

# Exploring the extremes with NUSTAR @ FAIR

Nasser Kalantar-Nayestanaki ESRIG/University of Groningen

> On behalf of NUSTAR Coll. (Spokespers.: Zsolt Podolyak

LASNPA XIV/2024

Mexico City, Mexico, June 18, 2024



#### The 11 Greatest Unanswered Questions of Physics

- 1. What is dark matter?
- 2. What is dark energy?
- 3. How were the heavy elements from iron to uranium made?
- 4. Do neutrinos have mass?
- 5. Where do ultrahigh-energy particles come from?
- 6. Is a new theory of light and matter needed to explain what

happens at very high energies and temperatures?

- 8. Are protons unstable?
- 9. What is gravity?
- 10. Are there additional dimensions?
- 11. How did the universe begin?



https://www.discovermagazine.com/the-sciences/the-11-greatest-unanswered-questions-of-physics

#### Snapshot of the nuclear landscape



## Nuclear and astrophysics meet





#### Spear points of NUSTAR Phase 1

• Heavy nuclei, 3<sup>rd</sup> r-process peak

• High excitation energies



• Study of exotics



Experimental Chart of Nuclides 2975 isotones

## **NUSTAR collaboration**





Status: October 8, 2023

#### NUSTAR – The project 1.2



|        | Super-FRS         | RIB production, separation, and identification                                                                                                                              |
|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSP    | Experiment        | Description                                                                                                                                                                 |
| 1.2.2  | HISPEC/<br>DESPEC | In-beam $\gamma\text{-spectroscopy}$ at low and intermediate energy, n-decay, high-resolution $\gamma\text{-},\ \beta\text{-},\ \alpha\text{-},\ p\text{-},\ spectroscopy}$ |
| 1.2.3  | MATS              | In-trap mass measurements and decay studies                                                                                                                                 |
| 1.2.4  | LaSpec            | Laser spectroscopy                                                                                                                                                          |
| 1.2.5  | R <sup>3</sup> B  | Kinematically complete reactions with relativistic radioactive beams                                                                                                        |
| 1.2.6  | ILIMA             | Large-scale scans of mass and lifetimes of nuclei in ground and isomeric states                                                                                             |
|        |                   |                                                                                                                                                                             |
| 1.2.10 | Super-FRS         | High-resolution spectrometer experiments                                                                                                                                    |
| 1.2.11 | SHE               | Synthesis and study of super-heavy elements                                                                                                                                 |
| 1.2.8  | ELISe(*)          | Elastic, inelastic, and quasi-free eA scattering                                                                                                                            |
| 1.2.9  | EXL(*)            | Light-ion scattering reactions in inverse kinematics                                                                                                                        |

(\*) NESR required – alternative/intermediate "operation" within MSV under discussion. SHE physics case to be evaluated.

## MSV and plans of NUSTAR



# The Physics Program



#### Overarching physics case: the creation of the (heavy) chemical elements



Big physics question requiring information on:

Equation of State Limits of existence Lifetimes, Masses P<sub>xn</sub> values Fission Reactions in star environments



#### Complementarity of NUSTAR experiments



|              | Super-FRS        | HISPEC/DESPEC      | LASPEC      | MATS                | R3B               | ILIMA           | SHE             | ELISe          | EXL             |
|--------------|------------------|--------------------|-------------|---------------------|-------------------|-----------------|-----------------|----------------|-----------------|
| Masses       | Precision meas.  | Q-values, isomers  |             | dressed ions,       | unbound nuclei    | bare ions,      | precision       |                |                 |
|              |                  |                    |             | highest precision   |                   | mapping study   | mass of SHEs    |                |                 |
| Half-lives   | psns-range       | dressed ions,      |             |                     | resonance width,  | bare ions,      | µsdays          |                |                 |
|              |                  | μ <b>ss</b>        |             |                     | decay up to 100ns | msyears         |                 |                |                 |
| Matter radii | interaction x-   |                    |             |                     | interaction x-    |                 |                 |                | matter densitiy |
|              | section          |                    |             |                     | section           |                 |                 |                | distribution    |
| Charge radii | charge-changing  |                    | mean square |                     | charge-changing   |                 |                 | charge density |                 |
|              | cross sections   |                    | radii       |                     | cross sections    |                 |                 | distribution   |                 |
| Single-      | high resolution, | high-resolution    | magnetic    | evolution of shell  | quasi-free        | evolution of    | shell structure |                | low momentum    |
| particle     | angular          | particle and γ-ray | moments,    | str., pairing int., | knockout, short-  | shell closures, | of SHEs         |                | transfers       |
| s truc ture  | momentum         | spectroscopy       | nucl. spins | valence nucl.       | range and tensor  | pairing corr.   |                 |                |                 |
| Collective   |                  | electromag.        | quadrupole  | halo structure      | dipole response   | changes in      |                 | electromag.    | monopole        |
| behavior     |                  | transitions        | moments     |                     |                   | deformation     |                 | transitions    | resonance       |
| EoS          |                  |                    |             |                     | polarizability,   |                 |                 | neutron skin 🗲 | neturon skin,   |
|              |                  |                    |             |                     | neutron skin      |                 |                 |                | Compressibility |
| Exotic       | bound mesons,    |                    |             |                     |                   |                 |                 |                |                 |
| S ys tems    | hypernuclei,     |                    |             |                     |                   |                 |                 |                |                 |
|              | nucleon res.     |                    |             |                     |                   |                 |                 |                |                 |

### What are the highlights of FAIR Phase 1 program?

- Understanding the 3<sup>rd</sup> r-process peak by means of comprehensive measurements of masses, lifetimes, neutron branchings, dipole strength, and level structure along the N=126 isotones;
- Equation of State (EoS) of asymmetric matter by means of measuring the dipole polarizability and neutron-skin thicknesses of tin isotopes with N larger than 82 (in combination with the results of the first highlight);
- Exotic hypernuclei with very large N/Z asymmetry.

## "PARTS" needed

#### NUSTAR experimental areas, ESSENTIAL to run!



Rich program due to approximately 2000 h beam time for NUSTAR experiments per year!

RARE-ISOTOPE BEAM FACILITIES



Exploring the extremes with NUSTAR@FAIR

#### Improvements of Radioactive Ion Beam (RIB) production with the Super-FRS at NUSTAR



# Strategy

### Definition of NUSTAR experiment phases

#### Phase 0

- R&D and experiments to be carried out with present facilities <u>and</u> FAIR/NUSTAR equipment
- Phase 1
  - Core detectors and subsystems completed
  - First measurements with FAIR/Super-FRS beams
  - Carry out experiments with highest visibility as part of the core program and within the FAIR MSV

#### • Phase 2

- FAIR evolving towards full power
- Completion of experiments within MSV
- Essentially the full program of MSV can be performed

#### • Phase 3

 Moderate projects, which have been initiated on the way (outside MSV) can be included (e.g. experiments related to return line for rings)

#### Phase 4

Major new investments and upgrades for all experiments

#### Phase 1



Exploring the extremes with NUSTAR@FAIR

#### ... to reality

T

#### APPA EXPERIMENTS

NUSTAR EXPERIMENTS

September 2021 (drone video)

#### ... to reality

T

#### APPA EXPERIMENTS

NUSTAR EXPERIMENTS

HEB

September 2021 (drone video)

EB

supply building

## And in April 2024



#### NUSTAR Physics start up at FAIR



#### NUSTAR – The project 1.2



|        | Super-FRS         | RIB production, separation, and identification                                                                                                                              |
|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSP    | Experiment        | Description                                                                                                                                                                 |
| 1.2.2  | HISPEC/<br>DESPEC | In-beam $\gamma\text{-spectroscopy}$ at low and intermediate energy, n-decay, high-resolution $\gamma\text{-},\ \beta\text{-},\ \alpha\text{-},\ p\text{-},\ spectroscopy}$ |
| 1.2.3  | MATS              | In-trap mass measurements and decay studies                                                                                                                                 |
| 1.2.4  | LaSpec            | Laser spectroscopy                                                                                                                                                          |
| 1.2.5  | R <sup>3</sup> B  | Kinematically complete reactions with relativistic radioactive beams                                                                                                        |
| 1.2.6  | ILIMA             | Large-scale scans of mass and lifetimes of nuclei in ground and isomeric states                                                                                             |
|        |                   |                                                                                                                                                                             |
| 1.2.10 | Super-FRS         | High-resolution spectrometer experiments                                                                                                                                    |
| 1.2.11 | SHE               | Synthesis and study of super-heavy elements                                                                                                                                 |
| 1.2.8  | ELISe(*)          | Elastic, inelastic, and quasi-free eA scattering                                                                                                                            |
| 1.2.9  | EXL(*)            | Light-ion scattering reactions in inverse kinematics                                                                                                                        |

(\*) NESR required – alternative/intermediate "operation" within MSV under discussion. SHE physics case to be evaluated.



#### Phase 1 Physics with R3B setup:

Dipole strength Distributions in heavy neutron-rich nuclei

• core vs. neutron skins & halos  $\rightarrow$  density / asymmetry



S. Bacca et al. PRL **89** (2002) 052502 PRC **69** (2004) 057001

access to EoS (e.g. neutron star) & low lying E1 strength (r-process)





### Start version for Phase 0





CALIFA (Sweden, Spain, Germany, Russia): Barrel without backward part ready



## FAIR Phase-0: <sup>12</sup>C+<sup>12</sup>C benchmark case



A benchmark case to provide very precise data that minimize the uncertainty associated to the reaction models

#### Exp. precision +-0.387%

Determined by the so-called Transmission method

$$\sigma_R = \sigma_{inel} + \sigma_I$$

$$\sigma_R = -\frac{1}{N_t} ln\left(\frac{R_i}{R_o}\right)$$

 $R_{i/o}$  is the ratio of non-interacting nuclei after target and incoming nuclei for target in (out)



L. Ponath et al., submitted to PLB

Precision of +-0.387% achieved, while the **Glauber model** including inmedium effects of Pauli blocking, Fermi motion, higher-order Eikonal corrections, Coulomb repulsion, and nuclear excitation of giant resonances **overestimates** the cross section **by around 2.5%** at higher beam energies.



Most precise constraints on the neutron pressure around saturation density from measurements of **neutron skins** and **dipole polarizabilities** 









Measured Z (red) and A (green) fission yields in actinides and pre-actinides together with the neutron-rich (dark blue circles and dots) and other nuclei (light blue circles) that can be investigated at FAIR.



## ES and FS: short range correlations



M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018

Double ratio of high-to-low momentum protons (neutrons) in nucleus A with respect to carbon are marked with dot (squares), and corresponding calculations with rectangles.



#### **Recent Achievements**



Modifications in Cave C to accomodate R<sup>3</sup>B equipment for FAIR Phase-0

- Target area (CALIFA+ LT3)
- GLAD (including Vacuum chamber)
- NeuLAND
- Tracking detectors (beampipe)



Many experiments approved by GSI-PACs have been running since 2017 with different parts installed.

## HISPEC/DESPEC

#### DESPEC



#### DESPEC (FAIR Phase-0) campaign at other labs

FATIMA fast-timing array in GANIL and Orsay, France

## AGATA+VAMOS+FATIMA

AIDA implantation and decay detector & BELEN neutron counter in RIKEN, Japan







Hybrid array for fast-timing measurements









- Evolution of the shell structure & exotic nuclear shapes in **uncharted nuclear territory**
- Spectroscopic information for the nucleosynthesis of heavy nuclei
- Comprehensive decay information at beam yields as low as one ion per hour
- Primary focus on GSI-FAIR uniqueness for nuclei around N~126, while providing competitive data on key nuclei also in other regions of the nuclear chart: around <sup>100</sup>Sn and <sup>132</sup>Sn, rare earth nuclei, ...



New Hybrid Ge-LaBr3 array in operation from April 2024



## MATS + LaSpec



Needs the low-energy cave

# Resolving isomers with ion motional phases in a Penning trap

Demonstration of isomeric cleaning with the novel phase-sensitive PI-ICR technique at JYFLTRAP. Isomerically clean beam of <sup>127</sup>Cd provided to posttrap TASISPEC decay setup.

<sup>127</sup>Cd and <sup>127m</sup>Cd: ~280 keV mass difference ( $T_{1/2}$  ~300 ms). With 250 ms excitation pattern, a maximal 180° separation achieved. With subsequent excitation, the state of interest is centered while unwanted ones are pushed further out.



Roentdek DLD40 MCP with delay-line anode

MATS

MATS





# First online application of LaSpec's new detection region



Forschungsgemeinschat

Photomultiplier Tube Scan) Adjustable Compound Apertures Parabolic Concentrator Signal Rate (Photons **Elliptical Reflector** 緣

### ILIMA

#### New masses around N=82





- High precision isochronous condition
  - Mass resolution ~10<sup>-6</sup>
- Single-ion sensitivity of new Schottky



Next exp. (98Mo and 98Zr) in May 2024

#### Isochronous mass measurements

- Neutron-rich heavy nuclei
  - Recently-developed Schottky detection in isochronous optics
  - Fast measurement with high resolution (10<sup>-6</sup>) → access to extremely short-lived nuclei (few 10ms)
- Beta-delayed neutron probabilities
  - Neutron-rich iodine isotopes (proof of principle)

#### Investigations of exotic radioactive decays

ILIMA

- Hyperfine-resolved electron capture decays
  - <sup>111</sup>Sn few electron system becomes allowed or forbidden decay
- NEEC (Nuclear excitation by electron capture)
   In cooperation with SPARC!



## Super-FRS







Secondary reactions  ${}^{70}\text{Br} \rightarrow {}^{69}\text{Br} \rightarrow {}^{68}\text{Se+}p$  ${}^{74}\text{Rb} \rightarrow {}^{73}\text{Br} \rightarrow {}^{72}\text{Kr+}p$ 

## FAIR WASA@FAIR (installed first at FRS-S2)





#### Hypernuclei:

**Combination of WASA with FRS** provides unique setup for exclusive measurements:

- FRS for high resolution spectroscopy of forward particles
- WASA for decay particles



Exploring the extremes with NUSTAR@FAIR



## WASA@FAIR (installed first at FRS-S2)







# FAIR-0: Gamov-Teller Strength at N=50 and the puzzle of <sup>100</sup>Sn mass





A. Mollaebrahimi et al., Phys.Lett. B 839, 137833 (2023)

First direct mass measurements of <sup>98</sup>Cd and <sup>97</sup>Rh with the FRS Ion Catcher

#### <sup>100</sup>Sn mass:

New results in discrepancy of <sup>100</sup>**Sn Q<sub>EC</sub> values** (Hinke et al. [1] and Lubos et al. [2]) • In recent work Mougeot et al. [3] derive the

 In recent work Mougeot et al. [3] derive the mass of <sup>100</sup>Sn from mass measurements of <sup>99-</sup>
 <sup>101</sup>In and published <sup>100</sup>Sn Q<sub>EC</sub> values
 → value of Hinke et al. is favored

#### • This work:

Evolution of shifted two-neutron shell gap at N=50:

 $\rightarrow$  Value of Hinke et al. [1] is favored.

Evolution of Gamov-Teller Strength at N=50:

 $\rightarrow$  *v*alue of Lubos et al. [2] is favored.

## Overall situation unclear, further experiments required.

[1] C.Hinke et al., Nature **486** (2012) 341
[2] D.Lubos at al., PRL **122** (2019) 222502
[3] M.Mougeot et al., Nature Phys. **17** (2021) 1099

Fire Quasi-real-time range monitoring in hadron therapy using Super-FRS EC



#### Best candidate? <sup>16</sup>O beam -> <sup>15</sup>O 43 mb 122 s <sup>14</sup>O 1.2 mb 71s

<sup>12</sup>C beam -> <sup>11</sup>C 47 mb 1221 s <sup>10</sup>C 4.3 mb 19 s

Sivaji Purushothaman et al., Sci Rep 13, 18788 (2023) Quasi-real-time range monitoring by in-beam PET: **a case for** <sup>15</sup>O

BIOMAT

(also hadron therapy with <sup>11</sup>C on mouse in Feb. 2024)

# ES and FS: new isotopes, radii and momentum distributions

#### Search for new isotopes

Longitudinal momentum distribution  $P_{\parallel}$   $\rightarrow$  Evolution of nucleon orbitals, evolution of shell structure, spectroscopic information for *r*-process

Reaction cross section  $(\sigma_R) \rightarrow$  matter radius Charge changing cross section  $(\sigma_{CC}) \rightarrow$  proton  $\rightarrow$ Identifying skins (or halos) in heavy nuclei, test of models

Neutron skin systematics → EoS of asymmetric nuclear matter

ES, FS: focus on N~82, 126 in heavy neutron-rich nuclei









ES and FS: Beta-delayed single- and multiple-neutron emission probabilities (P<sub>xn</sub>)



Important for:

r-process nucleosynthesis

nuclear structure

nuclear reactor safety

Novel method for measuring  $P_{xn}$ , simultaneously with mass,  $Q_{bxn}$ ,  $S_{xn}$  and  $T_{1/2}$ 

Complementary to worldwide programs, especially suited for <u>multi-neutron</u> emission

Enhanced transmission and separation of Super-FRS + new CSC increases P<sub>2n</sub> sensitivity by **more than 2 orders of magnitude(!)**, while reducing background by order(s) of magnitude

→ ≈30...40 P<sub>2n</sub> measurements expected during <sup>®</sup> Early Science

**FS: MNT** reaction studies with radioactive beams





Superheavy elements: "Island of Enhanced Stability"

#### See Next Talk



O. Smits, Ch.E.Düllmann et al. Nat. Rev. Phys. 6 (2024) 86

#### Message **B**:

Theory differs by 11 orders in describing  $T_{1/2}$  of known <sup>284</sup>Cn

#### Snapshot of the nuclear landscape



#### Complementarity of NUSTAR experiments



|              | Super-FRS        | HISPEC/DESPEC      | LASPEC      | MATS                | R3B               | ILIMA           | SHE             | ELISe          | EXL             |
|--------------|------------------|--------------------|-------------|---------------------|-------------------|-----------------|-----------------|----------------|-----------------|
| Masses       | Precision meas.  | Q-values, isomers  |             | dressed ions,       | unbound nuclei    | bare ions,      | precision       |                |                 |
|              |                  |                    |             | highest precision   |                   | mapping study   | mass of SHEs    |                |                 |
| Half-lives   | psns-range       | dressed ions,      |             |                     | resonance width,  | bare ions,      | µsdays          |                |                 |
|              |                  | μ <b>S</b> S       |             |                     | decay up to 100ns | msyears         |                 |                |                 |
| Matter radii | interaction x-   |                    |             |                     | interaction x-    |                 |                 |                | matter densitiy |
|              | section          |                    |             |                     | section           |                 |                 |                | distribution    |
| Charge radii | charge-changing  |                    | mean square |                     | charge-changing   |                 |                 | charge density |                 |
|              | cross sections   |                    | radii       |                     | cross sections    |                 |                 | distribution   |                 |
| Single-      | high resolution, | high-resolution    | magnetic    | evolution of shell  | quasi-free        | evolution of    | shell structure |                | low momentum    |
| particle     | angular          | particle and γ-ray | moments,    | str., pairing int., | knockout, short-  | shell closures, | of SHEs         |                | transfers       |
| s truc ture  | momentum         | spectroscopy       | nucl. spins | valence nucl.       | range and tensor  | pairing corr.   |                 |                |                 |
| Collective   |                  | electromag.        | quadrupole  | halo structure      | dipole response   | changes in      |                 | electromag.    | monopole        |
| behavior     |                  | transitions        | moments     |                     |                   | deformation     |                 | transitions    | resonance       |
| EoS          |                  |                    |             |                     | polarizability,   |                 |                 | neutron skin 🗲 | neturon skin,   |
|              |                  |                    |             |                     | neutron skin      |                 |                 |                | Compressibility |
| Exotic       | bound mesons,    |                    |             |                     |                   |                 |                 |                |                 |
| S ys tems    | hypernuclei,     |                    |             |                     |                   |                 |                 |                |                 |
|              | nucleon res.     |                    |             |                     |                   |                 |                 |                |                 |

# Thank you!

# Conclusions



# Funding

#### Evolution of NUSTAR project funding



### NUSTAR MSV – funding status



#### to be assigned

#### Status: March, 2021

- funding (secured and expected) from: (FAIR funding in bold face)
  - Australia
  - Belgium
  - Bulgaria
  - Canada
  - China
  - Czech Republic
  - Finland
  - France
  - Germany
  - Hungary
  - India

- Israel
- Japan
- Netherlands
- Poland
- Romania
- Russia
- Slovenia
- Spain
- Sweden
- Turkey
- United Kingdom

|                            | NUSTAR<br>sub-system | TDR               | Cost [k€ 2005] | Funding | Construction   | Date<br>completion | Test/<br>Commissioning |
|----------------------------|----------------------|-------------------|----------------|---------|----------------|--------------------|------------------------|
|                            | LEB infrastr.        |                   | 2,109          |         |                | 07/2025            |                        |
|                            | HISPEC/DESPEC        |                   | 10,781         |         |                | 09/2024            |                        |
| Day 1                      | MATS                 |                   | 1,173          |         |                | 08/2024            |                        |
|                            | LaSpec               |                   | 253            |         |                | 05/2024            |                        |
|                            | R3B                  |                   | 17,800         |         |                | 07/2024            |                        |
|                            | ILIMA                |                   | 1,101          |         |                | 07/2025            |                        |
|                            | Super-FRS Exp        |                   | 398            |         |                | 12/2023            |                        |
|                            |                      | 91.1%             | 33 615         | 93.4%   | 59.9%          |                    | 43.9%                  |
|                            |                      | value<br>weighted | 55,015         | secured | value weighted |                    | value weighted         |
| Change since report 2021-I |                      | 0.0%              | 0.0            | 0.0%    | + 0.3%         |                    | + 1.6%                 |

#### Status: March 2021

## Timeline

#### NUSTAR Overall schedule: From Phase-0 to FAIR MSV



### EXL

## Recent highlight: Inelastic alpha scattering off <sup>58</sup>Ni (100 MeV/u)

#### Giant Monopole Resonance of <sup>58</sup>Ni



#### **<u>First</u>EXL**<u>pilot experiment at ESR</u> sets the world records:

- Lowest c.m. angle measured in inverse kinematics
- Most accurate extraction of monopole strength in inverse kinematics

With only one detector !!!



| centroid [MeV]       | EWSR [%]                 |                               |
|----------------------|--------------------------|-------------------------------|
| 20.5(6)              | 79 <sup>+12</sup><br>-11 | present data                  |
| $21.5^{+3.0}_{-0.3}$ | 74 <sup>+22</sup><br>-12 | PRC <b>61</b> , 067307 (2000) |
| $20.8^{+0.9}_{-0.3}$ | 85 <sup>+13</sup>        | PRC <b>73</b> , 014314 (2006) |
| 21.1                 | 94                       | RPA calculation [4]           |

[4] G. Colò et al, Comput. Phys. Commun. 184 (2013)

Published Oct. 2016: J.C. Zamora et al., Phys. Lett. B 763 (2016) 16

# **EXL** Phase 0 program (2018/19)

#### Giant Monopole Resonance of <sup>56</sup>Ni

Upgrade of detection system:

- Three more detectors plus new readout
- Closer geometry
- Detection system for recoil
- → Increase of solid angle substantially
- → Further reduced background

# → First measurement of the Giant Monopole Resonance in an unstable nucleus will be possible already in 2018!