

An overview of exotic nuclei studies using the "Radioactive Ion Beams in Brasil" (RIBRAS) facility

<u>K. C. C. Pires,</u> R. Lichtenthäler, A. Lépine-Szily, O. C. B. dos Santos, U. Umbelino, A. S. Serra, B. P. Monteiro, H. F. G. Arruda, D. A. Santana, F. R. Loureiro, J. A. E. Narváez and RIBRAS Collaboration

IF-USP

Outline

- Exotic nuclei: some of their properties
- Motivation to study nuclei outside the stability line
- The RIBRAS system
- The research program
- Conclusions

彩

The nuclide chart: Nuclear Physics' field of study

K. C. C. Pires

M Thoennessen *Rep. Prog. Phys.* **76 (2013)** 056301

XIV LASNPA – UNAM/México – 2024

UST

Halo effect and Borromean Nucleus

Distribution of nuclear particles beyond the typical range of nuclear forces

Particles around the nucleus, which significantly increases its radius Borromean Nucleus: ⁶He = ⁴He +2n ¹¹Li = ⁹Li +2n

⁵He=⁴He+n

not bound

 10 i=⁹ i+r

2n

In nuclear physics, "rings" = "binding", V₁₂ V₁₂ V₁₂ V₁₃ n Nucleus:

> System of N nucleons, where removal of any one nucleon renders the system unbound

TST-

Other properties of exotic nuclei

- Exotic nuclei in general are far from the line of stability
- Show different properties from those of stable nuclei.
 - an excess of protons (proton-rich) or neutrons (neutron-rich),
 - low binding energy;

點

• half-lives that can vary from days to minutes to microseconds.

weakly bound nuclei	B.E(MeV) (structure)	exotic nuclei	B.E(MeV) (structure)
⁶ Li	1.47 (α+d)	¹¹ Li (T _{1/2} =8.75ms)	0.300 (n+n+ ⁹ Li) three-body
⁷ Li	2.46 (α+t)	⁶ He (T _{1/2} =807ms)	0.973 (n+n+alfa)
9Be	1.67 (α+α+n)	¹¹ Be (T _{1/2} =13.81s) ⁸ B (T _{1/2} =770 ms)	0.501 (n+ ¹⁰ Be)
			0.137 (p+ ⁷ Be)
		¹⁷ F (64.5 s)	0.6 MeV (p+16O)
			0.1 MeV for 1st ¹⁷ F excited state

Stable nuclei have separation energies for protons and neutrons around 7-10 MeV.

Why to study nuclei outside the stability line?

- □ What are the limits of the atomic nucleus?
- Testing nuclear models under extreme conditions of isospin and very low binding energies. Nuclear models were developed based on data from nuclei near the stability line.
- □ How does nuclear structure depend on isospin?
- Measurements of masses and radii of nuclei near the drip line. New phenomena such as neutron and proton halos / neutron skin.
- Nuclear Astrophysics: The nucleosynthesis of elements in stars involves paths that include exotic nuclei.
- □ Applications: Production of radioisotopes for medicine.

出

Rare Isotopes Beam facilities in the world

USP

Major Facility for Nuclear Physics research in Brazil

K. C. C. Pires

Tandem Accelerator Pelletron 8UD

University of São Paulo Brazil

primary beams:

⁶Li, ⁷Li, ^{10,11}B, ⁹Be, ¹²C, ^{16,17,18}O, ...

XIV LASNPA – UNAM/México – 2024

L ST

9/26

Selection with the first solenoid

$$B\rho = \frac{mv}{q} = \frac{\sqrt{2\,mE}}{q}$$

FUSP

Maximum Bp=1.8Tm

- 1- production target
- 2- collimator
- 3- Faraday cup
- 4- solenoid
- 5- lollipop blocker
- 6- collimator

7- scattering chamber, secondary target and detectors

USP

Beam purification using double solenoids

S=300 mm² **Ε** 300 μm Δ**E** 20μm $\Delta E \propto \frac{MZ^2}{E}$

IFUSP

Second solenoid helps cleaning the secondary beam: degrader changes the Bp of the particles with different Z (q)

USF

Production reactions beams at RIBRAS

USP

Scientific interest at RIBRAS

Inclusive measurements of nuclear reactions with weakly-bound, clusterstructured, low-energy, light, radioactive ion beams

```
<sup>6</sup>He +<sup>9</sup>Be,<sup>27</sup>Al,<sup>51</sup>V,<sup>58</sup>Ni,<sup>120</sup>Sn
                                                    <sup>7</sup>Be + <sup>9</sup>Be, <sup>27</sup>Al, <sup>51</sup>V
Elastic scattering: _ <sup>8</sup>B + <sup>9</sup>Be, <sup>27</sup>Al
                                                                                                                                           (only first solenoid, cocktail beams)
                                                        <sup>8</sup>Li + <sup>9</sup>Be, <sup>58</sup>Ni, <sup>120</sup>Sn, <sup>12</sup>C
                                                        <sup>7</sup>Be, <sup>9</sup>Be, <sup>10</sup>Be on <sup>12</sup>C
                                                          12B + 58Ni
```

Breakup measurements: ⁶He +¹²⁰Sn→⁴He+X (2 neutron transfer) ⁸Li + ⁵⁸Ni → ⁷Li + ⁵⁹Ni (1 nêutron transfer)

Resonance scattering with radioactive beams on H target ⁸Li + p, ⁶He + p, ¹⁰B + p

UST

出

Some results at RIBRAS

Physics Letters B 647 (2007) 30-35

⁶He+²⁷Al elastic scattering First results of RIBRAS

Optical Model calculation São Paulo potential (N_I~0.7 ; a=0.56(2)=normal nuclear diffuseness)

Nuclear Physics A 834 (2010) 491c-494c

⁶He+⁵¹V elastic scattering

Optical Model calculation São Paulo potential (N₁~1.4(4) ; a=0.67(3) larger than normal nuclear absorption and diffuseness)

XIV LASNPA – UNAM/México – 2024

15/26

UST

⁶He+⁹Be elastic scattering

PHYSICAL REVIEW C 83, 064603 (2011)

Experimental study of ⁶He + ⁹Be elastic scattering at low energies

Coupled Channels calculation: includes low lying excited states of ⁹Be and 2⁺ state of ⁶He (is more important)

Optical Potential: real part: Sao Paulo potential. Imaginary part: Wood-Saxon potential used for ⁶Li+⁹Be

⁶He is 3 body Borromean system ⁶He→alpha+2n 3b-CDCC -----⁶He→alpha +n+n 4b-CDCC

3 and 4 body CDCC calculations for ⁶He (continuum discretized coupled-channel)

couplings to nuclear breakup channels are important in ⁶He reactions by light targets

UST

⁶He+¹²⁰Sn elastic scattering

PHYSICAL REVIEW C 81, 044605 (2010)

Elastic scattering and total reaction cross section of ⁶He + ¹²⁰Sn

Details of the coupling to the break-up channel

- No-coupling to exited states, equiv to optical model calculation
- 4b-CDCC only nuclear coupling

4b-CDCC Coulomb + nuclear coupling

Not a fit!!

⁶He+⁵⁸Ni elastic scattering

Physics Letters B 732 (2014) 228-232

Four-body effects in the ${}^{6}\text{He} + {}^{58}\text{Ni}$ scattering

V. Morcelle^{a,b}, K.C.C. Pires^{c,d}, M. Rodríguez-Gallardo^e, R. Lichtenthäler^{d,*}, A. Lépine-Szily^d, V. Guimarães^d, P.N. de Faria^b, D.R. Mendes Junior^b, A.M. Moro^e, L.R. Gasques^d, E. Leistenschneider^d, R. Pampa Condori^d, V. Scarduelli^d, M.C. Morais^f, A. Barioni^g, J.C. Zamoraⁱ, J.M.B. Shorto^h

Comparison with CDCC calc.

3-body and 4-body CDCC calculations give different cross Sections at $\theta_{cm} > 40^{o.}$

Excellent agreement with 4-body CDCC calculation

4b-CDCC calculations:

- cluster model for the ⁶He-target potential
- coupling to continuum (breakup states)

No free parameters! ⁶He - target potential $U_{6He-T} = \langle \phi_{6He} | U_{\alpha-T} + U_{n-T} + U_{n-T} | \phi_{6He} \rangle$

The cluster-target potentials are obtained from scattering data from previous experiments.

Works in progress:

p. d.

6He+27Al 15 degree

5000

(a)

(b)

K. C. C. Pires

6He+197Au 15 degree

USF

19/26

⁶He+²⁷Al system @ E_{lab}=17.5MeV

Entries

Mean x

Mean y

7000

8000

Entries

Mean x

Mean y

8000

Master project of H. F. G. de Arruda (in progress)

XIV LASNPA – UNAM/México – 2024

2500

2000

500

2500

2000

1001

500

Works in progress:

⁶He+²⁷Al system @ E_{lab}=17.5MeV

K. C. C. Pires

Master project of H. F. G. de Arruda (in progress)

To verify the no effect on the nuclear coupling

USF

USF

21/26

⁶He+^{nat}Zr system @ E_{lab}=18MeV

Master project of F. R. Loureiro (in progress)

K. C. C. Pires

⁶He+⁵¹V system @ E_{lab}=18MeV

New method to calculate the nuclear radius from low energy fusion and total reaction cross sections

K. C. C. Pires, S. Appannababu, R. Lichtenthäler, and O. C. B. Santos Phys. Rev. C 98, 014614 – Published 23 July 2018

Master project of J. A. E. Narváez (in progress)

IDEA:

Verify the decrease in the σ^{reac} for the ⁶He in relation to ⁶Li. The A=27-58 massa range requires additional information

USP

⁸Li+⁹Be system @ Elab = 21 and 26 MeV

Verify a significant contribution from the *farside* component, resulting in an increase in the elastic scattering cross section for backward angles, observed in a recent work.

點

USI

Total Reaction Cross Section

- Main research objectives: Study in detail the reaction mechanism of weakly bound, cluster structured radioactive nuclei with light, medium and heavy mass targets at energies around the Coulomb barrier.
- Increase the detection capability for charged particles and γ-rays at RIBRAS.
- Exclusive measurements of nuclear reactions with weakly bound radioactive at energies around the Coulomb barrier;
- The plan consists in the use of existing and the installation of new digital equipment (strip detectors for charged particles, Lyso gamma detectors and electronic devices mainly digitizers) at LAFN \Rightarrow Breakup, transfer \Rightarrow coincidence measurements
- Fusion measurements with weakly bound radioactive beams at energies below and around the Coulomb barrier
- A low-energy, light, radioactive beam facility, as RIBRAS, can make competitive contribution in nuclear reaction studies.

點

RIBRAS COLLABORATION

USP UFF UFRRJ UNIFESP TANDAR CEADEN Univ. Sevilha Univ. Notre Dame Univ. Berkley

出

USP

RIBRAS COLLABORATION

USP UFF UFRRJ UNIFESP TANDAR CEADEN Univ. Sevilha Univ. Notre Dame Univ. Berkley

K. C. C. Pires

Thank you for your attention

USF