

Multiple shape coexistence in nuclei

Paul Garrett University of Guelph

Why are shape coexistence studies interesting?

- What do we mean by shape coexistence?
 - presence of states in the same nucleus within a narrow energy range of two (or more) states that have well defined and distinct properties that can be interpreted in terms of different intrinsic shapes
- The shapes we observe, e.g., spherical, prolate, oblate, triaxial

emerge as a consequence of the nucleon-nucleon interaction manifest in a many-body system

- The presence of competing shapes due to effects of correlations, especially pairing and quadrupole-quadrupole correlations amongst nucleons, overcoming cost of energy promoting particles into different orbits – even across major shell gaps
- Studies of shape coexistence enables us to study effects of correlation energies on deformation (or *vice versa*) within a system having the same number of protons and neutrons

Shape coexistence in the nuclear landscape

- Regions of shape coexistence are now known to be located throughout the nuclear chart, although still mainly concentrated in the vicinity of closed shell or subshells
 - There has been much activity recently, including areas suggested to possess multiple shape coexistence – C, Si/Mg, Ni, Sr/Zr, Cd, Pb/Hg

Multiparticle-multihole states and shape coexistence

UNIVERSITY &GUELPH

- Deformation is driven by the quadrupole-quadrupole interaction between protons and neutrons the more valence particles of both types, the greater the deformation (up to a point)
- There can be a substantial gain in
 energy due to correlations between the
 particles such that the energy cost for
 promoting particle across shells can be
 offset
- The most common mechanism to
 generate states with different shapes
 involves the creation of multiparticlemultihole states

0+ states in Sn populated very weakly in two-neutron transfer, but strongly in two-proton transfer

• In normal or superfluid nuclei, the two-nucleon-transfer should be dominated by ground state—to ground state transitions – typically >95% of *L*=0 strength to the ground state

Fielding et al., Nucl. Phys. **A281**, 392 (1977) 5

Example of the data for deformed 2*p*-2*h* "intruder"

bands at closed shells – ¹¹⁶Sn

6/18/2024

Paul Garrett, LASNPA2024

124, 103931 (2022)

Cross-section ratio

The Ni isotopes

 Variety of highly deformed structures observed in vicinity of ⁵⁶Ni by Lund group (e.g., ⁵⁶Ni by D. Rudolf et al., PRL 82, 3763 (1999))

PG, M. Zielinska, and E. Clement, PPNP 124, 123931 (2022)

Suggestions for multiple shapes in ⁶⁴⁻⁶⁸Ni through comparisons with MCSM

Suggested shapes
need to be
confirmed through
additional
measurements

S. Leoni et al., PRL 118, 162502 (2017) N. Mărginean et al., PRL 125, 102502 (2020)

Transitions labelled with $10^{3}\rho^{2}(E0)$

Shape coexistence in the Z = 40 - 50 region: ⁹⁶⁻¹⁰²Mo show

clear evidence, and anchor the region

- **Detailed Coulomb**excitation studies enable extraction of shape invariants indicating *clearly* different shapes for 0_1^+ and 0_2^+ states
- Strong E0 transitions indicate differences in deformation and mixing of configurations

Zr isotopes undergo the most rapid change of ground state structure across the nuclear chart

11

• There have been numerous experimental investigations, but firm evidence for shape coexistence has been lacking, and only recently *B(E2)*s determined for deformed states

MCSM calculations – multiple shape coexistence predicted in the Zr isotopes

Deformed 0⁺ state configuration includes 2*p*-2*h* (+4*p*-4*h*, ...) excitations across *Z*=40 gap

Very different configurations and (generally) weak mixing between 0₁⁺ (spherical) and 0₂⁺ (deformed) until *N*=60 is reached

Togashi et al., PRL 117 172502 (2016)

Some recent work on the Zr isotopes

W. Witt et al., PRC 98, 041302(R) (2018)

⁹⁸Zr – lifetimes measured in ⁹Be induced fission of ²³⁸U, and ⁹⁶Zr+¹⁸O 2p transfer reaction

⁹⁸Zr – Coulomb excitation of mass 98 beam placed limit on B(E2;2₁⁺ \rightarrow 0₁⁺) value V. Karayonchev et al., PRC 102, 064314 (2020)

Substantial differences in both measured lifetimes, and assignments/interpretations

P. Singh et al., PRL 121, 192501 (2018)

6/18/2024

"Tension" in ⁹⁸Zr between recent measurements and interpretations

- Lifetimes from Singh *et al.* generally shorter than those of Karayonchev *et al.*
- Singh *et al.* favoured multiple shape coexistence with deformed band structures, Karayonchev *et al.* favoured a multiphonon-like structure with configuration mixing

"Tension" between recent measurements and interpretations in ⁹⁸Zr

Key is the 155-keV $2_2^+ \rightarrow 0_3^+$ transition:

- in deformed picture, MCSM predicts 49 W.u.
- in multiphonon picture with configuration mixing, 3 – 6 W.u.

Using measured lifetime and current branching ratio leads to ~ 500 W.u., recognized as unrealistically large

6/18/2024

Measurements using the 8π@TRIUMF-ISAC and β-decay to populate ⁹⁸Zr

- Issue: 155-keV $2_2^+ \rightarrow 0_3^+$ is part of a doublet.
- High statistical level achieved in the experiment enables us to cleanly separate lines by coincidence gating on 269-keV transition

New results consistent with band structure

Following the strong $J \rightarrow J-2$ transition B(E2) values would appear to affirm the band structure for the 0_3^+ state suggested by Singh et al.

Expanded level scheme for ⁹⁸Sr from our mass 98 β decay data

- Transitions labelled in red are new compared with NNDC
- *Candidate* 0₃⁺ band with in-band transitions and firm spin assignments

Similarity of ⁹⁸Sr, ¹⁰⁰Zr structure

Evolution of <**Q**²>

- Ground state Q^2
 - Values increasing with N except for Z=40
 - Still some effect of N=60 observed in Ru, but not nearly as dramatic

 $0_2^+ Q^2$

Pattern in Zr and Ru remarkably similar

N. Marchini et al., to be published

Evolution of <**Q**²>

- Ground state Q^2
 - Values increasing with N except for Z=40
 - Still some effect of N=60 observed in Ru, but not nearly as dramatic

 $0_2^+ Q^2$

Pattern in Zr and Ru remarkably similar

The "evolution" of the structure of the Cd isotopes

From spherical vibrators....

...to deformed with multiple shapes

PG et al., PRL 123, 142502 (2019)

Detailed spectroscopy of Cd isotopes performed following β decay and $(n,n'\gamma)$ reactions

• Extensive expansion of decay scheme of these wellknown and well-studied nuclei Transitions labelled with B(E2) in W.u. Square brackets indicate relative B(E2) values Very weak transitions removed

Four distinct shapes predicted for 0⁺ bands in ^{110,112}Cd

Energy systematics Cd isotopes

The presumed shapes are based on systematics and similarities of decay properties – but become increasingly uncertain towards the neutron rich isotopes

Coulomb excitation studies of ¹¹⁰Cd

- Aim to provide definitive results regarding shapes of 0⁺ states
 - ¹⁴N/³²S + ¹¹⁰Cd using EAGLE array at HIL Warsaw
 - ⁶⁰Ni + ¹¹⁰Cd using AGATA at Legnaro
 - ¹¹⁰Cd + ²⁰⁸Pb using
 GRETINA at Argonne
- New spectroscopic
 studies following β
 decay using GRIFFIN
 array at TRIUMF ISAC

Paul Garrett, LASNPA2024

S. Pannu, Guelph ²⁶

Triple shape coexistence in ¹⁸⁶Pb

¹⁸⁶Pb *the* famous example of multiple-shape coexistence

α-decay similar to α-transfer to gain information
 on 2*p*-2*h* enhancements

Andreyev et al., Nature **405**, 430 (2000).

Recent results on ¹⁸⁶**Pb** – **elucidating triple shape coexistence**

- A spectroscopic tour de force, using $\gamma \gamma$ and γe^{-} spectroscopy with recoil decay tagging at Jyvaskyla, observed the weak, in-band $2_1^+ \rightarrow 0_2^+$ transition establishing the 0_2^+ state as the head of the prolate band with $B(E2; 2_1^+ \rightarrow 0_2^+) =$ 190(80) W.u.
- Results indicated small mixing of 0₂⁺ and 0₃⁺ states

6/18/2024

Ojala et al, Nature Communications **5**, 213 (2022)

Summary

- Shape coexistence, once thought to be a rare and unique phenomena, is now believed to be pervasive throughout the nuclear chart
- Evidence beginning to emerge for multiple-shapes coexisting in nuclei
 - in light mass nuclei
 - in nuclei near closed shells
 - in regions where 2 shapes that coexist have been well established
- Some of the suggested examples of nuclei possessing multiple shapes are stable or near stability and offer the possibility of detailed studies by a variety of probes
- Much work needs to be done to firmly establish these candidates

Collaborators (98,100 Y β-decay projects)

- Guelph: K. Mastakov (⁹⁸Zr), B. Olaizola (⁹⁸Zr), H. Bidaman (¹⁰⁰Zr), V. Bildstein, Z.Ahmed, S. Buck, C. Burbadge, H. Dawkins, G. Demand, G. Deng, A. Diaz Varela, R. Coleman, B. Greaves, B. Hadinia, S.Pannu, A. Radich, E. Rand, C. Svensson, T. Zidar
- CEA Saclay: D. Kalaydjieva (¹⁰⁰Zr analysis), M. Zielińska (¹⁰⁰Zr analysis), W. Korten
- TRIUMF: V. Vedia, A.Garnsworthy, D. Annen, G. Ball, S. Devinyak, I. Dillmann, R. Caballero-Folch, E. Fuakye, F. Garcia, C. Griffin, G. Hackman, M. Moukaddam, J. Park, M. Rajabali, D. Torres, R. Umashankar, Z. Wang
- Simon Fraser University: A. Chester, D. Cross, P. Spagnoletti, C. Andreoiu, K. Ortner, U. Rizwan, P. Voss
- University of Regina: G. Grinyer, K. Kapoor, N. Saei
- INFN Florence: M. Rocchini, N. Marchini, A. Nannini
- Georgia Tech: J. Wood
- University of Kentucky: E. Peters, S. Yates

Deformation in terms of rotational invariant quantities - Kumar-Cline sum rules for $\langle Q^2 \rangle$ invariant

- E2 operator is a rank-2 spherical tensor products coupled to zero are rotationally invariant
- Coupling scheme for $\langle Q^2 \rangle$ for, e.g., for 0⁺ states

$$\frac{1}{\sqrt{5}} \langle Q^2 \rangle = \sum_i \langle 0 \| M(E2) \| 2_i \rangle \langle 2_i \| M(E2) \| 0 \rangle \begin{cases} 2 & 2 & 0 \\ 0 & 0 & 2 \end{cases}$$

For 0⁺ states, $\langle Q^2 \rangle$ reduces to $\Sigma_i B(E2; 0^+ \rightarrow 2_i^+)$ $\langle Q^2 \rangle = q_0^2 \langle \beta^2 \rangle$ $q_0 = \frac{3}{4\pi} Z R_0^2$

• Products of three MEs extract $< \cos 3\delta > -$ axiality of shape distribution $\frac{6}{24}$

- Level energies
 - Appearance of "unexpected" levels at low energies, e.g., low-lying 0+ states
 - Appearance of rotational bands, especially in a spherical nucleus
 - Inferred moments of inertia
- Transition rates vastly different *B*(*E*2) values within bands
- Transfer reaction cross sections large enhancements of cross sections, especially to excited 0⁺ states
- Quadrupole moments measure of charge distribution revealing deformation
- Charge radii directly measuring size of nuclear state
- Sets of EM transition matrix elements to form "invariant" quantities
- E0 transition strengths enhancements to E0 transition rates require mixing of states with different deformations

The case of ⁴⁰Ca – spherical, normal, and superdeformed bands

The case of ⁴⁰Ca – spherical, normal, and superdeformed bands

Recent work measured E0 transitions, and used 3-state mixing to explain the small $0_3^+ \rightarrow 0_2^+ \rho^2(E0)$

E. Ideguchi et al., PRL 128, 252501 (2022).

Our first measurement in the region – ⁹⁴**Zr** – **performed**

with the $8\pi \gamma$ -ray spectrometer

Goal was to seek critical $2_3^+ \rightarrow 0_2^+$ transition to resolve conflicting interpretations for ⁹⁴Zr structure

6/18/2024

Light nuclei with N~Z, e.g. ²⁸Si

Our approach: use β decay with the 8π (decommissioned) and GRIFFIN γ-ray spectrometers

- 8π had 20 HPGe detectors with ~ 1% photopeak efficiency @ 1.3 MeV
- GRIFFIN has 16 large volume clover detectors with ~10% efficiency @1.3 MeV
- **Radioactive beam implanted onto a moving tape at center of arrays**
 - Allows for movement of long-lived activity out of focus of spectrometer
- 5 Si(Li) detectors for conversion electrons
- 8 LaBr₃ detectors, with BGO shields, for fast timing measurements

New results from β decay of ⁹⁸Y at TRIUMF-ISAC with the

 8π spectrometer: γ - γ angular correlations

550E

500

450E

400E

0-2-0 (δ=0)

 $1-2-0 (\delta = -0.17)$

3-2-0 (δ=0.08)

4-2-0 (δ=0)

2-2-0 ($\delta = 50^{+1.01}_{-29.53}$)

 $J^{\pi} \rightarrow 2_{1}^{+} \rightarrow 0_{1}^{+}$ cascade, examine intensity $\gamma\gamma(\theta)$ to determine both $J^{(\pi)}$ and E2/M1 mixing ratio δ

Paul Garrett, LASNPA2024

Recent work on ¹⁰⁰Zr

¹⁰⁰Zr from ²⁴⁸Cm and ²⁵²Cf fission, W. Urban *et al.*, PRC 100, 014319 (2019)

- Identified candidate γ-band in ¹⁰⁰Zr, but band-head not established
 - Only the level at 1856 keV has firm spin-parity assignment, 4⁺
 - Hinted that 1196-keV level may be band head
- K. Heyde and J. Wood, RMP 83, 1467 (2011) assign 1196 keV (2_3^+) state as member of 0_3^+ band

Spectroscopy vs. systematics

Results from β -decay of ¹⁰⁰Y with the GRIFFIN spectrometer

Paul Garrett, LASNPA2024

- Key transition: 367keV $2_3^+ \rightarrow 0_3^+$ observed in gating from above and below
- 367-keV transition is ~1.2% branch
- Result suggests 1196
 keV level is 2⁺ band
 member
 - Spin now firmly established as 2⁺

Level scheme analysis: D. Kalaydjieva, M. Zielinska (CEA Saclay)

New results: lifetime of 0_3^+ and 2_2^+ levels

- $B(E2;0_2^+ \rightarrow 2_1^+) = 70(8)$ W.u., $B(E2;2_2^+ \rightarrow 0_2^+) = 8(3)$ W.u.
 - **0**₂⁺ band appears to be weakly collective
- $B(E2;0_3^+ \rightarrow 2_1^+) = 14(4)$ W.u

Lifetime analysis: H. Bidaman (Guelph)

Results on excited 0⁺ bands in ^{100,102}Ru

43

0_4^+ level preferentially decays to 2^+ intruder band member in the Cd isotopes

Search for very weak, low-energy γ branches in ^{112}Cd via $\beta\text{-decay}$

Garrett et al., PRC 101, 044302 (2020)

¹¹⁰Cd band structure

- Transitions labelled with B(E2) in W.u.
- Square brackets indicate relative *B(E2)* values
- Very weak transitions removed

• Most of the upper limits are due to unknown *E2/M*1 mixing ratios

¹¹²Cd band structure

- Transitions labelled with B(E2) in W.u.
- Square brackets indicate relative *B(E2)* values
- Very weak transitions removed

Results interpreted with aid of BMF calculations

 BMF calculations using symmetry-conserving configuration mixing method (SCCM) with Gogny D1S energy-density functional

• "Shoulders" on PES, but the rich variety of shapes not readily apparent

Garrett et al., PRC **101**, 044302 (2020)

• Exact angular momentum and particle number restoration