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Exponential decay 
law at rest is 
essentially classical

and anti-neutrino; in some nuclei this is blocked
by Pauli Principle (Thank God!).

• The question whether to decay or not (quantum
mechanically) dominates also our classical
world.

– The fact that Pauli principle forbids the neutron
decay in certain nuclei makes it possible
that we have stable elements other than the
hydrogen. This makes the complexity of our
world possible.

– On the other hand, 90 per cent of the heat in
earth interior is produced by the decaying of
radioactive isotopes like Potassium, Uranium,
Thorium etc.Without heat in the mantle no
continental drift.

• Classically one can make a simple model of the
survival probablity P (t):

�N / �tN ! dN

dt
= ��N

u In flight we invoke Special 
Relativity: time dilation for 
lifetime 

Tested experimentally  up to a 
certain   accuracy 
(atmospheric muons)

! N(t) = N0e
��t ! P (t) =

N

N0

= e
��t

called exponential decay law.

• Is this true also in Quantum Mechanics?In
Quantum Mechanics you can predict the rate
of the decay albeit not the moment when it
decays since Quantum Mechanics is goeverned
by probabilities.

• 50 years of Khalfin’s result:
in the quantum world the exponential decay law

P (t) = e
��t

is only an approximation
L. A. Khalfin, JETP 6 (1958) 1053

• quantum mechanically the survival probability is:

P (t) = |A(t)|2 = |h |e�iHt| i|2

In flight
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P (t) = e��t/�
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Enters Quantum Mechanics
2. THE LARGE TIME BEHAVIOUR OF THE
SURVIVAL AMPLITUDE

Fock-Krylov method as a theoretical framework: Let
| i be the unstable state at t = 0 , then

H| i 6= E| i

otherwise

A(t) = h |e�iHt| i = e
�iEt ) P (t) = 1

Hence, assuming a continuum H|Ei = E|Ei,
hE0|Ei = �(E0 � E) we get

| i =
Z

Spect(H)

dEa(E)|Ei

⇢(E) ⌘ Prob (E)
dE

= |hE| i|2 = |a(E)|2

A(t) =
Z

Spect(H)

dE⇢(E)e�iEt =
Z 1

Eth

⇢(E)e�iEt
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P (t) = |A(t)|2



General choice of the spectral 
functionGeneral choice of the spectral function ⇢(E):

⇢(E) = (Threshold)⇥ (Pole)⇥ (Form� factor)

⇢(E) = (E � Eth)� ⇥ P (E)⇥ F (E)

• P (E): has a simple pole zR = ER� i�R/2 (leads
to exponential decay law) corresponding to one
resonance. More poles in the fourth quadrant
of the complex E-plane would modify even the
exponential part of the decay.

• F (E): no threshold, no poles; smooth function
which should go to zero for large E.

• Large t corresponds in the Fourier transform to
small E. Hence, large time behaviour is due to
the choice of �.

• Transition region partly due to choice of the form-
factor
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Calculation of the integral in the 
complex plane

• The choice of the spectral function not unique in
the literature: e.g. often � = 0, f(E) = 1.

Question: what is the the right choice of the spectral
function?

General calculation using path R ! 1 in the
complex plane

e
�iEtht

I ⌘ e
�iEtht

✓Z

CRe

... +
Z

CR

... +
Z

CIm

...

◆

Then
A(t) = AE(t) + ALT (t)

AE(t) = 2⇡iP̃ (zR)F (zR)(zR � Eth)�
e
iERt

e
��Rt/2

AE(t) = aE(t)e��Rt/2

P̃ (z) = P (z)(z � zR)

ALT (t) = (phase)⇥
Z 1

0

dxP (�ix+Eth)F (�ix+Eth)x�
e
�xt
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Residue Theorem gives 
exponential law
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Large time behavior corresponds to 
integral along the imaginary axis

For large times, corresponding to small x

ALT (t) ' (phase)⇥ P (Eth)F (Eth)⇥
Z 1

0

dxx
�
e
�xt

or for large times:

ALT (t) ' (phase)⇥ �(� + 1)P (ETh)F (Eth)⇥ 1
t�+1

ALT (t) = aLT

1
t�+1

Hence, this is how nature slows down the
exponential decay.

Different regions: small times 1 + at
2 , exponential,

transition regions (oscillatory), large times t
�(2�+2) .

Approximate estimate of transition time:

|aE|e�2�Rt0/2 ' |aLT | 1
t
�+1

0

!(⇠0) ⌘ ln
|aE|
|aLT |

✓
�R

2

◆���1

+(�+1) ln ⇠0�⇠0, ⇠0 ⌘
�Rt0
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Typical 
example

J. Phys. A: Math. Theor. 43 (2010) 385308 N G Kelkar and M Nowakowski
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Figure 2. The full survival probability P(t) in a B-W model (solid line) as compared to the
contribution of the exponential term (dashed line), i.e. P(t) = |Aexp(t)|2 for different values of
R = !R/(ER − Eth). The inlays display the same plots on a linear scale.

3.2. Breit–Wigner amplitude

To get a comparative feeling of the results in figure 1 with those of longer lived states, we
perform some simple model calculations for unstable states with varying lifetimes. We choose
ρ(E) to have the standard B-W form with a threshold factor and an exponentially falling form
factor F(E). Thus,

ρB−W(E) = (E − Eth)
1/2 × 1/[(E − ER)2 + !2

R/4] × e−E/E0 , (12)

where E0 = 1.1 GeV has been adjusted to match the tail of a realistic parametrization. In
figure 2 we show the plots for unstable states with different ratios R = !R/(ER − Eth) which
depend on the width as well as the position of the resonance from threshold. It can be seen
that for narrow states there is a very well-defined oscillatory region of transition from the
exponential to the NE decay law. The oscillatory region shifts to smaller times as R increases
and for very broad states, the classical approximation of an exponential decay law does not
hold good at any time. This is essentially similar to the result shown in figure 1 for the
realistic case of the σ meson in ππ scattering. Indeed there is no distinct oscillatory region
of a transition from the exponential to the power law. A similar discussion based on a very
simplistic model and using a different approach than the one used in this work can be found
in [23]. In figure 3(a), we compare the full survival probability P(t) evaluated using the

6
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Extreme 
broad: 
sigma 
meson

J. Phys. A: Math. Theor. 43 (2010) 385308 N G Kelkar and M Nowakowski
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Figure 1. Survival probability of the σ meson with a width, "R = 498 MeV as obtained from a
parametrization of experimental data [19]. (a) The solid line is the full survival probability P(t),
the dashed line is the contribution of the exponential term, the dashed dotted is the remaining part
and the dotted line is the magnitude of the oscillatory interference term. (b) Comparison of the
full P(t) with a pure exponential decay law on a log scale. The inlay displays the curves in (a) on
a linear scale.

the data equally well, but are very different when continued in the complex plane. The large
uncertainties in the determination of the pole position of the sigma resonance are due precisely
to this ‘instability’ of analytic continuation. This issue has been discussed in detail in [22].
Secondly, the parametrization of Bugg [19] is valid only up to a region of about 1 GeV.
As a result of this fact, one encounters several poles in the parametrization at high energies
which have no physical meaning. Clearly, the occurrence of these poles is an artefact of the
parametrization and should not be considered in a calculation of the survival amplitude of the
σ meson. This is clear alone from the fact that such additional poles do not correspond to
any known resonant states. Hence, relying on the long energy tail of the parametrization, we
simply neglect the residues due to these poles at high energies. In principle, we could have
used another parametrization which does not have the drawback of such unwanted poles. To
clarify this issue in a more detailed way, we refer to the Breit–Wigner (B-W) model where
we find that the survival probability calculated from the B-W model is qualitatively not very
different from that obtained using the parametrization in [19] (see figure 3 to be discussed
later). This justifies the neglect of the poles present in the parametrization of [19] at high
energies.
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u Here we do it straight from definition

Small time also possible by Fock-
Krylov method. 

! N(t) = N0e
��t ! P (t) =

N

N0

= e
��t

called exponential decay law.

• Is this true also in Quantum Mechanics?In
Quantum Mechanics you can predict the rate
of the decay albeit not the moment when it
decays since Quantum Mechanics is goeverned
by probabilities.

• 50 years of Khalfin’s result:
in the quantum world the exponential decay law

P (t) = e
��t

is only an approximation
L. A. Khalfin, JETP 6 (1958) 1053

• quantum mechanically the survival probability is:

P (t) = |A(t)|2 = |h |e�iHt| i|2

It can be calculated at short times to give:

P (t) ' 1� (� H)t2

connected to

dP (t)
dt

|t=0 = 0$ d(e��t)
dt

|t=0 6= 0

and to Quantum-Zeno effect

PN(t) =
NY

i

P (t/i) = [1� (� H)(t/N)2]N

lim
N!1

PN(t) = e
0 = 1

experimentally verified:
W. M. Itano et al. Phys. Rev. A41 (1990) 2295

• Direct experiment:
S. R. Wilkinson et al. Nature 387 (1997) 575

• Large time behaviour:
experimentally never seen
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Quantum mechanically there are 
three regions with two transitions
small time

For large times, corresponding to small x

ALT (t) ' (phase)⇥ P (Eth)F (Eth)⇥
Z 1

0

dxx
�
e
�xt

or for large times:

ALT (t) ' (phase)⇥ �(� + 1)P (ETh)F (Eth)⇥ 1
t�+1

ALT (t) = aLT

1
t�+1

Hence, this is how nature slows down the
exponential decay.

Different regions: small times 1 + at
2 , exponential,

transition regions (oscillatory), large times t
�(2�+2) .

Approximate estimate of transition time:

|aE|e�2�Rt0/2 ' |aLT | 1
t
�+1

0

!(⇠0) ⌘ ln
|aE|
|aLT |

✓
�R

2

◆���1

+(�+1) ln ⇠0�⇠0, ⇠0 ⌘
�Rt0

2

Seen experimentally

intermediate
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N
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Enters again Special Relativity to 
get the laws in flight

u For the exponential part we can use time dilation
u For the small and large times we  can argue that in relativistic 

mechanics time t should be replaces by proper time s
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s = t2 � x2 = t2 � v2t2

Hence  in general we would have while going from rest to flight
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Relativistic 
Fock-Krylov
as an 
alternative

The same expression as in Eq. (9) was obtained by Urbanowski [31] by explicitly considering the transfor-

mation of the initial state from the rest frame of the decaying particle to the moving one. Rewriting Eq. (4)

for the case with zero momentum and denoting it as | 0(0)i,

| 0(0)i =

Z
dm c(m) |m; 0i . (10)

The author further notes that if ⇤ denotes the Lorentz transformation then using U(⇤) which is a unitary

representation of the transformation, leads us to

| p(0)i = U(⇤)| 0(0)i =

Z
dm c(m) U(⇤)|m; 0i . (11)

Now using, | p(0)i (with the explicit momentum dependence) in order to define the survival amplitude AU

p
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as
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and repeating similar steps as in the Fock-Krylov method of Eq. (6), one obtains,

AU

p
(t) =

Z
dm dm0 c⇤(m0) c(m) hm0, 0|U †e�iHtU |m, 0i (13)

where, further noting that the operators H, ~p form a 4-vector P⌫ = (P0, ~p) ⌘ (H, ~p), where [32]

U †(⇤)e�iHtU(⇤) = e�iU
†(⇤)H U(⇤), (14)

U †(⇤) Pµ U(⇤) = ⇤ ⌫

µ
P⌫ , (15)

the author [31] finally obtains,

AU
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dm !(m) e�i

p
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p
(t) (16)

where, !(m) ⌘ |c(m)|2. This expression, based on the principles of quantum mechanics, leads to the decay law in

flight and is essentially di↵erent from that in (3). Noting that E = m�, one could rewrite the exponential in the

above equation as e�i

p
p2+m2t = e�im�t, however, since we consider the momentum ~p = m�~v to be fixed, the � in

such an expression would be m dependent. For very narrow resonances, one can consider the di↵erence between

m and the central value of the resonance mass, m0, to be small and perform a Taylor expansion of
p

p2 + m2.

Noting that the fixed momentum ~p is related to the central value of the resonance mass, m0, as, p2 = E2
0 �m2

0 =

�2m2
0 � m2

0, retaining the first two terms of the expansion leads to, AFK

p
(t) /

R1
mth

dm !(m) e�imt/�, implying,

Pp(t) ⇡ P0(t/�), as in the relativistic time dilation relation. Ref. [31] provides numerical results comparing

the survival probabilities in (3) and (16) at large times using a Breit-Wigner mass distribution, assuming the

minimum mass of the decay products to be zero. Eq. (16) can also be found in [33, 34]. Providing an analysis

with wave packets, the author in [33] stressed that, “there is no whatsoever breaking of special relativity, but

as usual in QM (quantum mechanics), one should specify which kind of measurement on which kind of state is

performed”.
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Ambiguity: the two approaches 
are not exactly the same
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⌦
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=

⌦
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As we will see later the difference for most of the unstable particles/nuclei is very small
which makes it difficult to measure it



Details: some definitions 
allowing dimensionless 
quantities

but also to redefine the time as the dimensionless quantity

⌧ = �0t, (23)

which are defined in the same way as in the nonrelativistic formalism. Thus, the survival amplitude given by

the eq. (9) transforms as:

AFK

p
(⌧) =

Z 1

mth

dm !(m) exp

⇢
�

i⌧

2x0

p
p2 + m2

m0 � mth

�
. (24)

If we make the change of variable m = (m0 � mth)⇠, that is,

AFK

p
(⌧) = (m0 � mth)

Z 1

mth
m0�mth

d⇠ !((m0 � mth)⇠) exp

(
�

i⌧

2x0

s

⇠2 +

✓
p

m0 � mth

◆2
)

, (25)

and if we introduce the additional parameters

µ =
mth

m0 � mth
, (26)

P =
p

m0 � mth
, (27)

which let us rewrite the factor m � m0 + i
�0

2
responsible for the pole as

m � m0 + i
�0

2
= (m0 � mth)(⇠ � 1 � µ + ix0), (28)

allows us to write the density of states as

�(⇠) ⌘ (m0 � mth)!((m0 � mth)⇠). (29)

This density of states will have a branch point in ⇠ = µ and a pole in ⇠ = 1 + µ � ix0. As a result, the survival

amplitude reads:

a(⌧, P ) ⌘ AFK

p
(⌧) =

Z 1

µ

d⇠ �(⇠) exp

 
�

i⌧

2x0

p
⇠2 + P 2

!
. (30)

For future references, the moments of the density of states are rewritten as:

�̃n =

✓
1

2x0

◆n Z 1

µ

d⇠ ⇠n�(⇠) =
1

�n

0

�n. (31)

A. Non–relativistic survival amplitude

Since the nonrelativistic survival amplitude is rather important throughout the future discussions, this section

will summarize the main results regarding the topic. The proofs of all of those results are shown in [43].

The non–relativistic survival amplitude is obtained when we put P = 0 in Eq. (30):

a(⌧, P = 0) =

Z 1

µ

d⇠ �(⇠) exp

 
�

i⌧

2x0
⇠

!
. (32)
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The calculation follows then the 
path of the Fiock-Krylov method 
at rest:  complex plane and 
residue theorem (for the 
exponential part) which 
phenomenologically is, of 
course, the most important
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contradiction with (3). The author concluded that the point form interaction cannot be responsible for particle

decays. Constructing an instant form dynamics, however, the author obtained exactly the same expression as

in (9).

In the sections to follow, we shall study the survival probability as given in Eq. (9) and compare with the

Einstein’s time dilation formula (3) both analytically and numerically for some realistic unstable particles. On

the way, we shall discover the nuances of the relativistic and ultrarelativistic regions of the decay at short times,

its implications for the time-energy uncertainty relation, the deviation of the exponential decay law for particles

in motion from that of particles at rest and the “variation” of the standard power law behaviour at large times.

III. MATHEMATICAL PROPERTIES OF THE RELATIVISTIC SURVIVAL AMPLITUDE AND

PROBABILITY

In this section we shall study the survival probability as given in Eq. (9). Related to the density of states,

we make the following assumptions:

1. It has a branch point at m = mth, and the asymptotic expansion around this point is such that

!(m) = (m � mth)
↵ Q(m), (20)

where ↵ > 0 and Q(m) is analytic except in isolated points which are simple poles. These poles come in

pairs of complex conjugate numbers since the density of states is real.

2. The moments of the density of states are well defined, i.e.,

�n ⌘

Z 1

mth

dm mn!(m) < 1, (21)

and for n = 0, �0 = 1, which is just the normalization condition. We can consider �n as the expectation

value of m raised to the power n.

The calculations that we shall perform are under the assumption of the dominant pole approximation, i.e., we

take into account the pole of !(m) on the fourth quadrant such that it has the smallest imaginary part only, and

we neglect the contributions of the remaining poles. Hence, let the complex number m0 � i
�0

2
be the dominant

pole, where m0 > mth and �0 > 0.

In the nonrelativistic treatment of the decay of unstable systems, it is customary to write the survival

amplitude in terms of the parameter
�0

2m0
. However, in that context, m0 is supposed to be m0 � mth and not

m0 because a change of variable m ! m�mth is made such that the lower limit of integration will be zero, and

as a consequence, m0 is implicity assumed to be m0 � mth. Henceforth, not only would we like to introduce the

same parameter, that is,

x0 =
�0

2(m0 � mth)
, (22)
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but also to redefine the time as the dimensionless quantity
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A. Non–relativistic survival amplitude

Since the nonrelativistic survival amplitude is rather important throughout the future discussions, this section

will summarize the main results regarding the topic. The proofs of all of those results are shown in [43].

The non–relativistic survival amplitude is obtained when we put P = 0 in Eq. (30):

a(⌧, P = 0) =
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µ
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�
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AFK

p
(⌧) =

Z 1

mth

dm !(m) exp

⇢
�

i⌧
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p
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�
. (24)
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AFK
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�
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✓
p
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)

, (25)

and if we introduce the additional parameters
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mth
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, (26)

P =
p
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, (27)

which let us rewrite the factor m � m0 + i
�0

2
responsible for the pole as

m � m0 + i
�0

2
= (m0 � mth)(⇠ � 1 � µ + ix0), (28)

allows us to write the density of states as

�(⇠) ⌘ (m0 � mth)!((m0 � mth)⇠). (29)

This density of states will have a branch point in ⇠ = µ and a pole in ⇠ = 1 + µ � ix0. As a result, the survival

amplitude reads:

a(⌧, P ) ⌘ AFK

p
(⌧) =

Z 1

µ

d⇠ �(⇠) exp

 
�

i⌧

2x0

p
⇠2 + P 2

!
. (30)

For future references, the moments of the density of states are rewritten as:
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1

2x0

◆n Z 1

µ

d⇠ ⇠n�(⇠) =
1

�n

0

�n. (31)

A. Non–relativistic survival amplitude

Since the nonrelativistic survival amplitude is rather important throughout the future discussions, this section

will summarize the main results regarding the topic. The proofs of all of those results are shown in [43].

The non–relativistic survival amplitude is obtained when we put P = 0 in Eq. (30):

a(⌧, P = 0) =

Z 1

µ

d⇠ �(⇠) exp

 
�

i⌧

2x0
⇠

!
. (32)
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Details: the exponential decay law 
in flight (1)

B. Exponential decay at intermediate times

We shall now calculate the exponential component of the relativistic survival amplitude. For now, let us

define this component as �2⇡i times the residue of the density of states at its pole on the fourth quadrant times

the relativistic phase factor without specifying any integration contour yet:

ae(⌧, P ) = �2⇡i Res

"
�(z) exp

 
�

i⌧

2x0

p

z2 + P 2

!
, z = 1 + µ � ix0

#

= R exp

"
�

i⌧

2x0

p
(⇣0 + µ)2 + P 2

#
, (41)

where ⇣0 = 1 � ix0 and R = �2⇡i Res
⇥
�(z) , z = µ + ⇣0

⇤
. If we denote the real and imaginary part of

p
(⇣0 + µ)2 + P 2 respectively as 2x0⌦ and �x0�,

ae(⌧, P ) = R exp

"
�

✓
�

2
+ i⌦

◆
⌧

#
, (42)

and we identify � as the decay rate of the exponential component of the survival probability and ⌦ as the

frequency of oscillation of the exponential survival amplitude. In the Appendix A, we prove that � is positive

when x0 > 0. Moreover, in the same appendix we deduce that

⌦ =
1

2
p

2x0

q⇥
(P + x0)2 + (1 + µ)2

⇤⇥
(P � x0)2 + (1 + µ)2

⇤
+ P 2 + (1 + µ)2 � x2

0

�1/2
, (43)

� =
1

p
2x0

q⇥
(P + x0)2 + (1 + µ)2

⇤⇥
(P � x0)2 + (1 + µ)2

⇤
� P 2

� (1 + µ)2 + x2
0

�1/2
. (44)

Since � ·⌦ =
1 + µ

2x0
, they are not independent quantities as in the nonrelativistic case. What is more, the larger

(smaller) the decay rate, the smaller (larger) the frequency of oscillation.

For P = 0, ⌦ and � reduce to:

⌦
���
P=0

=
1 + µ

2x0
, (45)

�
���
P=0

= 1. (46)

Both expressions reduce to the nonrelativistic case as Eq. (34) shows.

One of the advantages of introducing the parameters x0, µ and P is to study how � and ⌦ behave when the

momentum of the system is large, and what a large momentum in an unstable, relativistic system means. If x0

is negligible with respect to P , but 1 + µ is not, ⌦ and � take the following forms:

⌦
���
P�x0

⇡

p
P 2 + (1 + µ)2

2x0
, (47)

�
���
P�x0

⇡
1 + µp

P 2 + (1 + µ)2
. (48)

If, in the former case, 1 + µ is negligible with respect to P as well:

⌦
���
P�x0
P�1+µ

⇡
P

2x0
, (49)

�
���
P�x0
P�1+µ

⇡
1 + µ

P
. (50)
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and we identify � as the decay rate of the exponential component of the survival probability and ⌦ as the
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One of the advantages of introducing the parameters x0, µ and P is to study how � and ⌦ behave when the
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Important is the deviation from the 
formula obtained previously by STR 

Summarizing, we can say that P is large if P � 1 + µ, and P � x0. Moreover, ⌦ = O(P ) and � = O(P�1)

for large P . Physically, this means that large momenta imply that the system decays slowly and therefore

the decay will be dominantly exponential. Another implication of this result is that the time taken by the

relativistic survival probability to both leave the quadratic, small time regime and enter from the exponential

into the non–exponential, large time regime will be larger than its nonrelativistic counterpart provided that the

momentum is large. We shall return to this point in section III E. Finally, we show in Table I the values of the

parameters x0, µ and P for some decay processes.

p = 0.5 p = 1 p = 5 p = 10

Process x0 µ P P P P

�++
! p + ⇡+ 0.37987 7.0000 3.2468 6.4935 12.987 64.935

⇢0 ! ⇡+ + ⇡� 0.15100 0.56131 1.0054 2.0107 4.0214 20.107

Z0 1.3684 ⇥ 10�5 1.1208 ⇥ 10�5 0.0054833 0.010967 0.02193 0.10967

µ�
! e� + ⌫̄e + ⌫µ 1.4218 ⇥ 10�18 4.8598 ⇥ 10�3 4.7552 9.5103 19.021 95.103

K+
! µ+ + ⌫µ 6.8554 ⇥ 10�17 0.27231 1.2886 2.5772 5.1544 25.772

TABLE I. Values of the parameters for some examples of broad and narrow decays as well as the parameter, P =

p/(m0 � mth), defined in Eq. (26) for these decays at di↵erent momenta, p, given in GeV. Data for each process is

available in [46].

Moreover, let us consider the relativistic, exponential, survival probability Pe(⌧, P ):

Pe(⌧, P ) = |ae(⌧, P )|2 = |R|
2 e�� ⌧ , (51)

and their counter–nonrelativistic part:

Pe(⌧, 0) = |R|
2 e�⌧ , (52)

We note that in general, |R|
2

6= 1 when we normalize over the whole time region including small and large times.

After the first measurement in the exponential region, one can take |R|
2 = 1. From the Eq. (52) and with the

help of the Eq. (3) we obtain the survival probability of the unstable particle in motion pe(⌧, �), that is,

pe(⌧, �) = |R|
2 exp

✓
�

⌧

�

◆
. (53)

This is essentially the result we expect from time dilation arguments. We would like to compare the ratio
Pe(⌧, P )

pe(⌧, �)
as a function of � in order to see how much Pe(⌧, P ) deviates from pe(⌧, �). From the definitions of

the respective survival probabilities:

Pe(⌧, P )

pe(⌧, �)
= exp

h
�

⇣
�(P, x0) � ��1

⌘
⌧
i
. (54)

Note that in the ultrarelativistic (UR) limit, p = m0�v = m0

p
�2 � 1 ' m0� and using the definition of

� ⇡ (1 + µ)/P ,

PUR

e
(⌧, P ) = |R|

2 exp

✓
�

⌧

�

◆
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General from Fock-Krylov

Summarizing, we can say that P is large if P � 1 + µ, and P � x0. Moreover, ⌦ = O(P ) and � = O(P�1)

for large P . Physically, this means that large momenta imply that the system decays slowly and therefore

the decay will be dominantly exponential. Another implication of this result is that the time taken by the

relativistic survival probability to both leave the quadratic, small time regime and enter from the exponential

into the non–exponential, large time regime will be larger than its nonrelativistic counterpart provided that the

momentum is large. We shall return to this point in section III E. Finally, we show in Table I the values of the

parameters x0, µ and P for some decay processes.

p = 0.5 p = 1 p = 5 p = 10

Process x0 µ P P P P

�++
! p + ⇡+ 0.37987 7.0000 3.2468 6.4935 12.987 64.935

⇢0 ! ⇡+ + ⇡� 0.15100 0.56131 1.0054 2.0107 4.0214 20.107

Z0 1.3684 ⇥ 10�5 1.1208 ⇥ 10�5 0.0054833 0.010967 0.02193 0.10967

µ�
! e� + ⌫̄e + ⌫µ 1.4218 ⇥ 10�18 4.8598 ⇥ 10�3 4.7552 9.5103 19.021 95.103

K+
! µ+ + ⌫µ 6.8554 ⇥ 10�17 0.27231 1.2886 2.5772 5.1544 25.772

TABLE I. Values of the parameters for some examples of broad and narrow decays as well as the parameter, P =

p/(m0 � mth), defined in Eq. (26) for these decays at di↵erent momenta, p, given in GeV. Data for each process is

available in [46].

Moreover, let us consider the relativistic, exponential, survival probability Pe(⌧, P ):

Pe(⌧, P ) = |ae(⌧, P )|2 = |R|
2 e�� ⌧ , (51)

and their counter–nonrelativistic part:

Pe(⌧, 0) = |R|
2 e�⌧ , (52)

We note that in general, |R|
2

6= 1 when we normalize over the whole time region including small and large times.

After the first measurement in the exponential region, one can take |R|
2 = 1. From the Eq. (52) and with the

help of the Eq. (3) we obtain the survival probability of the unstable particle in motion pe(⌧, �), that is,

pe(⌧, �) = |R|
2 exp

✓
�

⌧

�

◆
. (53)

This is essentially the result we expect from time dilation arguments. We would like to compare the ratio
Pe(⌧, P )

pe(⌧, �)
as a function of � in order to see how much Pe(⌧, P ) deviates from pe(⌧, �). From the definitions of

the respective survival probabilities:

Pe(⌧, P )

pe(⌧, �)
= exp

h
�

⇣
�(P, x0) � ��1

⌘
⌧
i
. (54)

Note that in the ultrarelativistic (UR) limit, p = m0�v = m0

p
�2 � 1 ' m0� and using the definition of

� ⇡ (1 + µ)/P ,

PUR

e
(⌧, P ) = |R|

2 exp
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�

⌧

�
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12

At rest

Summarizing, we can say that P is large if P � 1 + µ, and P � x0. Moreover, ⌦ = O(P ) and � = O(P�1)

for large P . Physically, this means that large momenta imply that the system decays slowly and therefore

the decay will be dominantly exponential. Another implication of this result is that the time taken by the

relativistic survival probability to both leave the quadratic, small time regime and enter from the exponential

into the non–exponential, large time regime will be larger than its nonrelativistic counterpart provided that the

momentum is large. We shall return to this point in section III E. Finally, we show in Table I the values of the

parameters x0, µ and P for some decay processes.

p = 0.5 p = 1 p = 5 p = 10

Process x0 µ P P P P

�++
! p + ⇡+ 0.37987 7.0000 3.2468 6.4935 12.987 64.935

⇢0 ! ⇡+ + ⇡� 0.15100 0.56131 1.0054 2.0107 4.0214 20.107

Z0 1.3684 ⇥ 10�5 1.1208 ⇥ 10�5 0.0054833 0.010967 0.02193 0.10967

µ�
! e� + ⌫̄e + ⌫µ 1.4218 ⇥ 10�18 4.8598 ⇥ 10�3 4.7552 9.5103 19.021 95.103

K+
! µ+ + ⌫µ 6.8554 ⇥ 10�17 0.27231 1.2886 2.5772 5.1544 25.772

TABLE I. Values of the parameters for some examples of broad and narrow decays as well as the parameter, P =

p/(m0 � mth), defined in Eq. (26) for these decays at di↵erent momenta, p, given in GeV. Data for each process is

available in [46].

Moreover, let us consider the relativistic, exponential, survival probability Pe(⌧, P ):

Pe(⌧, P ) = |ae(⌧, P )|2 = |R|
2 e�� ⌧ , (51)

and their counter–nonrelativistic part:

Pe(⌧, 0) = |R|
2 e�⌧ , (52)

We note that in general, |R|
2

6= 1 when we normalize over the whole time region including small and large times.

After the first measurement in the exponential region, one can take |R|
2 = 1. From the Eq. (52) and with the

help of the Eq. (3) we obtain the survival probability of the unstable particle in motion pe(⌧, �), that is,

pe(⌧, �) = |R|
2 exp

✓
�

⌧

�

◆
. (53)

This is essentially the result we expect from time dilation arguments. We would like to compare the ratio
Pe(⌧, P )

pe(⌧, �)
as a function of � in order to see how much Pe(⌧, P ) deviates from pe(⌧, �). From the definitions of

the respective survival probabilities:

Pe(⌧, P )

pe(⌧, �)
= exp

h
�

⇣
�(P, x0) � ��1

⌘
⌧
i
. (54)

Note that in the ultrarelativistic (UR) limit, p = m0�v = m0

p
�2 � 1 ' m0� and using the definition of

� ⇡ (1 + µ)/P ,

PUR

e
(⌧, P ) = |R|

2 exp

✓
�

⌧

�

◆
(55)

12

From STR

Summarizing, we can say that P is large if P � 1 + µ, and P � x0. Moreover, ⌦ = O(P ) and � = O(P�1)

for large P . Physically, this means that large momenta imply that the system decays slowly and therefore

the decay will be dominantly exponential. Another implication of this result is that the time taken by the

relativistic survival probability to both leave the quadratic, small time regime and enter from the exponential

into the non–exponential, large time regime will be larger than its nonrelativistic counterpart provided that the

momentum is large. We shall return to this point in section III E. Finally, we show in Table I the values of the

parameters x0, µ and P for some decay processes.

p = 0.5 p = 1 p = 5 p = 10

Process x0 µ P P P P

�++
! p + ⇡+ 0.37987 7.0000 3.2468 6.4935 12.987 64.935

⇢0 ! ⇡+ + ⇡� 0.15100 0.56131 1.0054 2.0107 4.0214 20.107

Z0 1.3684 ⇥ 10�5 1.1208 ⇥ 10�5 0.0054833 0.010967 0.02193 0.10967

µ�
! e� + ⌫̄e + ⌫µ 1.4218 ⇥ 10�18 4.8598 ⇥ 10�3 4.7552 9.5103 19.021 95.103

K+
! µ+ + ⌫µ 6.8554 ⇥ 10�17 0.27231 1.2886 2.5772 5.1544 25.772

TABLE I. Values of the parameters for some examples of broad and narrow decays as well as the parameter, P =

p/(m0 � mth), defined in Eq. (26) for these decays at di↵erent momenta, p, given in GeV. Data for each process is

available in [46].

Moreover, let us consider the relativistic, exponential, survival probability Pe(⌧, P ):

Pe(⌧, P ) = |ae(⌧, P )|2 = |R|
2 e�� ⌧ , (51)

and their counter–nonrelativistic part:

Pe(⌧, 0) = |R|
2 e�⌧ , (52)

We note that in general, |R|
2

6= 1 when we normalize over the whole time region including small and large times.

After the first measurement in the exponential region, one can take |R|
2 = 1. From the Eq. (52) and with the

help of the Eq. (3) we obtain the survival probability of the unstable particle in motion pe(⌧, �), that is,

pe(⌧, �) = |R|
2 exp

✓
�

⌧

�

◆
. (53)

This is essentially the result we expect from time dilation arguments. We would like to compare the ratio
Pe(⌧, P )

pe(⌧, �)
as a function of � in order to see how much Pe(⌧, P ) deviates from pe(⌧, �). From the definitions of

the respective survival probabilities:

Pe(⌧, P )

pe(⌧, �)
= exp

h
�

⇣
�(P, x0) � ��1

⌘
⌧
i
. (54)

Note that in the ultrarelativistic (UR) limit, p = m0�v = m0

p
�2 � 1 ' m0� and using the definition of

� ⇡ (1 + µ)/P ,

PUR

e
(⌧, P ) = |R|

2 exp
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�

⌧

�

◆
(55)
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Exp(Fock-Krylov)/Exp(STR)

Summarizing, we can say that P is large if P � 1 + µ, and P � x0. Moreover, ⌦ = O(P ) and � = O(P�1)

for large P . Physically, this means that large momenta imply that the system decays slowly and therefore

the decay will be dominantly exponential. Another implication of this result is that the time taken by the

relativistic survival probability to both leave the quadratic, small time regime and enter from the exponential

into the non–exponential, large time regime will be larger than its nonrelativistic counterpart provided that the

momentum is large. We shall return to this point in section III E. Finally, we show in Table I the values of the

parameters x0, µ and P for some decay processes.

p = 0.5 p = 1 p = 5 p = 10

Process x0 µ P P P P

�++
! p + ⇡+ 0.37987 7.0000 3.2468 6.4935 12.987 64.935

⇢0 ! ⇡+ + ⇡� 0.15100 0.56131 1.0054 2.0107 4.0214 20.107

Z0 1.3684 ⇥ 10�5 1.1208 ⇥ 10�5 0.0054833 0.010967 0.02193 0.10967

µ�
! e� + ⌫̄e + ⌫µ 1.4218 ⇥ 10�18 4.8598 ⇥ 10�3 4.7552 9.5103 19.021 95.103

K+
! µ+ + ⌫µ 6.8554 ⇥ 10�17 0.27231 1.2886 2.5772 5.1544 25.772

TABLE I. Values of the parameters for some examples of broad and narrow decays as well as the parameter, P =

p/(m0 � mth), defined in Eq. (26) for these decays at di↵erent momenta, p, given in GeV. Data for each process is

available in [46].

Moreover, let us consider the relativistic, exponential, survival probability Pe(⌧, P ):

Pe(⌧, P ) = |ae(⌧, P )|2 = |R|
2 e�� ⌧ , (51)

and their counter–nonrelativistic part:

Pe(⌧, 0) = |R|
2 e�⌧ , (52)

We note that in general, |R|
2

6= 1 when we normalize over the whole time region including small and large times.

After the first measurement in the exponential region, one can take |R|
2 = 1. From the Eq. (52) and with the

help of the Eq. (3) we obtain the survival probability of the unstable particle in motion pe(⌧, �), that is,

pe(⌧, �) = |R|
2 exp

✓
�

⌧

�

◆
. (53)

This is essentially the result we expect from time dilation arguments. We would like to compare the ratio
Pe(⌧, P )

pe(⌧, �)
as a function of � in order to see how much Pe(⌧, P ) deviates from pe(⌧, �). From the definitions of

the respective survival probabilities:

Pe(⌧, P )

pe(⌧, �)
= exp

h
�

⇣
�(P, x0) � ��1

⌘
⌧
i
. (54)

Note that in the ultrarelativistic (UR) limit, p = m0�v = m0

p
�2 � 1 ' m0� and using the definition of

� ⇡ (1 + µ)/P ,

PUR

e
(⌧, P ) = |R|

2 exp
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�

⌧

�

◆
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and the ratio in (54) is unity. This can be seen as follows too: since the exponential function is a decreasing,

monotonous function, and in addition ⌧ > 0, the properties of this ratio follow from the properties of the

function

f(�, x0) = �(P, x0) � ��1 (56)

in terms of �, which is done in the Appendix B. The analysis of this function reveals that:

i) For constant x0, it turns out that f(1, x0) = 0, and as a consequence,

lim
�!1

Pe(⌧, P )

pe(⌧, �)
= 1. (57)

Moreover, under the same conditions, f(�, x0) has a maximum in � = �c given by

�2
c

=
5

3
+

9

25

✓
x0

1 + µ

◆2

�
31

3125

✓
x0

1 + µ

◆4

+
267

390625

✓
x0

1 + µ

◆6

�
573

9765625

✓
x0

1 + µ

◆8

+
33642

6103515625

✓
x0

1 + µ

◆10

+ · · · . (58)

Hence, we conclude that the ratio
Pe(⌧, P )

pe(⌧, �)
has a minimum when �2

c
is given by this power series, that is,

for this value of � we have the maximum deviation between Pe(⌧, P ) and pe(⌧, �). Notice that, for narrow

resonances, this minimum is such that �2
c

⇡
5

3
. Numerical tests, shown in Fig. 1, validate this result, and

it demonstrates that similar calculations (see [13]) where this maximum is such that �2
c

= 1 + 4

✓
x0

1 + µ

◆2

is incorrect.

ii) For constant �, f(�, 0) = 0, and as a result,

lim
x0!0

Pe(⌧, P )

pe(⌧, �)
= 1. (59)

In addition, �(�, x0) (and so does f(�)) behaves as a monotonic increasing function for x0 if 0 < x0 < 1.

The consequence of this property is that the ratio
Pe(⌧, P )

pe(⌧, �)
decreases monotonically when x0 goes from 0

to 1 for a constant P (or constant �), or paraphrasing this statement, Pe(⌧, P ) deviates from pe(⌧, �) the

most for broad resonances.

C. Non-exponential decay at large times

In this section we shall study the asymptotic behavior of the relativistic survival probability given by Eq.

(30) when
⌧

2x0
� 1. Let us write this integral as a complex contour integral, that is,

a(⌧, P ) =

Z 1

µ

dz �(z) exp
⇣
�ik

p

z2 + P 2
⌘
, (60)

where k is
⌧

2x0
, and the contour of integration starts in the point z = µ and goes along the positive real axis.

The contour is represented in figure 2 as a dotted line. Here, the complex plane (actually, cut complex plane)

is such that it has three branch points in ±iP and µ, and the cuts are chosen as we show in the figure 2.
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We know already that

and the ratio in (54) is unity. This can be seen as follows too: since the exponential function is a decreasing,

monotonous function, and in addition ⌧ > 0, the properties of this ratio follow from the properties of the

function

f(�, x0) = �(P, x0) � ��1 (56)

in terms of �, which is done in the Appendix B. The analysis of this function reveals that:

i) For constant x0, it turns out that f(1, x0) = 0, and as a consequence,

lim
�!1

Pe(⌧, P )

pe(⌧, �)
= 1. (57)

Moreover, under the same conditions, f(�, x0) has a maximum in � = �c given by

�2
c

=
5

3
+

9

25

✓
x0

1 + µ

◆2

�
31

3125

✓
x0

1 + µ

◆4

+
267

390625

✓
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◆6

�
573

9765625

✓
x0

1 + µ

◆8

+
33642

6103515625

✓
x0

1 + µ

◆10

+ · · · . (58)

Hence, we conclude that the ratio
Pe(⌧, P )

pe(⌧, �)
has a minimum when �2

c
is given by this power series, that is,

for this value of � we have the maximum deviation between Pe(⌧, P ) and pe(⌧, �). Notice that, for narrow

resonances, this minimum is such that �2
c

⇡
5

3
. Numerical tests, shown in Fig. 1, validate this result, and

it demonstrates that similar calculations (see [13]) where this maximum is such that �2
c

= 1 + 4

✓
x0

1 + µ

◆2

is incorrect.

ii) For constant �, f(�, 0) = 0, and as a result,

lim
x0!0

Pe(⌧, P )

pe(⌧, �)
= 1. (59)

In addition, �(�, x0) (and so does f(�)) behaves as a monotonic increasing function for x0 if 0 < x0 < 1.

The consequence of this property is that the ratio
Pe(⌧, P )

pe(⌧, �)
decreases monotonically when x0 goes from 0

to 1 for a constant P (or constant �), or paraphrasing this statement, Pe(⌧, P ) deviates from pe(⌧, �) the

most for broad resonances.

C. Non-exponential decay at large times

In this section we shall study the asymptotic behavior of the relativistic survival probability given by Eq.

(30) when
⌧

2x0
� 1. Let us write this integral as a complex contour integral, that is,

a(⌧, P ) =

Z 1

µ

dz �(z) exp
⇣
�ik

p

z2 + P 2
⌘
, (60)

where k is
⌧

2x0
, and the contour of integration starts in the point z = µ and goes along the positive real axis.

The contour is represented in figure 2 as a dotted line. Here, the complex plane (actually, cut complex plane)

is such that it has three branch points in ±iP and µ, and the cuts are chosen as we show in the figure 2.
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Moreover the argument of the exponential

has a maximum at

and the ratio in (54) is unity. This can be seen as follows too: since the exponential function is a decreasing,

monotonous function, and in addition ⌧ > 0, the properties of this ratio follow from the properties of the

function

f(�, x0) = �(P, x0) � ��1 (56)

in terms of �, which is done in the Appendix B. The analysis of this function reveals that:

i) For constant x0, it turns out that f(1, x0) = 0, and as a consequence,

lim
�!1

Pe(⌧, P )

pe(⌧, �)
= 1. (57)

Moreover, under the same conditions, f(�, x0) has a maximum in � = �c given by

�2
c

=
5

3
+

9

25

✓
x0

1 + µ

◆2

�
31

3125

✓
x0

1 + µ

◆4

+
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390625
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�
573

9765625

✓
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◆8

+
33642

6103515625

✓
x0
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◆10

+ · · · . (58)

Hence, we conclude that the ratio
Pe(⌧, P )

pe(⌧, �)
has a minimum when �2

c
is given by this power series, that is,

for this value of � we have the maximum deviation between Pe(⌧, P ) and pe(⌧, �). Notice that, for narrow

resonances, this minimum is such that �2
c

⇡
5

3
. Numerical tests, shown in Fig. 1, validate this result, and

it demonstrates that similar calculations (see [13]) where this maximum is such that �2
c

= 1 + 4

✓
x0

1 + µ

◆2

is incorrect.

ii) For constant �, f(�, 0) = 0, and as a result,

lim
x0!0

Pe(⌧, P )

pe(⌧, �)
= 1. (59)

In addition, �(�, x0) (and so does f(�)) behaves as a monotonic increasing function for x0 if 0 < x0 < 1.

The consequence of this property is that the ratio
Pe(⌧, P )

pe(⌧, �)
decreases monotonically when x0 goes from 0

to 1 for a constant P (or constant �), or paraphrasing this statement, Pe(⌧, P ) deviates from pe(⌧, �) the

most for broad resonances.

C. Non-exponential decay at large times

In this section we shall study the asymptotic behavior of the relativistic survival probability given by Eq.

(30) when
⌧

2x0
� 1. Let us write this integral as a complex contour integral, that is,

a(⌧, P ) =

Z 1

µ

dz �(z) exp
⇣
�ik

p

z2 + P 2
⌘
, (60)

where k is
⌧

2x0
, and the contour of integration starts in the point z = µ and goes along the positive real axis.

The contour is represented in figure 2 as a dotted line. Here, the complex plane (actually, cut complex plane)

is such that it has three branch points in ±iP and µ, and the cuts are chosen as we show in the figure 2.

13
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resonances

and the ratio in (54) is unity. This can be seen as follows too: since the exponential function is a decreasing,

monotonous function, and in addition ⌧ > 0, the properties of this ratio follow from the properties of the

function

f(�, x0) = �(P, x0) � ��1 (56)

in terms of �, which is done in the Appendix B. The analysis of this function reveals that:

i) For constant x0, it turns out that f(1, x0) = 0, and as a consequence,

lim
�!1

Pe(⌧, P )

pe(⌧, �)
= 1. (57)

Moreover, under the same conditions, f(�, x0) has a maximum in � = �c given by
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✓
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+
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+ · · · . (58)

Hence, we conclude that the ratio
Pe(⌧, P )

pe(⌧, �)
has a minimum when �2

c
is given by this power series, that is,

for this value of � we have the maximum deviation between Pe(⌧, P ) and pe(⌧, �). Notice that, for narrow

resonances, this minimum is such that �2
c

⇡
5

3
. Numerical tests, shown in Fig. 1, validate this result, and

it demonstrates that similar calculations (see [13]) where this maximum is such that �2
c

= 1 + 4

✓
x0

1 + µ

◆2

is incorrect.

ii) For constant �, f(�, 0) = 0, and as a result,

lim
x0!0

Pe(⌧, P )

pe(⌧, �)
= 1. (59)

In addition, �(�, x0) (and so does f(�)) behaves as a monotonic increasing function for x0 if 0 < x0 < 1.

The consequence of this property is that the ratio
Pe(⌧, P )

pe(⌧, �)
decreases monotonically when x0 goes from 0

to 1 for a constant P (or constant �), or paraphrasing this statement, Pe(⌧, P ) deviates from pe(⌧, �) the

most for broad resonances.

C. Non-exponential decay at large times

In this section we shall study the asymptotic behavior of the relativistic survival probability given by Eq.

(30) when
⌧

2x0
� 1. Let us write this integral as a complex contour integral, that is,

a(⌧, P ) =

Z 1

µ

dz �(z) exp
⇣
�ik

p

z2 + P 2
⌘
, (60)

where k is
⌧

2x0
, and the contour of integration starts in the point z = µ and goes along the positive real axis.

The contour is represented in figure 2 as a dotted line. Here, the complex plane (actually, cut complex plane)

is such that it has three branch points in ±iP and µ, and the cuts are chosen as we show in the figure 2.
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Comparing every critical time at each momentum per decay process shows that the starting of the exponential

regime in general is delayed when the system is in flight, which it was observated in the analysis of the relativistic

survival probability for short times. In addition, the delay is critical for processes where both x0 and µ are

closed to zero, and under these conditions, ⌧st(�)/4⇡x0 ⇠ 2� when � � 1 –this is ilustrated in the figure 7 for

Z0 and µ�. Unlike the critical time for large times, the one for small times is a increasing function of P (or �)

and accordingly there is no value for � for which this critical time has a maximum or a minimum.

We would like to close this section about the critical times by summarizing briefly the results found here.

In general, a decay in flight compared with the same decay in a rest frame is such that the starting of the

exponential regime will be delayed because the critical time for small times is larger in flight with respect to the

one in the rest frame. Moreover, the starting of the large time regime might go forward or backward with respect

to the same decay in a rest frame. The latter is due to the fact that depending on the resonance parameters,

x0 and µ there exists a critical value of � which decides the direction of shift at a given momentum.

IV. SUMMARY AND OUTLOOK

In fundamental physics, the spontaneous decay of metastable states is an intrinsic prediction of quantum

mechanics coupled to Special Relativity where the fundamental processes are restricted only by conservation

laws like energy-momentum conservation, charge conservation and also lepton and baryon number conservation.

This makes a spontaneous decay possible. One encounters the phenomenon of decay in many branches of

physics with typical examples being, Z0
! e+e� in particle physics, 212Po !

208Pb + ↵ in nuclear physics

and � ! ⇡N in hadron physics, just to mention a few. However, we can find it also in atomic and molecular

physics, along with investigations of the nonexponential decay law [47–49]. This explains its importance in

natural sciences. Motivated by the recent results regarding the time evolution of an unstable state in flight, we

have reconsidered the topic specializing on three di↵erent time regimes: the small time survival probablity of

the form S(t, p) = 1 � b(p)t2 + ..., its equivalent for intermediate times of the form S(t, p) = exp(�a(p)t) and

the large time behavior where the survival probablity is a power law S(t, p) / p2(↵+1)/t2(↵+1), where ↵ is the

exponent in the threshold factor. In doing so we employed the steepest descent method to calculate the integrals

involved. In the exponential region, we find a critical Lorentz factor �, i.e., a �c for which the deviation from

exp(��t/�) is the largest. It corresponds to a velocity v = 0.63c. This a purely quantum mechanical e↵ect

since, replacing e��t at rest by e��t/� in flight, one is using relativity based on classical principles. For small

times b(p) includes a quantum mechanical expression for the energy uncertainty. This is also the case for the

decay at rest, but surprisingly both uncertainties di↵er when the momentum p is large.

The critical times of transition from the nonexponential short time regime to the exponential one (⌧st) and

the exponential to the large time power law regime (⌧lt) are also presented for decays in flight. These times show

an involved dependence on the resonance mass, m0 and its width, the threshold energy, mth and momentum, p,

of the decaying particle but reduce to rather simple analytical formulae for very large values of the parameter
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The effect for the muon

contradiction with (3). The author concluded that the point form interaction cannot be responsible for particle

decays. Constructing an instant form dynamics, however, the author obtained exactly the same expression as

in (9).

In the sections to follow, we shall study the survival probability as given in Eq. (9) and compare with the

Einstein’s time dilation formula (3) both analytically and numerically for some realistic unstable particles. On

the way, we shall discover the nuances of the relativistic and ultrarelativistic regions of the decay at short times,

its implications for the time-energy uncertainty relation, the deviation of the exponential decay law for particles

in motion from that of particles at rest and the “variation” of the standard power law behaviour at large times.

III. MATHEMATICAL PROPERTIES OF THE RELATIVISTIC SURVIVAL AMPLITUDE AND

PROBABILITY

In this section we shall study the survival probability as given in Eq. (9). Related to the density of states,

we make the following assumptions:

1. It has a branch point at m = mth, and the asymptotic expansion around this point is such that

!(m) = (m � mth)
↵ Q(m), (20)

where ↵ > 0 and Q(m) is analytic except in isolated points which are simple poles. These poles come in

pairs of complex conjugate numbers since the density of states is real.

2. The moments of the density of states are well defined, i.e.,

�n ⌘

Z 1

mth

dm mn!(m) < 1, (21)

and for n = 0, �0 = 1, which is just the normalization condition. We can consider �n as the expectation

value of m raised to the power n.

The calculations that we shall perform are under the assumption of the dominant pole approximation, i.e., we

take into account the pole of !(m) on the fourth quadrant such that it has the smallest imaginary part only, and

we neglect the contributions of the remaining poles. Hence, let the complex number m0 � i
�0

2
be the dominant

pole, where m0 > mth and �0 > 0.

In the nonrelativistic treatment of the decay of unstable systems, it is customary to write the survival

amplitude in terms of the parameter
�0

2m0
. However, in that context, m0 is supposed to be m0 � mth and not

m0 because a change of variable m ! m�mth is made such that the lower limit of integration will be zero, and

as a consequence, m0 is implicity assumed to be m0 � mth. Henceforth, not only would we like to introduce the

same parameter, that is,

x0 =
�0

2(m0 � mth)
, (22)
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FK/STR =

Summarizing, we can say that P is large if P � 1 + µ, and P � x0. Moreover, ⌦ = O(P ) and � = O(P�1)

for large P . Physically, this means that large momenta imply that the system decays slowly and therefore

the decay will be dominantly exponential. Another implication of this result is that the time taken by the

relativistic survival probability to both leave the quadratic, small time regime and enter from the exponential

into the non–exponential, large time regime will be larger than its nonrelativistic counterpart provided that the

momentum is large. We shall return to this point in section III E. Finally, we show in Table I the values of the

parameters x0, µ and P for some decay processes.

p = 0.5 p = 1 p = 5 p = 10

Process x0 µ P P P P

�++
! p + ⇡+ 0.37987 7.0000 3.2468 6.4935 12.987 64.935

⇢0 ! ⇡+ + ⇡� 0.15100 0.56131 1.0054 2.0107 4.0214 20.107

Z0 1.3684 ⇥ 10�5 1.1208 ⇥ 10�5 0.0054833 0.010967 0.02193 0.10967

µ�
! e� + ⌫̄e + ⌫µ 1.4218 ⇥ 10�18 4.8598 ⇥ 10�3 4.7552 9.5103 19.021 95.103

K+
! µ+ + ⌫µ 6.8554 ⇥ 10�17 0.27231 1.2886 2.5772 5.1544 25.772

TABLE I. Values of the parameters for some examples of broad and narrow decays as well as the parameter, P =

p/(m0 � mth), defined in Eq. (26) for these decays at di↵erent momenta, p, given in GeV. Data for each process is

available in [46].

Moreover, let us consider the relativistic, exponential, survival probability Pe(⌧, P ):

Pe(⌧, P ) = |ae(⌧, P )|2 = |R|
2 e�� ⌧ , (51)

and their counter–nonrelativistic part:

Pe(⌧, 0) = |R|
2 e�⌧ , (52)

We note that in general, |R|
2

6= 1 when we normalize over the whole time region including small and large times.

After the first measurement in the exponential region, one can take |R|
2 = 1. From the Eq. (52) and with the

help of the Eq. (3) we obtain the survival probability of the unstable particle in motion pe(⌧, �), that is,

pe(⌧, �) = |R|
2 exp

✓
�

⌧

�

◆
. (53)

This is essentially the result we expect from time dilation arguments. We would like to compare the ratio
Pe(⌧, P )

pe(⌧, �)
as a function of � in order to see how much Pe(⌧, P ) deviates from pe(⌧, �). From the definitions of

the respective survival probabilities:

Pe(⌧, P )

pe(⌧, �)
= exp

h
�

⇣
�(P, x0) � ��1

⌘
⌧
i
. (54)

Note that in the ultrarelativistic (UR) limit, p = m0�v = m0

p
�2 � 1 ' m0� and using the definition of

� ⇡ (1 + µ)/P ,

PUR

e
(⌧, P ) = |R|

2 exp

✓
�

⌧

�

◆
(55)
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Small times in 
flight
Small times at 
rest have 
been seen

Expand the amoplitude

but also to redefine the time as the dimensionless quantity

⌧ = �0t, (23)

which are defined in the same way as in the nonrelativistic formalism. Thus, the survival amplitude given by

the eq. (9) transforms as:

AFK

p
(⌧) =

Z 1

mth

dm !(m) exp

⇢
�

i⌧

2x0

p
p2 + m2

m0 � mth

�
. (24)

If we make the change of variable m = (m0 � mth)⇠, that is,

AFK

p
(⌧) = (m0 � mth)

Z 1

mth
m0�mth

d⇠ !((m0 � mth)⇠) exp

(
�

i⌧

2x0

s

⇠2 +

✓
p

m0 � mth

◆2
)

, (25)

and if we introduce the additional parameters

µ =
mth

m0 � mth
, (26)

P =
p

m0 � mth
, (27)

which let us rewrite the factor m � m0 + i
�0

2
responsible for the pole as

m � m0 + i
�0

2
= (m0 � mth)(⇠ � 1 � µ + ix0), (28)

allows us to write the density of states as

�(⇠) ⌘ (m0 � mth)!((m0 � mth)⇠). (29)

This density of states will have a branch point in ⇠ = µ and a pole in ⇠ = 1 + µ � ix0. As a result, the survival

amplitude reads:

a(⌧, P ) ⌘ AFK

p
(⌧) =

Z 1

µ

d⇠ �(⇠) exp

 
�

i⌧

2x0

p
⇠2 + P 2

!
. (30)

For future references, the moments of the density of states are rewritten as:

�̃n =

✓
1

2x0

◆n Z 1

µ

d⇠ ⇠n�(⇠) =
1

�n

0

�n. (31)

A. Non–relativistic survival amplitude

Since the nonrelativistic survival amplitude is rather important throughout the future discussions, this section

will summarize the main results regarding the topic. The proofs of all of those results are shown in [43].

The non–relativistic survival amplitude is obtained when we put P = 0 in Eq. (30):

a(⌧, P = 0) =

Z 1

µ

d⇠ �(⇠) exp

 
�

i⌧

2x0
⇠

!
. (32)
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and how this pathology does not enable us to recover the correct nonrelativistic limit. It is worth mentioning

that this behavior does not depend on the form that the density of states might have. Finally, we note from the

behaviour of Eq. (79) that we cannot expect a critical Lorentz factor � where the relativistic e↵ect is maximum

as found earlier in case of exponential decay (see (58)). The relativistic survival probability at large times is

always larger than the one corresponding to a particle decaying at rest in a factor of
�
1 + P

2

µ2

�↵+1
.

D. Short time regime

In this section we shall study how the relativistic survival amplitude given by Eq. (30) behaves when
⌧

2x0
⌧ 1.

All we need to do is to expand Eq. (30) in a Taylor series around ⌧ = 0:

a(⌧, P ) =
1X

n=0

1

n!

✓
�

i⌧

2x0

◆n

In, (80)

where In is defined as

In =

Z 1

µ

d⇠ �(⇠)
�
⇠2 + P 2

�n/2
. (81)

On the other hand, the survival probability for small times is given by

S(⌧, P ) = |a(⌧, P )|2 =
1X

n=0

(�1)n

(2n)!

✓
⌧

2x0

◆2n 2nX

m=0

(�1)m
✓

2n

m

◆
ImI2n�m

= 1 � ⌧ 2 I2 � I2
1

4x2
0

+ ⌧ 4 I4 � 4I1I3 + 3I2
2

192x4
0

+ · · · . (82)

The relativistic survival probability, as well as the nonrelativistic one, for small times follows a quadratic law,

and the particular features of the survival probability in this regime are dictated by the properties of the integrals

In. To begin with, we shall study how the small time behavior for large momenta is. Recall that large P here

means that P � 1 + µ and P � x0, and only In when n is odd requires an additional treatment in order

to calculate the asymptotic expansion for larges values of P via Watson’s lemma [44]. To do so, we need the

following identity:
1p

⇠2 + P 2
=

Z 1

0

d e�PJ0(⇠), (83)

where J0(·) is the Bessel function of the first kind of order zero. In the analytical calculation of the integrals I1

and I2 (see the appendix C), we use another integral representation of
�
⇠2 +P 2

��1/2
in terms of the exponential

only, but we would rather use the above one because obtaining the asymptotic expansion in terms of P is easier

if Bessel functions are involved. Hence, In for an odd n = 2s + 1, s = 0, 1, 2, . . . can be rewritten as:

I2s+1 =

Z 1

µ

d⇠
�
⇠2 + P 2

�s+1
�(⇠)

Z 1

0

d e�PJ0(⇠)

=

Z 1

0

d e�P

Z 1

µ

d⇠ J0(⇠)
�
⇠2 + P 2

�s+1
�(⇠). (84)

Now, the Watson’s lemma requires expanding the integral in powers of . Therefore, using the definition of

J0(·) in a power series, calculating the integral in  and after some rearrangements we obtain that I2s+1 for large
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Now, the Watson’s lemma requires expanding the integral in powers of . Therefore, using the definition of

J0(·) in a power series, calculating the integral in  and after some rearrangements we obtain that I2s+1 for large
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and how this pathology does not enable us to recover the correct nonrelativistic limit. It is worth mentioning

that this behavior does not depend on the form that the density of states might have. Finally, we note from the
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The relativistic survival probability, as well as the nonrelativistic one, for small times follows a quadratic law,
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Small times and uncertainties

contradiction with (3). The author concluded that the point form interaction cannot be responsible for particle

decays. Constructing an instant form dynamics, however, the author obtained exactly the same expression as

in (9).

In the sections to follow, we shall study the survival probability as given in Eq. (9) and compare with the

Einstein’s time dilation formula (3) both analytically and numerically for some realistic unstable particles. On

the way, we shall discover the nuances of the relativistic and ultrarelativistic regions of the decay at short times,

its implications for the time-energy uncertainty relation, the deviation of the exponential decay law for particles

in motion from that of particles at rest and the “variation” of the standard power law behaviour at large times.

III. MATHEMATICAL PROPERTIES OF THE RELATIVISTIC SURVIVAL AMPLITUDE AND

PROBABILITY

In this section we shall study the survival probability as given in Eq. (9). Related to the density of states,

we make the following assumptions:

1. It has a branch point at m = mth, and the asymptotic expansion around this point is such that

!(m) = (m � mth)
↵ Q(m), (20)

where ↵ > 0 and Q(m) is analytic except in isolated points which are simple poles. These poles come in

pairs of complex conjugate numbers since the density of states is real.

2. The moments of the density of states are well defined, i.e.,

�n ⌘

Z 1

mth

dm mn!(m) < 1, (21)

and for n = 0, �0 = 1, which is just the normalization condition. We can consider �n as the expectation

value of m raised to the power n.

The calculations that we shall perform are under the assumption of the dominant pole approximation, i.e., we

take into account the pole of !(m) on the fourth quadrant such that it has the smallest imaginary part only, and

we neglect the contributions of the remaining poles. Hence, let the complex number m0 � i
�0

2
be the dominant

pole, where m0 > mth and �0 > 0.

In the nonrelativistic treatment of the decay of unstable systems, it is customary to write the survival

amplitude in terms of the parameter
�0

2m0
. However, in that context, m0 is supposed to be m0 � mth and not

m0 because a change of variable m ! m�mth is made such that the lower limit of integration will be zero, and

as a consequence, m0 is implicity assumed to be m0 � mth. Henceforth, not only would we like to introduce the

same parameter, that is,

x0 =
�0

2(m0 � mth)
, (22)
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is the mass distribution of the resonance (say, Breit-Wigner)
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We can consider this quantity as expectation value
of m raised to the power n

but also to redefine the time as the dimensionless quantity

⌧ = �0t, (23)

which are defined in the same way as in the nonrelativistic formalism. Thus, the survival amplitude given by

the eq. (9) transforms as:

AFK

p
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Z 1
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dm !(m) exp

⇢
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p
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�
. (24)

If we make the change of variable m = (m0 � mth)⇠, that is,
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and if we introduce the additional parameters
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mth

m0 � mth
, (26)

P =
p

m0 � mth
, (27)

which let us rewrite the factor m � m0 + i
�0

2
responsible for the pole as

m � m0 + i
�0

2
= (m0 � mth)(⇠ � 1 � µ + ix0), (28)

allows us to write the density of states as

�(⇠) ⌘ (m0 � mth)!((m0 � mth)⇠). (29)

This density of states will have a branch point in ⇠ = µ and a pole in ⇠ = 1 + µ � ix0. As a result, the survival

amplitude reads:
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For future references, the moments of the density of states are rewritten as:
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2x0

◆n Z 1

µ

d⇠ ⇠n�(⇠) =
1

�n

0

�n. (31)

A. Non–relativistic survival amplitude

Since the nonrelativistic survival amplitude is rather important throughout the future discussions, this section

will summarize the main results regarding the topic. The proofs of all of those results are shown in [43].

The non–relativistic survival amplitude is obtained when we put P = 0 in Eq. (30):

a(⌧, P = 0) =
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!
. (32)
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Itiswellknownthatthenonrelativisticsurvivalamplitudecanbedecomposedasasumofanexponentialand

anon-exponentialcomponent:

a(⌧,P=0)=ae(⌧,P=0)+ane(⌧,P=0),
(33)

wherethesecomponentsaregiveninthedominantpoleapproximationas
ae(⌧,P=0)=�2⇡iRes

⇥
�(z),z=µ+⇣0

⇤
e�iµ⌧/2x0exp
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(35) where⇣0=1�ix0.Forlargetimes,thatis,
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�1,thenon-exponentialsurvivalamplitudeapproximatesas
ane(⌧,P=0)⇠�
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Inaddition,thesurvivalamplitudeforsmalltimesfollowsaquadraticlawin⌧,thatis, S(⌧,P=0)=1�(�̃2��̃21)⌧
2+O

�
⌧4

�
=1�(�2��21)t

2+O
�

t4
�

,
(37)

where(�̃2��̃21)�2
0=�2��21isthesquareoftheuncertaintyofthenonrelativisticHamiltonianattheinitialstate

oftheunstablesystem.Inpassing,wenotethatwhenthespectralfunctionbecomesverynarrow(aDiracdelta

intheextremecase),(�̃2��̃21),(�̃4��̃22)andsimilarexpressionsgotozero.Now,wedefinethenonrelativistic

survivalprobabilityS(⌧,P=0)asthemodulussquareofthesurvivalamplitude,thatis: S(⌧,P=0)⌘|a(⌧,0)|2=|ae(⌧,0)|2+|ane(⌧,0)|2+2Re
h

ae(⌧,0)a⇤
ne(⌧,0)

i
.(38)

S(⌧,P=0)hasthefollowingproperties:
i)S(⌧,P=0)isoscillatory,andtherespectiveangularfrequencyisdeterminedbythefrequencyofoscillation

ofthefunction
ae(⌧,0)
ane(⌧,0)

.Suchafrequencyisjust
1
2x0

.
ii)Thecriticaltimeforlargetimes⌧ltisdefinedasthelargestsolutionoftheequation

|ae(⌧,0)|2=|ane(⌧,0)|2.
(39)

Oneremarkablefeatureaboutthiscriticaltimeisthatthesmallerx0is,thelargerthecriticaltimesis.
iii)Thecriticaltimeforsmalltimes⌧stisdefinedwhenthesurvivalprobabilityhascompletedoneoscillation

[43],thatis,

⌧st=
2⇡

1/2x0
=4⇡x0.

(40)
Thistimeindicateswhenthesurvivalprobabilitystartstobedominantlyexponential,andsmallerthevalue

ofx0is,theprincipalcontributiontothesurvivalprobabilityatthattimewillcomefromitsexponential

component.

10

It is well known that the nonrelativistic survival amplitude can be decomposed as a sum of an exponential and

a non-exponential component:

a(⌧, P = 0) = ae(⌧, P = 0) + ane(⌧, P = 0), (33)

where these components are given in the dominant pole approximation as
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where ⇣0 = 1 � ix0. For large times, that is,
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In addition, the survival amplitude for small times follows a quadratic law in ⌧ , that is,

S(⌧, P = 0) = 1 � (�̃2 � �̃21)⌧
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⌧ 4
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, (37)

where (�̃2� �̃21) �2
0 = �2��21 is the square of the uncertainty of the nonrelativistic Hamiltonian at the initial state

of the unstable system. In passing, we note that when the spectral function becomes very narrow (a Dirac delta

in the extreme case), (�̃2 � �̃21), (�̃4 � �̃22) and similar expressions go to zero. Now, we define the nonrelativistic

survival probability S(⌧, P = 0) as the modulus square of the survival amplitude, that is:

S(⌧, P = 0) ⌘ |a(⌧, 0)|2 = |ae(⌧, 0)|2 + |ane(⌧, 0)|2 + 2Re
h
ae(⌧, 0)a⇤

ne
(⌧, 0)

i
. (38)

S(⌧, P = 0) has the following properties:

i) S(⌧, P = 0) is oscillatory, and the respective angular frequency is determined by the frequency of oscillation

of the function
ae(⌧, 0)

ane(⌧, 0)
. Such a frequency is just

1

2x0
.

ii) The critical time for large times ⌧lt is defined as the largest solution of the equation

|ae(⌧, 0)|2 = |ane(⌧, 0)|2. (39)

One remarkable feature about this critical time is that the smaller x0 is, the larger the critical times is.

iii) The critical time for small times ⌧st is defined when the survival probability has completed one oscillation

[43], that is,

⌧st =
2⇡

1/2x0
= 4⇡x0. (40)

This time indicates when the survival probability starts to be dominantly exponential, and smaller the value

of x0 is, the principal contribution to the survival probability at that time will come from its exponential

component.
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and how this pathology does not enable us to recover the correct nonrelativistic limit. It is worth mentioning

that this behavior does not depend on the form that the density of states might have. Finally, we note from the

behaviour of Eq. (79) that we cannot expect a critical Lorentz factor � where the relativistic e↵ect is maximum

as found earlier in case of exponential decay (see (58)). The relativistic survival probability at large times is

always larger than the one corresponding to a particle decaying at rest in a factor of
�
1 + P

2

µ2

�↵+1
.

D. Short time regime

In this section we shall study how the relativistic survival amplitude given by Eq. (30) behaves when
⌧

2x0
⌧ 1.

All we need to do is to expand Eq. (30) in a Taylor series around ⌧ = 0:
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On the other hand, the survival probability for small times is given by
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The relativistic survival probability, as well as the nonrelativistic one, for small times follows a quadratic law,

and the particular features of the survival probability in this regime are dictated by the properties of the integrals

In. To begin with, we shall study how the small time behavior for large momenta is. Recall that large P here

means that P � 1 + µ and P � x0, and only In when n is odd requires an additional treatment in order

to calculate the asymptotic expansion for larges values of P via Watson’s lemma [44]. To do so, we need the

following identity:
1p

⇠2 + P 2
=

Z 1

0

d e�PJ0(⇠), (83)

where J0(·) is the Bessel function of the first kind of order zero. In the analytical calculation of the integrals I1

and I2 (see the appendix C), we use another integral representation of
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⇠2 +P 2

��1/2
in terms of the exponential

only, but we would rather use the above one because obtaining the asymptotic expansion in terms of P is easier

if Bessel functions are involved. Hence, In for an odd n = 2s + 1, s = 0, 1, 2, . . . can be rewritten as:
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Now, the Watson’s lemma requires expanding the integral in powers of . Therefore, using the definition of

J0(·) in a power series, calculating the integral in  and after some rearrangements we obtain that I2s+1 for large
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In. To begin with, we shall study how the small time behavior for large momenta is. Recall that large P here

means that P � 1 + µ and P � x0, and only In when n is odd requires an additional treatment in order

to calculate the asymptotic expansion for larges values of P via Watson’s lemma [44]. To do so, we need the

following identity:
1p

⇠2 + P 2
=

Z 1

0

d e�PJ0(⇠), (83)

where J0(·) is the Bessel function of the first kind of order zero. In the analytical calculation of the integrals I1

and I2 (see the appendix C), we use another integral representation of
�
⇠2 +P 2

��1/2
in terms of the exponential

only, but we would rather use the above one because obtaining the asymptotic expansion in terms of P is easier

if Bessel functions are involved. Hence, In for an odd n = 2s + 1, s = 0, 1, 2, . . . can be rewritten as:
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Now, the Watson’s lemma requires expanding the integral in powers of . Therefore, using the definition of

J0(·) in a power series, calculating the integral in  and after some rearrangements we obtain that I2s+1 for large
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where �̃n is defined in Eq. (31). On the other hand, the integrals In for even n = 2s, s = 0, 1, 2, . . . can be

written as a polynomial in P , so that no special treatment is needed. As a result,
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As a result, the survival probability for large P takes the following form:
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For large P , notice that the coe�cient for the ⌧ 2 term is proportional to the uncertainty of the square of the

non–relativistic Hamiltonian H2 evaluated in the initial state, and hence it is positive. Finally, the relativistic

survival probability for small times and for large momentum in terms of t, p, �2 and �4 takes the following form:

S(⌧, P ) = 1 �
�
�4 � �22

�✓ t2

4p2

◆
+ · · · (88)

implying that large momenta, p, slow down the decay for small times. Performing a similar expansion for the

“time dilation” expression for the survival probability P0(t/�) in (3) and rewriting in the same notation as above

(here P0(t/�) and S(⌧/�, 0) are both survival probabilities evaluated in the rest frame of the particle moving

with velocity v, but at a time t/� instead of t),

S(⌧/�, 0) = 1 �
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�2

◆
+ · · · (89)

In the ultrarelativistic (UR) regime, p = �m0v = m0

p
(�2 � 1) ' m0�, and we can rewrite (88) in a form

similar to (89), namely,

SUR(⌧, P ) ' 1 �
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4m2

0
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◆
(90)

and note that the energy uncertainty in (89) gets replaced by a di↵erent factor in (90). Note that for the

exponential part, the ultrarelativistic and the time dilation relations for survival probability are the same.
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where �̃n is defined in Eq. (31). On the other hand, the integrals In for even n = 2s, s = 0, 1, 2, . . . can be

written as a polynomial in P , so that no special treatment is needed. As a result,
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As a result, the survival probability for large P takes the following form:
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For large P , notice that the coe�cient for the ⌧ 2 term is proportional to the uncertainty of the square of the

non–relativistic Hamiltonian H2 evaluated in the initial state, and hence it is positive. Finally, the relativistic

survival probability for small times and for large momentum in terms of t, p, �2 and �4 takes the following form:

S(⌧, P ) = 1 �
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4p2
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+ · · · (88)

implying that large momenta, p, slow down the decay for small times. Performing a similar expansion for the

“time dilation” expression for the survival probability P0(t/�) in (3) and rewriting in the same notation as above

(here P0(t/�) and S(⌧/�, 0) are both survival probabilities evaluated in the rest frame of the particle moving

with velocity v, but at a time t/� instead of t),

S(⌧/�, 0) = 1 �
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In the ultrarelativistic (UR) regime, p = �m0v = m0

p
(�2 � 1) ' m0�, and we can rewrite (88) in a form

similar to (89), namely,

SUR(⌧, P ) ' 1 �
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(90)

and note that the energy uncertainty in (89) gets replaced by a di↵erent factor in (90). Note that for the

exponential part, the ultrarelativistic and the time dilation relations for survival probability are the same.
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Comparisons of the uncertainties
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“STR” versus Fock-Krylov 
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where �̃n is defined in Eq. (31). On the other hand, the integrals In for even n = 2s, s = 0, 1, 2, . . . can be

written as a polynomial in P , so that no special treatment is needed. As a result,
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As a result, the survival probability for large P takes the following form:
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For large P , notice that the coe�cient for the ⌧ 2 term is proportional to the uncertainty of the square of the

non–relativistic Hamiltonian H2 evaluated in the initial state, and hence it is positive. Finally, the relativistic

survival probability for small times and for large momentum in terms of t, p, �2 and �4 takes the following form:

S(⌧, P ) = 1 �
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�✓ t2

4p2

◆
+ · · · (88)

implying that large momenta, p, slow down the decay for small times. Performing a similar expansion for the

“time dilation” expression for the survival probability P0(t/�) in (3) and rewriting in the same notation as above

(here P0(t/�) and S(⌧/�, 0) are both survival probabilities evaluated in the rest frame of the particle moving

with velocity v, but at a time t/� instead of t),
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In the ultrarelativistic (UR) regime, p = �m0v = m0

p
(�2 � 1) ' m0�, and we can rewrite (88) in a form

similar to (89), namely,

SUR(⌧, P ) ' 1 �
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and note that the energy uncertainty in (89) gets replaced by a di↵erent factor in (90). Note that for the

exponential part, the ultrarelativistic and the time dilation relations for survival probability are the same.
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where �̃n is defined in Eq. (31). On the other hand, the integrals In for even n = 2s, s = 0, 1, 2, . . . can be

written as a polynomial in P , so that no special treatment is needed. As a result,
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As a result, the survival probability for large P takes the following form:
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For large P , notice that the coe�cient for the ⌧ 2 term is proportional to the uncertainty of the square of the

non–relativistic Hamiltonian H2 evaluated in the initial state, and hence it is positive. Finally, the relativistic

survival probability for small times and for large momentum in terms of t, p, �2 and �4 takes the following form:

S(⌧, P ) = 1 �
�
�4 � �22

�✓ t2

4p2

◆
+ · · · (88)

implying that large momenta, p, slow down the decay for small times. Performing a similar expansion for the

“time dilation” expression for the survival probability P0(t/�) in (3) and rewriting in the same notation as above

(here P0(t/�) and S(⌧/�, 0) are both survival probabilities evaluated in the rest frame of the particle moving

with velocity v, but at a time t/� instead of t),

S(⌧/�, 0) = 1 �
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�2

◆
+ · · · (89)

In the ultrarelativistic (UR) regime, p = �m0v = m0

p
(�2 � 1) ' m0�, and we can rewrite (88) in a form

similar to (89), namely,

SUR(⌧, P ) ' 1 �
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(90)

and note that the energy uncertainty in (89) gets replaced by a di↵erent factor in (90). Note that for the

exponential part, the ultrarelativistic and the time dilation relations for survival probability are the same.
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However, due to a di↵erent “energy uncertainty” factor in front of t/� in (89) and (90), this does not seem to

be the case at short times. A critical gamma as in (58) in the exponential case does not appear here. It is

also clear from (90) that the larger the value of p, the larger the survival (or non-decay) probability will be a

quadratic law at short times. In other words, the particle becomes longer-lived.

Process �2 � �21 (MeV2) (�4 � �22)/4m2
0 (MeV2)

�++ 5682.5 6303.2

⇢0 26282 42080

Z0 87245 169040

µ� 1.2054 ⇥ 10�14 2.3275 ⇥ 10�14

K+ 7.9145 ⇥ 10�12 1.3164 ⇥ 10�11

TABLE II. Values of the coe�cients in the quadratic term in t/� given in the Eqs. (89) and (90) for some decay

processes. The density of states assumed is given in the Eq. (92). In all of the calculations, ↵ = 1
2 and � = 1. Data for

each process is available in [46].

In order to ilustrate these observations, in Table II, we show the values of the coe�cients in the quadratic

term in t/� given in Eqs. (89) and (90) for some decay processes. In addition, in Figure 5 we compare the ratio

between the coe�cients in the quadratic term t given in Eqs. (37) and (82) for the same decay processes. These

calculations were made by assuming a density of states times an exponential form factor given by

!(m) = N
(m � mth)↵

(m � m0)2 + �2
0/4

e��m/(m0�mth), (91)

or in terms of the parameters x0 and µ:

�(⇠) = N 0 (⇠ � µ)↵

(⇠ � 1 � µ)2 + x2
0

e��⇠. (92)

In these equations, N and N 0 are respectively normalization constants.

The coe�cients for the term ⌧ 2 for the processes considered in general are a decreasing function of p, and

therefore the survival probability of these processes in flight would have the small time non-exponential behaviour

for a longer period of time than if these decays happened in a frame at rest. The lenght of such a period of

time will depend of the values of x0 and µ –recall that these two parameters determine when the momentum of

the particle is considered large. Based on the values computed in Table I, it is not surprising that Z0 could be

considered non–relativistic, and µ� considered fully relativistic. These features are seen in Figure 5, that is, the

ratio of the coe�cients of t2 in flight and at rest, hardly changes for Z0 but for µ� it is almost zero when p = 1

GeV. This decreasing indicates two things: i) the decay in flight is longer-lived in comparison to the same decay

in a rest frame, and ii), the interval for which the survival probability is dominantly exponential is shrunk from

the left. These properties are also visible when the critical times for small times are introduced and computed

for the decays considered here. The latter is discussed in the next section.
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Full result with 
a chain of 
uncertainties
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where �̃n is defined in Eq. (31). On the other hand, the integrals In for even n = 2s, s = 0, 1, 2, . . . can be

written as a polynomial in P , so that no special treatment is needed. As a result,
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As a result, the survival probability for large P takes the following form:
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For large P , notice that the coe�cient for the ⌧ 2 term is proportional to the uncertainty of the square of the

non–relativistic Hamiltonian H2 evaluated in the initial state, and hence it is positive. Finally, the relativistic

survival probability for small times and for large momentum in terms of t, p, �2 and �4 takes the following form:

S(⌧, P ) = 1 �
�
�4 � �22

�✓ t2

4p2

◆
+ · · · (88)

implying that large momenta, p, slow down the decay for small times. Performing a similar expansion for the

“time dilation” expression for the survival probability P0(t/�) in (3) and rewriting in the same notation as above

(here P0(t/�) and S(⌧/�, 0) are both survival probabilities evaluated in the rest frame of the particle moving

with velocity v, but at a time t/� instead of t),

S(⌧/�, 0) = 1 �
�
�2 � �21

�✓ t2

�2

◆
+ · · · (89)

In the ultrarelativistic (UR) regime, p = �m0v = m0

p
(�2 � 1) ' m0�, and we can rewrite (88) in a form

similar to (89), namely,

SUR(⌧, P ) ' 1 �

✓
�4 � �22
4m2

0

◆✓
t2

�2

◆
(90)

and note that the energy uncertainty in (89) gets replaced by a di↵erent factor in (90). Note that for the

exponential part, the ultrarelativistic and the time dilation relations for survival probability are the same.
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This implies that the discontinuity will be contained in the exponent of the leading term in the asymptotic

expansion of the integral, so that we need to compute two expansions around s = 0: one of them is for µ 6= 0

and another one for µ = 0. Recalling that

�(⇠) = (⇠ � µ)↵Q(⇠), (74)

we have for the former case that the integrand (let us call it I) is given by

I = �e�ks e�ik

p
P 2+µ2

(
Q(µ)

 
�i

s

1 +
P 2

µ2

!↵+1

s↵ + O(s↵+1)

)
; (75)

and for the latter case it is given by

I = �e�ks e�ikP

(
Q(0)(�2iP )(↵+1)/2s(↵�1)/2 + O(s(↵+1)/2)

)
. (76)

Calling the integral along the descent paths Alt(k), (lt ⌘ large time) the asymptotic expansion for large k follows

from the Watson’s lemma [44]:

Alt(⌧) ⇠

8
>>>>>><

>>>>>>:

�Q(µ)

 
�i

s

1 +
P 2

µ2

!↵+1

e�ik

p
P 2+µ2 �(↵ + 1)

k↵+1
µ 6= 0

�Q(0)(�2iP )(↵+1)/2 e�ikP
�
�
↵+1
2

�

k(↵+1)/2
µ = 0

, (77)

or in terms of ⌧ :

Alt(⌧) ⇠

8
>>>>>><

>>>>>>:

�Q(µ)

 
�2ix0

s

1 +
P 2

µ2

!↵+1

e�i⌧

p
P 2+µ2/2x0

�(↵ + 1)

⌧↵+1
µ 6= 0

�Q(0)(�4ix0P )(↵+1)/2 e�i⌧P/2x0
�
�
↵+1
2

�

⌧ (↵+1)/2
µ = 0

, (78)

Here, µ = 0 is not an admissible solution from a physical point of view because it is not possible to recover the

nonrelativistic case when P = 0 since there is no term in the expansion which does not depend on P unless

↵ = �1/2. In [28, 31], the authors derive analytical expressions assuming µ = 0 and eventually arrive at the

same conclusion that their results are not valid in the limit P ! 0. Here, we separate the two cases of µ 6= 0

and µ = 0 and obtain (78) which is valid as P ! 0 for µ 6= 0. Finally, we note that the survival probability

Plt = |Alt|
2, at large times, is given by

Plt(⌧) / p2(↵+1) 1

t2(↵+1)
(79)

The relativistic survival amplitude for large time given by Eq. (79) was already obtained in [34, 35] under

restrictive conditions on the time t and over the density of states. The author claimed that the expression is

valid as p ! 0, which does not seem to be the case here for µ = 0. In addition, there is no explanation about

why the survival amplitude for large times shows this particular discontinuity in the exponent of the power law
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Transition 
time: from 
exponential 
to 
power law

For P = 0, we can expect that the ratio will be less than one for narrow resonances, and for broad reso-

nances there exists a value of x0 for which there is no critical time. This fact has been tested exhaustively for

nonrelativistic decay (see for instance, [27] and references therein).

Once the relativity is included, we should recall that � decreases as P increases, but it is compensate by the

factor

s

1 +
P 2

µ2
. Hence, we should not expect significant changes in �⌧lt. What it is interesting here is that for

large P , the whole factor �

s

1 +
P 2

µ2
is constant and equal to

1 + µ

µ
. In other words, the quantity

w0 ⌘ lim
P!1

�(x0, P )⌧lt(P ) (97)

is constant and it is the largest solution of the equation

w 2↵+2
0 exp

�
�w0

�
=

����
Q(µ)

R
�(↵ + 1)

����
2
 

2x0
1 + µ

µ

!2(↵+1)

. (98)

Since � = O(P�1), we infer that ⌧lt = O(P ). Moreover, since P ⇡ (1 + µ)� for large P , we have that

⌧lt
�
P �

�
1 + µ, x0

 �
⇠ w0�. (99)

In the table III we present calculations of some critical times at large times for a range of momenta for some

decay processes, as well as the parameter w0. Comparing every critical time at each momentum per decay

Critical time ⌧lt

Process w0 = (�⌧lc)|P!1 p = 0 p = 0.5 p = 1 p = 5 p = 10

�++ 10.193 10.754 11.508 13.537 42.719 83.417

⇢0 12.458 16.341 16.996 21.549 81.438 161.05

Z0 30.505 67.065 47.449 45.228 40.096 38.024

µ� 203.88 220.11 986.43 1940.5 9650.2 19297

K+ 195.75 200.45 279.99 442.92 1992.4 3970.1

TABLE III. Critical times in the large time region for some decay processes over a range of momenta, which are computed

by taking the largest solution of the equation (93). The density of states assumed is given in Eq. (92). In all of the

calculations, ↵ = 1
2 and � = 1. Every value of p is given in GeV. Data for each process is available in [46].

process shows that the intermediate time where the decay is dominantly exponential is lengthened when the

system is in flight, and the dilatation of the intermediate regime is noticeable for narrow resonances. However,

the narrowness of the resonance is not a general criterion to determine how much the intermediate regime will

be dilated compared to the one in the frame where the system is at rest. In spite of the fact that the decay of

Z0 is considered a narrow one, we must take into account whether for the momenta considered they are large

in the sense we defined in the section III B.
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FIG. 6. Plot of ⌧lt�/⌧lt(� = 1) vs. � for some decay process. Ratios were computed by taking the largest solution of

the Eq. (93). The density of states assumed is given in Eq. (92). In all of the calculations, ↵ = 1
2 and � = 1. Data for

each process is available in [46].

define the frequency of oscillation for the relativistic survival probability in the same way as in the nonrelativis-

tic formalism. From the exponential survival probability, we have a oscillating term given by exp
�
�i⌦⌧

�
, and

from the nonexponential survival amplitude, we see that there exists a whole phase factor exp
�
�

i⌧

2x0

p
P 2 + µ2

�
.

Hence, the oscillation of the survival amplitude will be determined by

exp

"
i⌧

✓
1

2x0

p
P 2 + µ2 � ⌦

◆#
,

and therefore the frequency of oscillation of the relativistic survival probability ⌫ is given by

⌫ ⌘ ⌦ �
1

2x0

p
P 2 + µ2 (102)

which reduces to the nonrelativistic case when P = 0, that is, ⌫ =
1

2x0
. On the other hand, this frequency for

large momenta approximates as

⌫ ⇠
1 + 2µ � x2

0

4x0P
+ · · · = . (103)

In other words, ⌫ = O(P�1) and as a consequence the frequency of oscillation decreases when P is large. This

result shows once more the slowness of the decay of an unstable system for large momenta as compared to the

one at rest in this region.

Likewise, we define the critical time for small times as the time that it takes the unstable system to reach its

first oscillation. Calling this time ⌧st, it is equal to

⌧st ⌘
2⇡

⌫
=

4⇡x0

2x0⌦ �

p
P 2 + µ2

. (104)

Notice that 4⇡x0 is nothing but the critical time in the nonrelatistic case [43]. Hence, it is convenient to write
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Transition time: from 
small times to 
exponential

the above equation as follows:
⌧st

4⇡x0
=

1

2x0⌦ �

p
P 2 + µ2

. (105)

If we expand ⌦ as an asymptotic series around P = 1, that is,

⌦ =
P

2x0
+

1 � x2
0 + 2µ + µ2

4Px0
+ O

�
P�2

�
, (106)

we obtain that the critical time for small times for large momenta is given by:

⌧st
4⇡x0

⇠
2P

1 + 2µ � x2
0

+ · · · =
2(1 + µ)

1 + 2µ � x2
0

� + · · · . (107)

In Table IV we calculate the ratio between the relativistic and nonrelativistic critical time for small times given

by Eq. (105) at di↵erent momenta for some decay processes. Likewise, in Figure 7 we plot the same ratio in

terms of �.

⌧st/4⇡x0

Process p = 0 p = 0.5 p = 1 p = 5 p = 10

�++ 1 1.0914 1.3283 4.4840 8.7991

⇢0 1 1.4209 2.1962 9.6375 19.182

Z0 1 1.0055 1.0110 1.0563 1.1157

µ� 1 9.5228 18.890 94.198 188.38

K+ 1 2.0251 3.5386 16.728 33.391

TABLE IV. Ratio between the relativistic and nonrelativistic critical time for small times given by Eq. (105). Every

value of p is given in GeV. Data for each process is available in [46].
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