DECAY LAW OF PARTICLES IN FLIGHT REVISITED

MAREK NOWAKOWSKI

DEPARTAMENTO DE FISICA, UNIVERSIDADE FEDERAL DE SÃO PAULO, SÃO PAULO, BRAZIL AND

►ICTP SOUTH AMERICAN INSTITUTE FOR FUNDAMENTAL RESEARCH, RUA DR. BENTO TEOBALDO FERRAZ 271, 01140-070 SÃO PAULO, SP BRAZIL

Exponential decay law at rest is essentially classical

In flight we invoke Special Relativity: time dilation for lifetime

Tested experimentally up to a certain accuracy (atmospheric muons)

$$\Delta N \propto \Delta t N \rightarrow \frac{dN}{dt} = -\Gamma N$$

$$\rightarrow N(t) = N_0 e^{-\Gamma t} \rightarrow P(t) = \frac{N}{N_0} = e^{-\Gamma t}$$

Lifetime at rest $au = 1/\Gamma$ In flight $P(t) = e^{-\Gamma t/\gamma}$

Enters Quantum Mechanics

Fock-Krylov method as a theoretical framework: Let $|\Psi\rangle$ be the unstable state at t=0, then

 $H|\Psi\rangle \neq E|\Psi\rangle$

otherwise

$$A(t) = \langle \Psi | e^{-iHt} | \Psi \rangle = e^{-iEt} \Rightarrow P(t) = 1$$

Hence, assuming a continuum $H|E\rangle = E|E\rangle$, $\langle E'|E\rangle = \delta(E'-E)$ we get

$$|\Psi\rangle = \int_{\text{Spect}(\mathbf{H})} dEa(E)|E\rangle$$

$$\rho(E) \equiv \frac{\operatorname{Prob}_{\Psi}(E)}{dE} = |\langle E|\Psi\rangle|^2 = |a(E)|^2$$
$$A(t) = \int_{\operatorname{Spect}(H)} dE\rho(E)e^{-iEt} = \int_{E_{th}}^{\infty} \rho(E)e^{-iEt}$$

General choice of the spectral function

 $\rho(E) = (\text{Threshold}) \times (\text{Pole}) \times (\text{Form} - \text{factor})$

 $\rho(E) = (E - E_{th})^{\gamma} \times P(E) \times F(E)$

- P(E): has a simple pole $z_R = E_R i\Gamma_R/2$ (leads to exponential decay law) corresponding to one resonance. More poles in the fourth quadrant of the complex E-plane would modify even the exponential part of the decay.
- F(E): no threshold, no poles; smooth function which should go to zero for large E.
- Large t corresponds in the Fourier transform to small E. Hence, large time behaviour is due to the choice of γ.

Calculation of the integral in the complex plane

$$e^{-iE_{th}t}I \equiv e^{-iE_{th}t} \left(\int_{C_{Re}} \dots + \int_{C_{R}} \dots + \int_{C_{Im}} \dots \right)$$

$$A(t) = A_E(t) + A_{LT}(t)$$
$$A_E(t) = 2\pi i \tilde{P}(z_R) F(z_R) (z_R - E_{th})^{\gamma} e^{iE_R t} e^{-\Gamma_R t/2}$$
$$A_E(t) = a_E(t) e^{-\Gamma_R t/2}$$

$$\tilde{P}(z) = P(z)(z - z_R)$$

For simplicity the small time is left out

Residue Theorem gives exponential law

Large time behavior corresponds to integral along the imaginary axis

$$A_{LT}(t) = (\text{phase}) \times \int_0^\infty dx P(-ix + E_{th}) F(-ix + E_{th}) x^\gamma e^{-xt}$$

For large times, corresponding to small x $A_{LT}(t) \simeq (\text{phase}) \times P(E_{th})F(E_{th}) \times \int_0^\infty dx x^\gamma e^{-xt}$ or for large times:

 $A_{LT}(t) \simeq (\text{phase}) \times \Gamma(\gamma + 1) P(E_{Th}) F(E_{th}) \times \frac{1}{t^{\gamma+1}}$

$$A_{LT}(t) = a_{LT} \frac{1}{t^{\gamma+1}}$$

Typical example

Extreme broad: sigma meson

Small time also possible by Fock-Krylov method.

Here we do it straight from definition

 $P(t) = |A(t)|^2 = |\langle \Psi | e^{-iHt} | \psi \rangle|^2$ connected to It can be calculated at short times to give:

 $P(t) \simeq 1 - (\Delta_{\Psi} H)t^2$

$$\frac{dP(t)}{dt}|_{t=0} = 0 \leftrightarrow \frac{d(e^{-\Gamma t})}{dt}|_{t=0} \neq 0$$

and to Quantum-Zeno effect

$$P_N(t) = \prod_i^N P(t/i) = [1 - (\Delta_{\Psi} H)(t/N)^2]^N$$
$$\lim_{N \to \infty} P_N(t) = e^0 = 1$$

Quantum mechanically there are three regions with two transitions

small time

 $1 + at^{2}$

Seen experimentally

intermediate

 $P(t) = e^{-\Gamma t}$

Mostly we see this

Large time

$$t^{-(2\gamma+2)}$$

Seen experimentally

Enters again Special Relativity to get the laws in flight

- For the exponential part we can use time dilation
- For the small and large times we can argue that in relativistic mechanics time t should be replaces by proper time s

$$s = t^2 - x^2 = t^2 - v^2 t^2$$

Hence in general we would have while going from rest to flight

$$\left|\Psi_{0}(0)\right\rangle = \int dm \ c(m) \left|m;0\right\rangle$$

$$|\Psi_p(0)\rangle = U(\Lambda)|\Psi_0(0)\rangle = \int dm \ c(m) U(\Lambda)|m;0\rangle$$

$$A_p^U(t) = \left\langle \Psi_p(0) | \Psi_p(t) \right\rangle = \left\langle \Psi_p(0) | e^{-iHt} | \Psi_p(0) \right\rangle$$

$$A_{p}^{U}(t) = \int dm \, dm' \, c^{*}(m') \, c(m) \, \langle m', 0 | U^{\dagger} e^{-iHt} U | m, 0 \rangle$$

 $U^{\dagger}(\Lambda)e^{-iHt}U(\Lambda) = e^{-iU^{\dagger}(\Lambda)HU(\Lambda)}$ $U^{\dagger}(\Lambda)P_{\mu}U(\Lambda) = \Lambda_{\mu}^{\nu}P_{\nu},$

Relativistic Fock-Krylov as an alternative

The relativistic Fourier transform

$$A_p^U(t) = \int_{m_{th}}^{\infty} dm \,\omega(m) \, e^{-i\sqrt{p^2 + m^2}t} \equiv A_p^{FK}(t)$$

With ${m m_0}$ the resonance mass $p^2=E_0^2-m_0^2=-\gamma^2m_0^2-m_{0^+}^2$ fixed

For narrow resonances the spectral density is very sharp (approx. a Dirac delta); Breit-Wigner, Therefore we can approximate

$$p^2 + m^2 = \gamma^2 m_0^2 + m^2 - m_0^2 \simeq \gamma^2 m_0^2 + 2m_0(m - m_0)$$

A Taylor expansion :

$$\sqrt{p^2 + m^2} \simeq m/\gamma + constant \ terms$$

Ambiguity: the two approaches are not exactly the same

$P_p(t) \approx P_0(t/\gamma)$

As we will see later the difference for most of the unstable particles/nuclei is very small which makes it difficult to measure it

Details: some definitions allowing dimensionless quantities

The calculation follows then the path of the Fiock-Krylov method at rest: complex plane and residue theorem (for the exponential part) which phenomenologically is, of course, the most important

$$\mu = \frac{m_{\rm th}}{m_0 - m_{\rm th}},$$

$$P = \frac{p}{m_0 - m_{\rm th}},$$

$$x_0 = \frac{\Gamma_0}{2(m_0 - m_{\rm th})},$$

$$\tau = \Gamma_0 t,$$

$$a(\tau, P) \equiv A_p^{FK}(\tau) = \int_{\mu}^{\infty} d\xi \,\lambda(\xi) \,\exp\left(-\frac{i\tau}{2x_0}\sqrt{\xi^2 + P^2}\right)$$

$$\lambda(\xi) \equiv (m_0 - m_{\rm th})\omega((m_0 - m_{\rm th})\xi)$$

Details: the exponential decay law in flight (1)

$$a_e(\tau, P) = -2\pi i \operatorname{Res} \left[\lambda(z) \exp\left(-\frac{i\tau}{2x_0}\sqrt{z^2 + P^2}\right), z = 1 + \mu - ix_0\right]$$
$$= R \exp\left[-\frac{i\tau}{2x_0}\sqrt{(\zeta_0 + \mu)^2 + P^2}\right],$$

 $\zeta_0 = 1 - ix_0 \qquad R = -2\pi i \operatorname{Res}\left[\lambda(z), z = \mu + \zeta_0\right]$

The real part of $\sqrt{(\zeta_0+\mu)^2+P^2}$ we denote by $2x_0\Omega$

The imagineary by

$$-x_0\sigma$$

$$\Omega = \frac{1}{2\sqrt{2}x_0} \left[\sqrt{\left[(P+x_0)^2 + (1+\mu)^2 \right] \left[(P-x_0)^2 + (1+\mu)^2 \right]} + P^2 + (1+\mu)^2 - x_0^2 \right]^{1/2},$$

$$\sigma = \frac{1}{\sqrt{2}x_0} \left[\sqrt{\left[(P+x_0)^2 + (1+\mu)^2 \right] \left[(P-x_0)^2 + (1+\mu)^2 \right]} - P^2 - (1+\mu)^2 + x_0^2 \right]^{1/2}.$$

Non-relativistic limit

$$\Omega\Big|_{P=0} = \frac{1+\mu}{2x_0},$$
$$\sigma\Big|_{P=0} = 1.$$

Relativistic limit

$$\Omega\Big|_{\substack{P\gg x_0\\P\gg 1+\mu}}\approx \frac{P}{2x_0},$$
$$\sigma\Big|_{\substack{P\gg x_0\\P\gg 1+\mu}}\approx \frac{1+\mu}{P}$$

The important exponential part can be calculated exactly (2) Important is the deviation from the formula obtained previously by STR

$$P_e(\tau, P) = |a_e(\tau, P)|^2 = |R|^2 e^{-\sigma \tau},$$

 $P_e(\tau, 0) = |R|^2 e^{-\tau},$

General from Fock-Krylov

At rest

From STR

Ultrarelativistic from Fock-Krylov

$$p_e(\tau, \gamma) = |R|^2 \exp\left(-\frac{\tau}{\gamma}\right).$$
$$P_e^{UR}(\tau, P) = |R|^2 \exp\left(-\frac{\tau}{\gamma}\right)$$

Exp(Fock-Krylov)/Exp(STR)

$$\frac{P_e(\tau, P)}{p_e(\tau, \gamma)} = \exp\left[-\left(\sigma(P, x_0) - \gamma^{-1}\right)\tau\right].$$

We know already that
$$\lim_{\gamma
ightarrow \infty} rac{P_e(au,P)}{p_e(au,\gamma)} = 1$$

Moreover the argument of the exponential $f(\gamma, x_0) = \sigma(P, x_0) - \gamma^{-1}$

has a maximum at

$$\gamma_c^2 = \frac{5}{3} + \frac{9}{25} \left(\frac{x_0}{1+\mu}\right)^2 - \frac{31}{3125} \left(\frac{x_0}{1+\mu}\right)^4 + \frac{267}{390625} \left(\frac{x_0}{1+\mu}\right)^6 - \frac{573}{9765625} \left(\frac{x_0}{1+\mu}\right)^8 + \frac{33642}{6103515625} \left(\frac{x_0}{1+\mu}\right)^{10} + \cdots$$

 $\gamma_c^2 \approx \frac{\omega}{3}$

v = 0.63c

Narrow resonances

Examples

The muon was once the harbinger of relativistic effects in flight

 Plotting the negative argument of the exponential divided by a constant

The effect for the muon Recoll

$$x_0 = \frac{\Gamma_0}{2(m_0 - m_{\rm th})}, \sim 10^{-18} \quad f/x_0^2 \sim 10^{-2}$$
$$f \sim 10^{-38} \quad FK/STR = \frac{P_e(\tau, P)}{p_e(\tau, \gamma)} = e^{-f}$$

Small times in flight Small times at rest have been seen Expand the amoplitude

$$a(\tau, P) \equiv A_p^{FK}(\tau) = \int_{\mu}^{\infty} d\xi \,\lambda(\xi) \,\exp\left(-\frac{i\tau}{2x_0}\sqrt{\xi^2 + P^2}\right)$$
$$a(\tau, P) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{i\tau}{2x_0}\right)^n I_n, \quad I_n = \int_{\mu}^{\infty} d\xi \,\lambda(\xi) \left(\xi^2 + P^2\right)^{n/2}.$$

Then the survival probability is

$$S(\tau, P) = |a(\tau, P)|^2 = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{\tau}{2x_0}\right)^{2n} \sum_{m=0}^{2n} (-1)^m \binom{2n}{m} I_m I_{2n-m}$$
$$= 1 - \tau^2 \frac{I_2 - I_1^2}{4x_0^2} + \tau^4 \frac{I_4 - 4I_1I_3 + 3I_2^2}{192x_0^4} + \cdots$$

•

$$\omega(m)$$
 is the mass distribution of the resonance (say, Breit-Wigner

$$\delta_n \equiv \int_{m_{\rm th}}^{\infty} dm \, m^n \omega(m) < \infty,$$

We can consider this quantity as expectation value of m raised to the power n

$$(\tilde{\delta}_{2\dots} - \tilde{\delta}_1^2) \, \Gamma_0^2 = \delta_2 - \delta_1^2 \qquad \text{ with } \qquad \tilde{\delta}_n = \left(\frac{1}{2x_0}\right)^n \int_{\mu}^{\infty} d\xi \, \xi^n \lambda(\xi) \, = \, \frac{1}{\Gamma_0^n} \, \delta_n \, .$$

Can be considered as quantum uncertainty: if the particle has a shrp mass, the mass distribution Becomes Dirac delta and the above expression is zero

Small times and uncertainties

Comparison for small times

$$S(\tau, P = 0) = 1 - (\tilde{\delta}_2 - \tilde{\delta}_1^2)\tau^2 + O(\tau^4) = 1 - (\delta_2 - \delta_1^2)t^2 + O(t^4)$$
$$S(\tau, P) = 1 - \tau^2 \frac{I_2 - I_1^2}{4x_0^2} + \tau^4 \frac{I_4 - 4I_1I_3 + 3I_2^2}{192x_0^4} + \cdots$$

$$I_{2s+1} \sim \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{2^{2\nu}} {2\nu \choose \nu} \sum_{l=0}^{s+1} {s+1 \choose l} \frac{1}{P^{2\nu-2l+1}} \int_{\mu}^{\infty} d\xi \,\lambda(\xi) \,\xi^{2\nu+2s-2l+2},$$
$$= (2x_0)^{2s+1} \sum_{\nu=0}^{\infty} (-1)^{\nu} {2\nu \choose \nu} \sum_{l=0}^{s+1} {s+1 \choose l} \left(\frac{2x_0}{P}\right)^{1-2l} \tilde{\delta}_{2\nu+2s-2l+2},$$
$$I_{2s} = \sum_{k=0}^{s} {s \choose k} P^{2k} \int_{\mu}^{\infty} d\xi \,\lambda(\xi) \,\xi^{2s-2k} = (2x_0)^{2s} \sum_{k=0}^{s} {s \choose k} \left(\frac{P}{2x_0}\right)^{2k} \tilde{\delta}_{2s-2k}.$$

Comparisons of the uncertainties

"STR" versus Fock-Krylov

$$S(\tau/\gamma, 0) = 1 - \left(\delta_2 - \delta_1^2\right) \left(\frac{t^2}{\gamma^2}\right) + \cdots$$

"STR"

Ultra-relativistic Fock-Krylov

$$S^{UR}(\tau, P) \simeq 1 - \left(\frac{\delta_4 - \delta_2^2}{4m_0^2}\right) \left(\frac{t^2}{\gamma^2}\right)$$

Process	$\delta_2 - \delta_1^2 \; ({ m MeV}^2)$	$(\delta_4 - \delta_2^2)/4m_0^2 \;({ m MeV}^2)$		
Δ^{++}	5682.5	6303.2		
$ ho^0$	26282	42080		
Z_0	87245	169040		
μ^-	1.2054×10^{-14}	2.3275×10^{-14}		
K^+	7.9145×10^{-12}	1.3164×10^{-11}		

$$\begin{split} S(\tau,P) &= 1 \\ &-\tau^2 \bigg[\left(\tilde{\delta}_4 - \tilde{\delta}_2^2 \right) \left(\frac{x_0}{P} \right)^2 + 2 \left(\tilde{\delta}_2 \tilde{\delta}_4 - \tilde{\delta}_6^2 \right) \left(\frac{x_0}{P} \right)^4 - \left(\tilde{\delta}_4^2 + 4 \tilde{\delta}_2 \tilde{\delta}_6 - 5 \tilde{\delta}_8 \right) \left(\frac{x_0}{P} \right)^6 \\ &+ 2 \left(2 \tilde{\delta}_4 \tilde{\delta}_6 + 5 \tilde{\delta}_2 \tilde{\delta}_8 - 7 \tilde{\delta}_{10} \right) \left(\frac{x_0}{P} \right)^8 - 2 \left(2 \tilde{\delta}_6^2 + 5 \tilde{\delta}_4 \tilde{\delta}_8 + 14 \tilde{\delta}_2 \tilde{\delta}_{10} - 21 \tilde{\delta}_{12} \right) \left(\frac{x_0}{P} \right)^{10} + \cdots \bigg] \\ &+ \tau^4 \bigg[\frac{3 \tilde{\delta}_4^2 - 4 \tilde{\delta}_2 \tilde{\delta}_6 + \tilde{\delta}_8}{12} \left(\frac{x_0}{P} \right)^4 - \frac{2 \tilde{\delta}_4 \tilde{\delta}_6 - 3 \tilde{\delta}_2 \tilde{\delta}_8 + \tilde{\delta}_{10}}{3} \left(\frac{x_0}{P} \right)^6 + \frac{2 \tilde{\delta}_6^2 + 9 \tilde{\delta}_4 \tilde{\delta}_8 - 18 \tilde{\delta}_2 \tilde{\delta}_{10} + 7 \tilde{\delta}_{12}}{6} \left(\frac{x_0}{P} \right)^8 \\ &- \frac{4 \left(\tilde{\delta}_6 \tilde{\delta}_8 + 3 \tilde{\delta}_4 \tilde{\delta}_{10} - 7 \tilde{\delta}_2 \tilde{\delta}_{12} + 3 \tilde{\delta}_{14} \right)}{3} \left(\frac{x_0}{P} \right)^{10} + \cdots \bigg]. \end{split}$$

Full result with a chain of uncertainties

 $P_{lt}(\tau) \propto p^{2(\alpha+1)} \frac{1}{t^{2(\alpha+1)}}$

Large time

	Critical time τ_{lt}						
Process	$w_0 = (\sigma \tau_{lc}) _{P \to \infty}$	p = 0	p = 0.5	p = 1	p = 5	p = 10	
Δ^{++}	10.193	10.754	11.508	13.537	42.719	83.417	
$ ho^0$	12.458	16.341	16.996	21.549	81.438	161.05	
Z^0	30.505	67.065	47.449	45.228	40.096	38.024	
μ^-	203.88	220.11	986.43	1940.5	9650.2	19297	
K^+	195.75	200.45	279.99	442.92	1992.4	3970.1	

Transition time: from exponential to power law

Comparison

For some particles there is a critical gamma for which the ratio has a minimum. Best visible for the neutral gauge boson

Transition time: from small times to exponential

► The transition time at rest is

 $\tau_{st}/4\pi x_0$

Process	p = 0	p = 0.5	p = 1	p = 5	p = 10
Δ^{++}	1	1.0914	1.3283	4.4840	8.7991
$ ho^0$	1	1.4209	2.1962	9.6375	19.182
Z^0	1	1.0055	1.0110	1.0563	1.1157
μ^-	1	9.5228	18.890	94.198	188.38
K^+	1	2.0251	3.5386	16.728	33.391

Collaborators

Diego Ramirez Jimenez Universytet Jagielloński, Kraków, Poland

Andres Guerrero Parra Universidade do São Paulo, São Paulo, Brazil

Neelima Kelkar Universidad de los Andes Bogota, Colombia

History of the subject+referrences + more details

Thank you

Quantum Corrections to the Decay Law in Flight

[hep-ph] 5 May 2024

arXiv:2405.03030v1