 + 3\lambda^2)}, \
m or$$

 $au_n^{-1} =
m const. (G_V^2 + 3G_A^2)$

We therefore need to measure:

- neutron lifetime τ_n (counting neutrons)
- ratio $\lambda = G_A/G_V$ (decay correlations)

Key questions:

- How thick (uncertain) are the τ_n ellipse and the λ line?
- How reliable and consistent are the results from different methods of τ_n and λ evaluation?

 G_v

Neutron beta decay observables (SM)

General Lorentz invariant differential beta decay rate is:

$$\frac{\mathrm{d}w}{\mathrm{d}E_{e}\mathrm{d}\Omega_{e}\mathrm{d}\Omega_{\nu}} \propto \rho(E_{e}) \times \left\{ 1 + a\frac{\vec{p_{e}} \cdot \vec{p_{\nu}}}{E_{e}E_{\nu}} + b\frac{m}{E_{e}} + \langle \vec{\sigma}_{n} \rangle \cdot \left[A_{0}\frac{\vec{p_{e}}}{E_{e}} + \left(B_{0} + b_{\nu}\frac{m_{e}}{E_{e}} \right) \frac{\vec{p_{\nu}}}{E_{\nu}} \right] + \dots \right\}$$
The (V-A) SM prescribes $b = b_{\nu} = 0$, and: $(b \neq 0 \text{ signals S,T components})$
($e - \nu \text{ correlation}$) $a(\lambda) = \frac{1 - |\lambda|^{2}}{1 + 3|\lambda|^{2}}$ $A_{0}(\lambda) = -2\frac{|\lambda|^{2} + Re(\lambda)}{1 + 3|\lambda|^{2}}$ (β -asymmetry)
(ν -asymmetry) $B_{0}(\lambda) = 2\frac{|\lambda|^{2} - Re(\lambda)}{1 + 3|\lambda|^{2}}$ $\lambda = \frac{G_{A}}{G_{V}}$ (with $\tau_{n} \Rightarrow \text{CKM } V_{ud}$).

One can also define the proton asymmetry: $C = \kappa (A + B)$ where $\kappa \simeq 0.275$.

Neutron beta decay observables (SM)

General Lorentz invariant differential beta decay rate is:

$$\frac{\mathrm{d}w}{\mathrm{d}E_{e}\mathrm{d}\Omega_{e}\mathrm{d}\Omega_{\nu}} \propto \rho(E_{e}) \times \left\{ 1 + a\frac{\vec{p_{e}} \cdot \vec{p_{\nu}}}{E_{e}E_{\nu}} + b\frac{m}{E_{e}} + \langle \vec{\sigma}_{n} \rangle \cdot \left[A_{0}\frac{\vec{p_{e}}}{E_{e}} + \left(B_{0} + b_{\nu}\frac{m_{e}}{E_{e}} \right) \frac{\vec{p_{\nu}}}{E_{\nu}} \right] + \dots \right\}$$
The (V-A) SM prescribes $b = b_{\nu} = 0$, and:
($b \neq 0 \text{ signals S,T components}$)
($e - \nu \text{ correlation}$) $a(\lambda) = \frac{1 - |\lambda|^{2}}{1 + 3|\lambda|^{2}}$
 $A_{0}(\lambda) = -2\frac{|\lambda|^{2} + Re(\lambda)}{1 + 3|\lambda|^{2}}$ (β -asymmetry)
(ν -asymmetry) $B_{0}(\lambda) = 2\frac{|\lambda|^{2} - Re(\lambda)}{1 + 3|\lambda|^{2}}$
 $\lambda = \frac{G_{A}}{G_{V}}$ (with $\tau_{n} \Rightarrow \text{CKM } V_{ud}$).

One can also define the proton asymmetry: $C = \kappa (A + B)$ where $\kappa \simeq 0.275$.

 $\Rightarrow \frac{\text{SM overconstrains } a, A, B \text{ observables in } n \beta \text{ decay } \dots (V + A)!}{\text{Fierz interference terms } b, b_{\nu} \text{ enablice sensitivity to non-SM processes } (S, T)!}$

• Measure *a*, (e– ν correlation) in *n* decay with $\Delta a/a \simeq 10^{-3}$, or $\sim 10 \times$ better than:

	-0.091(39)	Grigorev et al 1968,
	-0.1017(51)	Stratowa et al 1978,
current results, $a =$	-0.1054(55)	Byrne et al 2002,
	-0.10779(183)	Wietfeldt et al 2023 (aCORN),
	-0.10402 (84)	Beck et al 2024 (aSPECT).

• Measure *a*, (e– ν correlation) in *n* decay with $\Delta a/a \simeq 10^{-3}$, or $\sim 10 \times$ better than:

	-0.091(39)	Grigorev et al 1968,
	-0.1017(51)	Stratowa et al 1978,
current results, a =	-0.1054(55)	Byrne et al 2002,
	-0.10779(183)	Wietfeldt et al 2023 (aCORN),
	-0.10402 (84)	Beck et al 2024 (aSPECT).

Measure *b* (Fierz term) in *n* decay with $\Delta b \simeq 3 \times 10^{-3}$, to be compared with: current results, $b_n = \begin{pmatrix} 0.067^{+93}_{-66} & \text{Hickerson et al 2017 (UCNA),} \\ 0.017 (21) & \text{Saul et al 2019 (Perkeo-III),} \\ -0.0098 (193) & \text{Beck et al 2024 (aSPECT).} \end{pmatrix}$

• Measure *a*, (e– ν correlation) in *n* decay with $\Delta a/a \simeq 10^{-3}$, or $\sim 10 \times$ better than:

	-0.091(39)	Grigorev et al 1968,
	-0.1017(51)	Stratowa et al 1978,
current results, <i>a</i> =	-0.1054(55)	Byrne et al 2002,
	-0.10779(183)	Wietfeldt et al 2023 (aCORN),
	-0.10402 (84)	Beck et al 2024 (aSPECT).

► Measure *b* (Fierz term) in *n* decay with $\Delta b \simeq 3 \times 10^{-3}$, to be compared with: current results, $b_n = \begin{pmatrix} 0.067^{+93}_{-66} & \text{Hickerson et al 2017 (UCNA),} \\ 0.017 (21) & \text{Saul et al 2019 (Perkeo-III),} \\ -0.0098 (193) & \text{Beck et al 2024 (aSPECT).} \end{pmatrix}$

▶ Nab will be followed by the **pNab** polarized program to measure A, electron, and B/C, neutrino/proton, asymmetries with $\simeq 10^{-3}$ relative precision.

• Measure *a*, (e– ν correlation) in *n* decay with $\Delta a/a \simeq 10^{-3}$, or $\sim 10 \times$ better than:

	-0.091(39)	Grigorev et al 1968,
	-0.1017(51)	Stratowa et al 1978,
current results, <i>a</i> =	-0.1054(55)	Byrne et al 2002,
	-0.10779(183)	Wietfeldt et al 2023 (aCORN),
	-0.10402 (84)	Beck et al 2024 (aSPECT).

• Measure *b* (Fierz term) in *n* decay with $\Delta b \simeq 3 \times 10^{-3}$, to be compared with:

current recults b -	0.067^{+93}_{-66}	Hickerson et al 2017 (UCNA),
current results, $D_n =$	0.017(21)	Saul et al 2019 (Perkeo-III),
	-0.0098(193)	Beck et al 2024 (aSPECT).

- Nab will be followed by the pNab polarized program to measure A, electron, and B/C, neutrino/proton, asymmetries with ~ 10⁻³ relative precision.
 Motivation:
 - multiple independent determinations of λ (test of CKM unitarity),
 - o independent and competitive limits on S, T currents (beyond SM).

Motivation and goals

CKM unitarity limits: current state of agreement

There are inconsistencies between the K decay sector (V_{us}) and the beta decay sector (V_{ud}) .

Nab & pNab expts:

Motivation and goals

$V_{ud} - \lambda$: current state of agreement for *n* beta decays

Inconsistencies remain in the n beta decay sector. Full physics reach of n decay not yet met. SAF: superallowed Fermi decays

Nab & pNab expts:

Motivation and goals

PDG 2024 on the evaluation of $\lambda = g_A/g_V$:

- λ value has drifted over time;
- λ is dominated by A results;
- recent evaluations of *a* are becoming competitive;
- inconsistencies in $\lambda(a)$ need to be resolved.

Sensitivity to λ :

$$\frac{\Delta\lambda}{\lambda} \simeq 0.27 \frac{\Delta a}{a} \simeq 0.24 \frac{\Delta A}{A}$$

Combined Nab and pNab will exceed the precision $\Delta\lambda$ of PERKEO III.

D. Počanić (UVa Physics)

Nab & pNab expts:

Motivation and goals

19 Jun '24 /XIV LASNPA

How to accomplish the goals of Nab?

Measure:
$$\frac{\Delta a}{a} \simeq 10^{-3}$$
 and $\Delta b \simeq 3 \times 10^{-3}$.

How to accomplish the goals of Nab?

Measure:
$$\frac{\Delta a}{a} \simeq 10^{-3}$$
 and $\Delta b \simeq 3 \times 10^{-3}$.

Basic approach:

$$({\sf n}
ightarrow {\sf p} + {\sf e}^- + ar{
u}_{\sf e})$$

- Detect electrons directly, in Si detectors,
- Measure electron energy in Si detectors,
- Detect protons, after acceleration, in Si detectors,
- Determine proton momentum from TOF over a long flightpath (electron provides start pulse).

How to accomplish the goals of Nab?

Measure:
$$\frac{\Delta a}{a} \simeq 10^{-3}$$
 and $\Delta b \simeq 3 \times 10^{-3}$.

Basic approach:

$$({\sf n}
ightarrow {\sf p} + {\sf e}^- + ar{
u}_{\sf e})$$

- Detect electrons directly, in Si detectors,
- Measure electron energy in Si detectors,
- Detect protons, after acceleration, in Si detectors,
- Determine proton momentum from TOF over a long flightpath (electron provides start pulse).

A complex magneto-electrostatic apparatus is required to guide particles (nearly) adiabatically to detectors.

Location: FnPB at SNS.

Electron-neutrino angle from $E_{\rm e}$ and $E_{\rm p}$

Nab measurement principles: proton phase space

Nab measurement principles: proton phase space

Nab apparatus (overview)

custom magneto-el.static spectrometer:

Extends: $\sim 6 \text{ m}$ above and $\sim 2 \text{ m}$ below beam height (pit).

In commissioning; full Nab data taking in Jul/Aug '24

DAO Fiber ο Φ (kV) Preamps FETs Detector Flux Return TOF Region Superconducting Magnet 200 2 (cm) Magnetic Filter Neutrons Detector FETs Preamps m B_z (T) DAQ Fiber Isolation Transformer

Nab & pNab expts:

Nab layout in FnPB

19 Jun '24 /XIV LASNPA

14 / 23

(not just straight to a small detector) \Rightarrow must collect, guide them, and relate TOF to p_p !

(not just straight to a small detector) \Rightarrow must collect, guide them, and relate TOF to p_p ! Method how: adiabatic longitudinalization; protons (and e's) gyrate around \vec{B} field lines

(not just straight to a small detector) \Rightarrow must collect, guide them, and relate TOF to p_p ! Method how: adiabatic longitudinalization; protons (and e's) gyrate around \vec{B} field lines

$$\begin{array}{ccc}
\vec{B}_{\otimes r} \\
\vec{v}_{\perp} \\
\vec{v}_{\perp}
\end{array} \quad \vec{B} \\
\vec{\theta} \\
\vec{p}_{\rho} \\
\vec{r} \\
\vec{r} \\
\vec{r} \\
\vec{r} \\
\vec{r} \\
\vec{eB} \\
\vec{eB} \\
.
\end{array}$$

Conservation of \vec{L} and energy yields:

$$L = mv_{\perp}r = \frac{m^2v^2\sin^2\theta}{eB} = \text{const.},$$

or:

$$\sin heta_{pB}\propto\sqrt{B}$$

(not just straight to a small detector) \Rightarrow must collect, guide them, and relate TOF to p_p ! Method how: adiabatic longitudinalization; protons (and e's) gyrate around \vec{B} field lines p_{\uparrow}

Conservation of \vec{L} and energy yields:

$$L = mv_{\perp}r = \frac{m^2v^2\sin^2\theta}{eB} = \text{const.},$$

 $\sin \theta_{pB} \propto \sqrt{B}$.

or:

Nab & pNab expts:

Nab lavout in FnPB

Nab Si detector basics

(LANL-Micron development)

- 15 cm diameter
- full thickness: 2 mm
- ▶ dead layer ≤100 nm
- ► 127 pixels

Pixel geometry:

Nab & pNab expts:

Nab layout in FnPB

19 Jun '24 /XIV LASNPA

Apparatus and running configurations

 Nab-a: detect protons in upper, electrons in both detectors;

 $U_{up} = -30 \text{ kV},$ $U_{down} = 0 \text{ kV} \text{ (or } -1 \text{ kV);}$ *b* measured parasitically!.

Apparatus and running configurations

 Nab-a: detect protons in upper, electrons in both detectors;

 $\begin{aligned} U_{\rm up} &= -30 \, \rm kV, \\ U_{\rm down} &= 0 \, \rm kV \ (or \ -1 \, \rm kV); \\ b \ measured \ parasitically!. \end{aligned}$

 Nab-b: detect electrons in both, protons in lower detector; U_{up} = 0 kV (up to +1 kV), U_{down} = −30 kV. full e-p coinc. coverage; LDet: increased rate; e-p coincidence time window reduced ~ × ¹/₅.

D. Počanić (UVa Physics)

Apparatus & configurations

Main sources of uncertainties in Nab

- Physical properties of the instrument: magnetic and electric fields
 - relative field magnitudes, curvature , etc.,
 - relative geometry of electric and magnetic field distributions,
 - electric field inhomogeneity,
 - relative geometry of the neutron beam
- Physics of particle interactions with the apparatus:
 - electron backscattering (dep. on incident angle, E),
 - electron bremsstrahlung,
 - proton detection efficiency, etc.

All of these factors influence details of the detector response functions (for electrons and protons) and, hence, the extraction of *a*.

Note: making regular systematics-motivated measurements during main DAQ adds running time.

Experimental paran	neter	Principal specification (comment)	$(\Delta a/a)_{ m SYST}$
Magnetic field:	curvature at pinch	$\Delta\gamma/\gamma = 2\%$ with $\gamma = (d^2B_z(z)/dz^2)/B_z(0)$	$5.3 imes 10^{-4}$
	ratio $r_{\rm B}=B_{ m TOF}/B_0$	$(\Delta r_B)/r_B=1\%$	$2.2 imes 10^{-4}$
	ratio $r_{ m B,DV}=B_{ m DV}/B_0$	$(\Delta \textit{r}_{ extsf{B}, extsf{DV}})/\textit{r}_{ extsf{B}, extsf{DV}}=1\%$	$1.8 imes10^{-4}$
L _{TOF} , length of TO	F region	(free fit parameter)	—
U inhomogeneity:	in decay / filter region	$ \mathit{U}_{F} - \mathit{U}_{DV} < 10mV$	$5 imes 10^{-4}$
	in TOF region	$ U_{ m F}-U_{ m TOF} <200{ m mV}$	$2.2 imes10^{-4}$
Neutron beam:	position	$\Delta \langle z_{ m DV} angle < 2 m mm$	$1.7 imes10^{-4}$
	profile (incl. edge effect)	slope at edges $< 10\%/{ m cm}$	$2.5 imes10^{-4}$
	Doppler effect	(analytical correction)	small
	unwanted beam polarization	$\Delta \langle P_{ m n} angle < 2 \cdot 10^{-5}$ (with spin flipper)	$1 imes 10^{-4}$
Adiabaticity of prot	on motion		$1 imes 10^{-4}$
Detector effects:	$E_{ m e}$ calibration	$\Delta E_{ m e} < 200{ m eV}$	$2 \cdot 10^{-4}$
	shape of $E_{ m e}$ response	$\Delta N_{ m tail}/N_{ m tail} \leq 1\%$	$4.4 imes10^{-4}$
	proton trigger efficiency	$\epsilon_{\sf p} < 100{\sf ppm/keV}$	$3.4 imes10^{-4}$
	TOF shift (det./electronics)	$\Delta t_{ m p} < 0.3 m ns$	$3 imes 10^{-4}$
electron TOF		(analytical correction)	small
TOF in acceleration	n region	$\Delta r_{ m GROUND \; EL.} < 0.5 m mm$ (preliminary)	$3.4 imes10^{-4}$
BGD/accidental co	incidences	(will subtract out of time coinc)	small
Residual gas		$P < 2 \cdot 10^{-9}$ torr	3.8×10^{-4}
Overall sum			$1.2 imes 10^{-3}$

Nab systematic uncertainties: Method B

2023 commissioning and first Nab data

First run with 2 detectors, HV, B all on,

- \blacktriangleright normal data taking $\sim 20\%$
- systematics + reduced int. ~ 47%
- background $\sim 12\%$

However, there were electronics and detector issues:

electronics unstable w/all pixels on,

- certain channels unresponsive (el./contacts),
- Iower detector underdepleted

D. Počanić (UVa Physics)

Nab & pNab expts:

Commissioning results

19 Jun '24 /XIV LASNPA

A peak at the physics result from 2023 Nab commissioning

- First measurement of *n* β -decay *e*-*p* coincidences covering most of phase space.
- ▶ Proof of principle of Nab demonstrated (event stats correspond to $\Delta a/a \sim 1.1 \times 10^{-2}$).
- Challenges remain in understanding observed shifts in detector response.

D. Počanić (UVa Physics)

Nab & pNab expts:

Summary and outlook

- CKM unitarity is currently violated by ~2-3σ. Nuclear, K and n decays are under scrutiny.
- With improved accuracy, n decay could dominate V_{ud} determination.
- A range of experiments and techniques needed to sort inconsistencies in the data.
- A combination of experiments, including Nab and pNab, are needed to get to: $\Delta\lambda/\lambda \sim 3 \cdot 10^{-4}$, Δb , $\Delta b_{\nu} \sim 10^{-3}$, and $\tau_n \sim 0.3$ s.
- Nab will start taking data once remaining technical issues are resolved).
- Additional apparatus needed for pNab is modest; Nab design accommodates pNab.

Nab & pNab expts:

Future prospects

19 Jun '24 /XIV LASNPA

The collaboration

Further Latin American collaboration warmly invited!

D. Počanić (UVa Physics)

U.S. DEPARTMENT OF ENERGY Office of Science

Nab & pNab expts:

Collaboration: funding

19 Jun '24 /XIV LASNPA

23 / 23