DECAY LAW OF
PARTICLES IN FLIGHT
REVISITED

» MAREK NOWAKOWSKI

» DEPARTAMENTO DE FISICA,
UNIVERSIDADE FEDERAL DE SAO
PAULO, SAO PAULO, BRAZIL AND

»ICTP SOUTH AMERICAN INSTITUTE
FOR FUNDAMENTAL RESEARCH,

RUA DR. BENTO TEOBALDO FERRAZ
271, 01140-070 SAO PAULO, SP BRAZIL

TEES

...‘.'.:“_; ?.-: y 3&‘#: k\..v.!‘\‘\-l'

&

7 A ™
® = [S i
SN

: &“ -

A
- % "

& v " 4
R > 3 o\
b At N \ ‘ %
d-—f\; ‘ J o
§ . A Wvoed
ey TP
o, A & 4’
- “




Exponential decay
law at rest Is
essentially classical

» In flight we invoke Special

Relativity: fime dilation for
lifetime

Tested experimentally up to @
certfain  accuracy
(atmospheric muons)

AN x AtN — dd];f = —I'N

— N(t)=Noe ' - P(t)=—=ce

Lifetime at rest
T=1/T
=) |n flight

P(t) = e Tt/




Enters Quantum Mechanics

Fock-Krylov method as a theoretical framework: Let
|W) be the unstable state at ¢ = 0, then

H|V) # E|)
otherwise Hence, assuming a continuum H|E) = FE|E),

(E'|F) =6(E' — F) we get
A(t) = (Ule " U) = e = P(t) =1

/ dEa(E)|E)
Spect(H)

Probyg (F)
dE

/ dEp(E)e—z’Et _ / p(E)e—z'Et
Spect(H) Eyy,

= [(BE|)]* = |a(B)[




General choice of the specitral
functior

p(F) = (Threshold) x (Pole) x (Form — factor)

e P(F): has asimple pole zgp = Er —il'r/2 (leads
to exponential decay law) corresponding to one
resonance. More poles in the fourth quadrant
of the complex E-plane would modify even the
exponential part of the decay.

p(E) = (E — Eu)" x P(E) x F(E)

F(FE): no threshold, no poles; smooth function
which should go to zero for large E.

Large t corresponds in the Fourier transform to
small £. Hence, large time behaviour is due to
the choice of




Calculation of the integral in the
complex plane

A(t) = Ag(t) + Apr(t)
Ap(t) = QWiP(ZR)F(zR)(zR _ Eth)veiERte—FRt/Q

Ag(t) = a,E(t)e_FRt/2

For simplicity the small time
Is left out



Residue Theorem gives

exponential law

ImE




Large fime behavior corresponds 1o
Infegral along the Imaginary axis

App(t) = (phase)x/ deP(—iz+Ep)F(—ix+Ey )z e
0

For large times, corresponding to small x

Apr(t) ~ (phase) x P(Ew,)F(Ewp) X / drzY et
0

or for large times:

Apr(t) ~ (phase) x I'(y + 1) P(Erh)F (Ewp) X ﬂ%
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Small time also possible by Fock-
Krylov method.

» Here we do if straight from definition It can be calculated at short times to give:

‘A(t)|2 _ |<\P|€—2Ht|w>|2 P(t) ~ 1 — (A\I;H)tz
connected to

dP(t)
dt

de—Ft
lt=0 = 0 < (dt )‘t:o#o

and to Quantum-Zeno effect

Py(t) = [ [ P(t/i) = [1 — (AuH)(t/N)?)Y

1

lim Py(t) =e" =1

N —o0




Quantum mechanically there are
three regions with two transitions

small fime iIntermediate Large time

Mostly we see this Seen experimentally

2
]_ —|— a/t P(t) _ e—Ft

Seen experimentally




Enters again Special Relativity to
get the laws In flight

» For the exponential part we can use time dilation

» Forthe small and large times we can argue that in relativistic
mechanics time t should be replaces by proper fime s

Hence in general we would have while going from rest to flight



Relativistic
Fock-Krylov

As an
alternative

il (A)e‘thU(A) _ e—z'U’r (A) HU(A)

U'(A) P,UA)=A) P,




2 2 2 P 2
mo p* = Ef—mg = ~*mg—mg.

p? +m? = v*mé + m?* — mé ~ v*mé + 2mo(m — my)

VP2 +m?2 ~m/y+ constant terms



Xagle)
are r

UiIty: the two approaches
I exactly the same

O Q@

As we will see later the difference for most of the unstable particles/nuclei is very small
which makes it difficult to measure it



Details: some definifions
allowing dimensionless
quantities

The calculation follows then the
path of the Fiock-Krylov method
at rest. complex plane and
residue theorem (for the
exponential part) which
phenomenologically is, of
course, the most important

B Mth
H= m m
0 — Mth
p T Lo
_ 0 — ’
P = 2(mgy — myy)
Ty — MNth



ae.(7, P) = —2mi Res

Go

A(z) exp (Z—T\/22+P2>,z—1+uixo

2330
- | :
= Rexp | —o— /(G0 + p)? + P?|,
25130
I — 2z R = —2miRes |A(2),2z = p+ (o]

v (Co + )2 + P?

23309

—XLo0




1 5 5 5 9 2 2 2 12
fh:%@%[¢np+xw4«1+m]KP—xw-+u+u>k+P%%1+m —%] ,

1 1/2

o= |1+ (P [P =)+ (o ] = P = (1t 4]

o o ye . e The important
Non-relativistic limit exponentidl

part can be

|
ol —1FH

T calculated
ol =1 exactly (2)

Relativistic limit
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Impor

formu

ant Is the deviati
a obtained previ

on from the
ously by SIR

General from Fock-Krylov

At rest

From STR

Ultrarelaftivistic from Fock-Krylov



Exp (Fock-Krylov)/Exp(STR})

We know already that

Moreover the argument of the exponential

has a maximum aft
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Narrow
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The muon was once
the harbinger of
relativistic effects in
flight

» Plotting the negative
argument of the exponential
divided by a constant
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Small times In
flight

Small fimes at
rest have
been seen

Expand the amoplitude

a(t, P) = AgK(T) = /OO dé \(€) exp (_22_7 VE+ P2>

a(r,P>=§_;a(—;—;) I, I,= / de A(€) (€2 + P2

Then the survival probability is

a2 19222

b1} L—ALL 31



w m is the mass distribution of the resonance (say, Breit-Wigner)

> We can consider this quantity as expectation value
of mraised to the power n

< - < L \" [~ 1
(52M— 5%) F(Q) = 09 — 5% with O = (—> / dg&"A(§) = F_g On
u

21’0

Can be considered as quantum uncertainty: if the particle has a shrp mass, the mass distribution
Becomes Dirac delta and the above expression is zero

Small times and uncertainties




S(r,P=0)=1— (65— )72+ O(7*) =1 — (6, — 67)* + O(¢*)

b=} L= 4Ll +313
42 1923

S(r,P) =1—7

= (=1)? (20 o2 (s+1 _
Lo~y —i 3 l P2 — / dE \(£) £+
v=0 1=0 H
= s+ 1 2o\ %
= (2xg) >t Z (—1) (v) Z ( ) ( iz ) O3+25—21+2;

v=0

=3 (1) [ aenoe = =S5 0) (7)o



Comparisons of the uncertainties




t2

S(1/7,0)=1— (52 — 5%) ~?

0y — 02 t2
UR ~1_ [ %4 2 =
s 1= (%) (5)

Process 52 — 6% (MeV?) (64 — 03)/4m3 (MeV?)
ATt 5682.5 6303.2
PP 26282 42080
Zy 87245 169040
e 1.2054 x 10~ 2.3275 x 1071
K+ 7.9145 x 10~12 1.3164 x 10711




S(r.P) =1
Gom ) (%) 282 — ) (%) _ (52 + 46,8 — 554) (%) .
4 2(2645 + 568 — Thvo) (f”_) ~2(23 4 ks + 1~ 25 (%) . ] Full result with

P °
4 352 - 45256 + 58 i 4 25456 - 35258 + 510 To 6 25% + 98458 - 1882510 + 7512 Zo 8 O C h O I n Of
o7 12 P) " 3 P) T 6 P

(b + 35480 — Thadie 4 300) (x>+] uncertainties

3 P




Plt(T) X P

Large time




Critical time 7

Process wo = (071c) | P—oo p=0 D=10.5 ! p=>5 p=10
AtTT 10.193 10.754 11.508 13.537 42.719 83.417
PV 12.458 16.341 16.996 21.549 81.438 161.05
7Y 30.505 67.065 47.449 45.228 40.096 38.024
o 203.88 220.11 986.43 1940.5 96?0.2 19297
K+ 195.75 200.45 279.99 442.92

3970.1

4

Transition
fime: from
exponential

fo
power law




Comparison

For some particles there is
a critical gamma for
which the ratio has a
minimum. Best visible for
the neutral gauge boson




Transition time: from
small fimes to
exponential

» The fransition fime atf rest is

Ta(7) /Ao

-

Tst/4TT0
Process p=20 p=0.5 p= p= p=10
AT 1 1.0914 | 1.3283 | 4.4840 | 8.7991
X 1 1.4209 | 2.1962 | 9.6375 | 19.182
Z0 1 1.0055 1.0110 | 1.0563 | 1.1157
e 1 9.5228 | 18.890 | 94.198 | 188.38
K+ 1 2.0251 | 3.5386 | 16.728 | 33.391
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