

Study to characterize the production of antineutrons in high energy pp and pb-pb collisions through charge exchange interactions

Fabiola Lugo

- Doctorado en Ciencias (Física)
- **IF UNAM**
- 17/0/2024

Introduction

Introduction

- \bar{p} and \bar{n} productions in high-energy collisions should be approximately equal.
- Implicit in the coalescence model¹ calculations used to characterize light anti-nuclei production in high-energy heavy-ion collisions.
- Isotopic effects have recently been proposed² to significantly affect this symmetry, resulting in a larger \bar{n} production.
- This led to the inclusion of an \overline{n} / \overline{p} asymmetry parameter, which ranges from 1.2 to 2.0, in the cosmic ray galactic-transport code EPOS-LHC³.
- Such effect should be measurable in collisions carried out at the main LHC experiments.

¹M. Büscher, A. A. Sibirtsev, K. Sistemich, Fast deuteron production in proton-nucleus interactions, Zeitschrift fur Physik A Hadrons and Nuclei 350 (2) (1994) 161–166. doi:10.1007/BF01290683.

² R. Kappl, M. W. Winkler, The cosmic ray antiproton background for ams-02, Journal of Cosmology and Astroparticle Physics 2014 (09) (2014) 051. doi:10.1088/1475-7516/2014/09/051. URL https://dx.doi.org/10.1088/1475-7516/2014/09/051

³D.M. Gomez Coral and Arturo Menchaca-Rocha, SM antideuteron background to indirect dark matter signals in galactic cosmic rays, 2020 J. Phys.: Conf. Ser. **1602** 012005. doi: 10.1088/1742-6596/1602/1/012005

Introduction

Identifying and reconstructing the kinematic properties of antineutrons produced by LHC experiments via charge exchange interactions (CEX) which can take place in their silicon inner tracking devices.

Feasibility Study

Simulation

- The technique proposed consists in using the ITS silicon-nuclei neutrons as CEX targets to produce easier-to-identify $p\bar{p}$ pairs.
- The results obtained until now are specifically based on the ALICE RUNs 1 and 2 ITS geometrical configuration.

XIV LASNPA 2024

Simulation: PYTHIA

- Three million pp collision events were generated at $\sqrt{S_{pp}}$ = 0.9, 2.7, 5.02, 7, 8, and 13 TeV.
- The number of antineutrons produced per event, as well as their corresponding total energy, were recorded.
- For ALICE Run 2, $\approx 7.2 \times 10^{12} \overline{n}$ should be produced in *pp* collisions at $\sqrt{S_{pp}}$ = 13 TeV.

•
$$L = 35 \ pb^{-1}$$
, $\sigma_{pp} = 68.8 \ mb$

$\sqrt{s_{NN}}$ TeV	0.9	2.7	5.02	7	8	13
No. \bar{n} /collision pp	0.94	1.44	1.82	2.06	2.17	2.58

Simulation GEANT4

- The present GEANT4 simulations consider an isotropic point source located in the center of a silicon detector, and emitting n
 with a given kinetic energy E_k distribution.
- The simplified version considers the generation of 10^8 fix $E_k = 1$ GeV (i.e., $c p_{\bar{n}} = 1.697$ GeV) \bar{n} 's.
- The second GEANT4 simulation consists of 10^7 events, where the \bar{n} 's have the actual 13 TeV PYTHIA energy distribution.

- Simulated data were analyzed using ROOT.
- \bar{p} 's generated by primary \bar{n} 's that left an ionization signal in at least one of the detector layers.
- $n + \bar{n} \rightarrow n + \bar{p} + \pi^+ (\sigma = 5.76 \pm 0.12 \text{ mb})$ constitute the only background source to the CEX interaction.
- A π veto was implemented.
- $\sigma_{CEX} = 18.85 \pm 0.11 \text{ mb} \text{ at } E_k = 1 \text{ GeV}$
- Identification efficiency of 0.11%. → ≈ one of every 1000 antineutrons produced could be identified.

When the reaction takes place, the silicon nucleus breaks and a certain amount of energy is transferred to the nucleus fragments — An average of 5 protons per event is produced.

The best one can do is to identify as the p CEX-partner the one fulfilling the following three conditions:

The most likely p should be that for which the distance from the plane to the primary vertex is minimal.

To reduce the uncertainty of kinematic reconstruction, events characterized by a large loss of \bar{n} energy were discarded:

$$\succ E_k^{\bar{p}} + E_k^p$$

$$\succ | c(p^{\overline{p}} + p^p) \rangle$$

- In 0.015% of the mono-energetic data sample the most likely CEX p was identified.
- This simplified exercise already illustrates the feasibility of the technique to identify \bar{n} 's, allowing to count ~ 0.1% of them, while being able to reconstruct 90% (±0.05%) of the momentum for 0.007% of the sample.

- It was empirically determined that selecting events with dE/dx < 100 MeV improved the kinematic reconstruction.
- The percentage of energy that can be reconstructed increased from 84% to 89%.
- > An improved uncertainty of ± 0.04 .
- The percentage of events in which the CEX proton can be identified, and this condition is satisfied, is 0.011%.
- 20% resolution improvement but there is a 26% yield loss.

- PYTHIA 13 TeV energy distribution between 0 and 10 GeV.
- The corresponding efficiencies were 0.06% for antineutron identification and 0.008% for kinematic information reconstruction.
- A Gaussian fit to the peak of this distribution yields a standard deviation value of 0.08.

- The same dE/dx < 100 MeV condition was used:
- The percentage of energy that can be reconstructed increased from 85% to 89%.
- The fit yielded an improved uncertainty of 0.06.
- > The percentage of events where the most likely CEX proton can be identified and satisfy the dE/dx < 100 MeV condition is 0.006%.

Conclusions

- Simulations to estimate the identification efficiency, and kinematics-reconstruction precision, in \overline{n} detection using the CEX interactions $n + \overline{n} \rightarrow p + \overline{p}$ and $n + \overline{n} \rightarrow p + \overline{p} + \pi^0$, occurring in silicon nuclei of tracking devices in main LHC experiments, are presented.
- Using the ALICE-ITS detector configuration of RUN ´s 1& 2, two GEANT4 simulations were created:
- Simplified GEANT4 simulation:
 - > Develop an \overline{n} identification and kinematics reconstruction protocol.
- PYTHIA 13 TeV \bar{n} energy distribution simulation:
 - Identification efficiency of 0.06% and a 0.008% kinematic reconstruction efficiency.
- For LHC Run 2 pp data, this technique has the potential to identify and reconstruct the kinematics of $4.3 \times 10^8 \bar{n}$'s, illustrating the feasibility of the method.

- The previous protocol was applied to diferent ALICE Monte Carlo productions
 ▶ pb-pb: LHC16g1 run 244918 → 10 events → 2453 n̄
 ▶ pp: LHC15a2a run 114786 → 400 events → 660 n̄
- Due to low statistics only one $p \bar{p}$ pair was selected as produced by CEX interactions.

Background study

- Secondary \bar{p} generated in the material were selected.
- Primary mother particles were studied.
- Most \bar{p} come from other \bar{p} and \bar{n} so that cases were counted in separate histograms.

XIV LASNPA 2024

pb-pb:

- 366 (60%) \bar{p} from \bar{p}
- 200 (33%) $ar{p}$ from $ar{n}$
- 43 (7%) \bar{p} from other particles
 - 2 \overline{p} from $K_S^0 \longrightarrow 1$
 - 7 \overline{p} from $K_L^0 \longrightarrow 0$

pp:

- 88 (52%) \bar{p} from \bar{p}
- 58 (34%) \bar{p} from \bar{n}
- 23 (14%) \bar{p} from other particles
 - $0 \bar{p} \operatorname{from} K_S^0 \longrightarrow 0$
 - 1 \overline{p} from $K_L^0 \longrightarrow 0$
- Secondary particles of these species also produce secondary \bar{p} in their interactions with the material.
- To filter the background coming from charged particles would be possible with ALICE PID detectors.
- Most \bar{p} from neutral kaons can be discarded by implementing a pion veto.

To select CEX events, the following is proposed:

- Use TPC particle identification to select \bar{p} .
- Look for \bar{p} that do not leave a signal in the first 2 layers of the ITS (preliminary).
- Implement a pion veto

 \succ Use TPC particle identification to select pions.

- > Look for pions that do not leave a signal in the first 2 layers of the ITS (preliminary).
- Produced in the same vertex
- If an \bar{p} fullfils the previous conditions and there are no pions generated in the same vertex, the event is counted as a CEX event.
- CEX p selection

 \succ We look for p generated at the same vertex, which do not leave a signal in the first two layers.

Pevious selection criteria are applied

Conclusions and next work

- Due to low statistics none \overline{n} has been identified.
- Increase the statistics.
- Implement a new task using ALICE O² to analyse RUN 3 data.
- F Lugo-Porras et al, Feasibility study to characterize the production of antineutrons in high energy pp collisions through charge exchange interactions, 2024 J. Phys. G: Nucl. Part. Phys. 51 035005, doi: 10.1088/1361-6471/ad1dc1

Fabiola Lugo <u>fabiola.viridiana.lugo@cern.ch</u>