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Symmetry and conservation Laws

Translation (all times and/or positions are
equivalent)---- Energy and momentum conservation

All directions equivalent : Rotation ---- angular
momentum conservation

“Internal symmetries” quantum numbers: spin,
isospin, up, down, strange,..

Gauge Symmetries in Field Theory




Symmetries in Nuclear Physics
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Invariance
Symmetry

iy
Similarity and Sc
Invariance

What abour Biology?

brocoli living systems : self similarity,fractality
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Fractal Structure of organs:
An OPtimization strategy of nature

Fractality Self similarity in units and subunits.

Cardiovascular and nervous
systems

DNA

Fractal
globule

Brain Surface Anatomy

LEFT SIDE RIGHT SIDE

Adult lungs
gas exchange
Area:




From Physics: Phase transitions and critical points

A single scale defines the molecular
interactions in each pase.

Tempe-
rature

i Critical point: ice-water :all
scales

Critical mixing of water and
vapor : all scales appear.
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What about function? Phase transitions in

biological systems.
|t has been proposed that some

biological systems might lie near
critical points. 99000000000

*Examples include neural
networks in the salamander
retina, bird flocks, gene
expression networks in
Drosophila and protein folding.

* Biological organisms share two
key properties of phase
transitions: the change of




How to define criticality in time series

Ising model and criticality 1- dpeamidsractions define

Simple model
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Criticality: Ising Model Space reference frame

Order Criticalty Disorder

Uniformity Fractality, scale invariance Random fluctuations



THE ISING MODEL
LESS FAMILIAR : THE DYNAMICS CAN BE STUDIED Vi PERTURBATION
METROPOLIS-MONTECARLO METHODS

1

subcritical criticality. supercritical
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Total magnetization as a function of temperature:
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Complexity Approach:  Time series and
criticalit
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Complexity: at the border between order and
chag6g systems exist at the border of
q)ChaOS' 7 —Stuaﬁ]iééwffmé' mrns out not to be

S a metaphor

Handomne Excessive
SS order
Chaos Rigidity

i degree of order




Main Hypothesis, Living Organisms: evolution and criticality

* Organisms and their organs develop under constantly
changing environments.

* Two antagonistic requirements:

* Robustness: phenotypes should be robust as they
evolve.

* Adaptability:Individuals must adapt to changes

* Criticality : optimal equilibrium
(alostasis).

* Darwinian selection leads to criticality




A one dimensional example: Heartbeats ECG

Activation of the atria

Normal Heartbeat
% 548 88 1788 1281 %
Fast Heartbeat

TR

Slow Heartbeat

FSHE B gtgsE|

Irregular Heartbeat

PRI E

Activation of the
veantricles

Recovery wave
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CARDIAC VARIABILITY
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SCALE INVARIANCE AT CRITICALITY.
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POWER SPECTRA
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Power Spectra of R-R intervals Collaboration Hospital of Nutrition and
Cardiology: Prof. Dr. Bruno Estaiol: '

Detection of Pre-diabetes and Diabetes,
Metabolic Syndrome, for early warnings: 1Bl and
Blood Pressure. Coronary Obstruction, Intensive
Therapy, Epilepsy.

Change of slopes

A) young (21-34 years old),

B=-2.15

Correlation loss <—— B)older(68-84 years old). Physionet.
at low

frequencies

(longer times)
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A simple model: C Elegans

Pharynx oscillations display perfect scale

invariance for young healthy worms
LASNPA2024




High speed camera . Area measurements

Worm movements
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C-elegans Pharynx oscillation
- r—@tte-lﬂmll’%—lﬂﬂﬁlﬂf e

Young C-elegans

Older become
irregular

| ‘m.lllli Uil

Ill.ﬂlllll.Slllll.ﬂllllII.I

logy, f (frec. abs.)




Organic growth of brain networks produces areas of functional specialization

Motor and Sensory Regions of the Cerebral Cortex

Primary motor cortex Primary sensory conex
(precentral gyrus) (postcentral gyrus)

Somatic motor association area Somatic sensory association area

(premotor codex)\

Prefrontal cortex

——

4%

I_,\.

Broca's area
(production of speech)

Visual cortex

Auditory association area
) Wernicke's area
Auditory cortex (understand speech)




Brain Criticality ?
There is evidence that brain

behavior is critical. : "‘,,'.
Scale invariance helps explain the o NS
emergence of complex structures oy 5 S
Optimizes information processing L0 2 & sy
(transmission, storage) A TR
Produces diversity and functional "*f,’;;a”f S e S
flexibility PURRE AL
Provides functional robustness in “‘:.} ﬁ’: - 2

the face of serious alterations
(injuries)



Evidence through Experiments with rats ( invasive)
ANID AMAAdale
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At criticality, brain and Ising networks are indistinguishable from each other.
The graphs show a comparison of the link density distributions computed from correlation
networks extracted from brain data (bottom panel) and from numerical simulations of the

Ising model (top three panels) at three temperatures: critical (T' = 2.3), sub (T = 2) and
supercritical (T' = 3). Top three panels depict the degree distribution for the Ising networks
at T =2, T =23 and T = 3 for three representative values of (k) & 26127 and 713
Bottom panel: Degree distribution for correlated brain network for the same three values of
(k). Figure redrawn from Fraiman et al [42].




Multicriticality (multisignal criticality)

How to define and study criticality in a multiple
signal system?
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Ising multilayer model

Multilayer Ising model, each layer havs a different coupling
strength, vertically coupled to its nearest neighbors. We
evaluate each Iayer S magnetlzatlon time series and compute

Miguel Sanchez Islas. Ph. D. thesis
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Criticality in a multisignal system using principal component analysis
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Multilayer Ising Model
Using PCA we calculate the ordered

eigenvaluesmeigenfunctions of the
Corretatiori*matrix. ©

TN

Tc
—— B=-0.924 p=0.944

We find a power law for the ordered
- eigenvalues precisely (and only) at

A ity




What is the meaning of this

result?

c
—— [=-0.924 p=0.944

« Our result implies scale invariance of the

correlation matrix.

We postulate the following conjectures:

« 1): Given a complex system where n different signals
are simultaneously measured, the system is in a
critical state if the associated correlation matrix is

scale invariant.
e 2): A (symmetric) matrix is scale invariant if its



Brain criticality

We tested our methodology by taking eeg’s of
young people at rest or carrying out a
mathematical task

trode Measured potentials
for each electrode

Processing




Criticality of the brain

We find almost exact power laws in both
cases,
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The brain’s principal (normal) modes
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The critical brain: Time

dependent modes
Full EEG of resting brain:
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Subject no.10 at

rest and with task
LEFT-Right MODE

Tiempo 0 Tiempo 0
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ESE MODES ARE SEEN IN
ALL OUR SUBJECT Subject no.12
at rest and wath task

Tiempo 0

Behavior is almost identical between different people.
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Critical Brain. SUBJECT 15,
REST AND WITH TASK

» SECOND PRINCIPAL comPoNENT PC2

Tiempo 0 Tiempo 0
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PHYSICAL REVIEW E 103, 042111 (2021)

M u Itl Crltl Ca I Ity I n th e b ra I n Criticality in a multisignal system using principal

component analysis

Miguel Sanchez-Islas ,Juan Claudio Toledo-Roy,

and Alejandro Frank
Lower modes PC4, PC5 can distinguish brain activity

Machine learning

b algorithm recognizes

za?,a . ~1oq% of cognitive
task in these modes
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EEG’s, NMR,
Laser

Opto-
measureme

Neurophysiology Laboratory,
Unam, Research on monkey
Prof. Ranulfo connectome learning

Romo modifications




Other nervous system experiments

Neurophysiology Lab,
CINVESTAV

control capsaicin ketamine post-ketamine

Irritant
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—— Datos diarios

Other Sig nals LASNPA2024 — Promedio mévil 1 afio
Earth’s average

temperature: 1880-2010
Fluctuation Analysis by decat
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Microscopic systems versus self organized

systems (a pond)) Complex

Elementary

Dominant Scale Multiple scales

Fundamental Self similarity, scale
Symmetries: The invariance. Cascading
system remains communication among
isolated from other different scales

scales

Criticality=.
Evolutionary
equilibrium

Symmetries=
conserved
quantities




Conclusions:

1.Symmetry ideas have had few applications I —-——"——

niological domain,
particularly beyond the static fractal nature.of some
lving organisms.

2.5elf organized biological systems are
characterized by and evolve towards critical points
and dynamical self similarity.

3.Evolution leads to self similar (or scale invariant)
behavior, which signals homeostatic dynamical
equilibrium in living organisms. Optimization of




SUMMARY

Criticality in biological systems refers to the delicate balance and interplay
of various components within living organisms that allows for optimal
functioning and adaptability.

The concept of criticality suggests that biological systems operate at a point
where they are neither too ordered (rigid) nor too disordered (chaotic),

but rather at a state of dynamic equilibrium that enables efficient information
processing and response to external stimuli.

Studying criticality in physical or biological systems with many variables,

such as EEGs of the brain, can provide valuable insights into the underlying
principles of brain function, cognitive processes, and the mechanisms that
govern complex behaviors. By investigating the dynamics of neural activity at
criticality, researchers aim to uncover the fundamental principles that govern
brain dynamics and contribute to our understanding of brain health, cognition,
and neurological disorders.
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