

Ab Initio Theory for **Heavy Nuclei and Beyond Standard Model Physics**

Jason D. Holt TRIUMF, Theory Department LANSPA

June 17, 2024

Arthur B. McDonald **Canadian Astroparticle Physics Research Institute**

Major RIB Facilities Worldwide

Next-generation Rare Isotope Beam facilities \rightarrow unprecedented era of nuclear science

Thousands of new isotopes produced... Q: How does our field capitalize on this opportunity?

RIUMF

Major RIB Facilities Worldwide

Next-generation rare isotope beam facilities \rightarrow unprecedented era of nuclear science

Thousands of new isotopes produced... A: Meaningful interaction with theory (of course!)

What is the exciting physics? Connect to fundamental properties of nature?

Major RIB Facilities Worldwide

Next-generation rare isotope beam facilities \rightarrow unprecedented era of nuclear science

Thousands of new isotopes produced... A: Meaningful interaction with theory (of course!)

F(AIR

RIUMF ISOL + ind.

Role of theory

Motivation: robust predictions (with uncertainties) where no data exists

Interpretation: model independent, connect to underlying forces of nature

Major Underground Facilities Worldwide

Worldwide searches for BSM physics involving neutrinos and dark matter

Ονββ Decay

Dark Matter Direct Detection

Billions invested worldwide

Theory essential for: strategic planning for discovery (motivation) + interpretation

Nuclear Theory for BSM Searches

Exclusion plots for $0\nu\beta\beta$ decay + WIMP/ ν scattering require nuclear theory

% TRIUMF

Nuclear Theory for BSM Searches

Exclusion plots for $0\nu\beta\beta$ decay + WIMP/ ν scattering require nuclear theory

Nuclear matrix element: rate of decay

Structure functions for WIMP/v scattering

Status of 0vββ-Decay Matrix Elements

All calculations to date from extrapolated phenomenological models; large spread in results 61

All models missing essential physics <u>M</u>correlations, single-particle levels, two-body currents Impossible to assign rigorous uncertainties... but, hey, could be worse

Status of 0vββ-**Decay Matrix Elements**

 $m_{\beta\beta} < 61$

All calculations to date from **extrapolated** phenomenological models; large spread in results

Order of magnitude spread \rightarrow

0
uetaeta

 $M^{0
u}$

Order of magnitude more time/material

Status of 0vββ-**Decay Matrix Elements**

 $m_{\beta\beta} < 61$ All calculations to date from **extrapolated** phenomenological models; large spread in results

Order of magnitude spread $\rightarrow M^{0\nu} 0\nu\beta\beta$ Order of magnitude more time/material (i.e., more \$\$\$\$)

Status of 0vββ-Decay Matrix Elements

 $m_{\beta\beta} < 61$

All calculations to date from extrapolated phenomenological models; large spread in results

New approach to NME calculations: $\underset{M}{ab}_{\nu}$ initio theory consistent results when extrapolated

RIUMF

Status of 0vββ-Decay Matrix Elements

 $m_{\beta\beta} < 61$

All calculations to date from extrapolated phenomenological models; large spread in results

New approach to NME calculations: $\underset{M}{ab}_{\nu}$ initio theory consistent results when extrapolated

RIUMF

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified *first-principles* picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

 $H\psi_n = E_n\psi_n$

% TRIUMF

Ab Initio Approach to Nuclear Forces

Aim of modern nuclear theory: develop unified first-principles picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

Chiral Effective Field Theory

Consistent treatment of - 2N, 3N, 4N, ... forces - Electroweak physics

Quantifiable uncertainties

Interactions

1.8/2.0, N2LO_{GO}, N3LO_{LNL} 34 non-implausible

Key Advance Novel Valence-Space Approach **RIUMF**

Polynomially scaling methods tailored for doubly magic, semi-magic chains Valence-space IMSRG: Novel approach for all open-shell nuclei

Ab initio \rightarrow scope of nuclear shell model

Nucleus-Dependent Valence-Space Approach to Nuclear Structure

vv vq qq

 $\langle ij | H(s) | kl \rangle$

Ragnar Stroberg

S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk Phys. Rev. Lett. 118, 032502 – Published 20 January 2017

% TRIUMF

Ab Initio Approach to Nuclear Structure

Aim of modern nuclear theory: develop unified *first-principles* picture of structure and reactions

(Approximately) solve nonrelativistic Schrödinger equation

Methods Exact up to Truncations

Single-particle basis $e_{\max} = 2n + l$

Storage limits of 3N forces $e_1 + e_2 + e_3 \leq E_{3\max}$

Many-body operators: e.g., CCSD(T), IMSRG(2)

% TRIUMF

Ab Initio 2010

2010 Quasi-exact methods for light nuclei (¹⁶O); limited capability for 3N forces

The 5-Year Revolution: 2022

2022 Valence-space approach: essentially all properties of all nuclei

Ν

What can we do with this advance?

TRIUMF Major Questions in Nuclear Structure/Astrophysics

Limits of existence + formation/evolution of magic numbers

Nuclear skins/halos/clusters

Heavy Element Nucleosynthesis

Continuum and nuclear reactions

Infinite matter/Neutron stars

TRIUMF Major Questions in Nuclear Structure/Astrophysics

Heavy Element Nucleosynthesis

Continuum and nuclear reactions

Infinite matter/Neutron stars

Milestone Result

Global Ab Initio Calculations: Limits of Nuclear Existence

101

Editors' Suggestion

TRIUMF Limits of Existence in Medium-Mass Region

Ab initio calculations of ~700 nuclei from He to Fe $^{\circ}$

Input H fit to 2,3,4-body Not biased towards existing data

Physical Review Letters **126**, 022501 (2021)

Known drip lines predicted within uncertainties

Ab initio guide for neutron-rich driplines

Tremendous progress in ab initio reach, largely due to valence-space IMSRG

Calculate essentially *all* properties *all* of nuclei... up to N, Z ~ 50 54 2022 50 Z=50 Key Limitation 46 42 **3NF matrix element storage** Z=40 -----38 $e_1 + e_2 + e_3 \le E_{3\max}$ 34 N=82 30 Ν Z=28 26 22 Z=20 **2010** 18 2013 N=50 14 2016 10 2019 N=28 2022 94

Tremendous progress in ab initio reach, largely due to valence-space IMSRG

Calculate essentially all properties all of nuclei... up to N, Z ~ 50 54 2022 50 Z=50 Key Limitation 46 42 **3NF matrix element storage** Z=40 -----38 $e_1 + e_2 + e_3 \le E_{3\max}$ 34 30 N=82 Ν Z=28 26 22 Z=20 **2010** 18 2013 N=50 14 2016 10 2019 $0\nu\beta\beta$ candidates N=28 2022 SD WIMP/v SI WIMP/v 94

N

Converged Calculations of Heavy Nuclei

Takayuki Miyagi

Converged *ab initio* calculations of heavy nuclei

T. Miyagi, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt Phys. Rev. C **105**, 014302 – Published 3 January 2022 *KEY ADVANCE*

Ab Initio Calculations of Heavy Nuclei

Limited by typical memory/node: $e_1 + e_2 + e_3 \leq E_{3max} = 18$

No convergence in ²⁰⁸Pb (heaviest doubly magic nucleus)

Ab Initio Calculations of Heavy Nuclei

Limited by typical memory/node: $e_1 + e_2 + e_3 \le E_{3\max} = 18$

Clever storage reduces needs: $TB \rightarrow GB$

Ab Initio Calculations of Heavy Nuclei

Limited by typical memory/node: $e_1 + e_2 + e_3 \le E_{3\max} = 18$

Clever storage reduces needs: $TB \rightarrow GB$

% TRIUMF

Milestone Result

Ab Initio Neutron Skin of ²⁰⁸Pb Linked to Neutron Star Properties

Ab Initio Neutron Skin of ²⁰⁸Pb

New Scope of Ab Initio Theory

Rapid progress in ab initio reach, due to valence-space approach... up to...

New Scope of Ab Initio Theory

Rapid progress in ab initio reach, due to valence-space approach... up to... Exciting applications to searches for BSM physics!

% TRIUMF Systematic studies in Sn region: In Isotopes

Comparisons with EDF (hit and miss): overall consistent picture of single-particle nature

VS-IMSRG μ Moments: O \rightarrow Pb

Magnetic moments significantly improved across chart!

% TRIUMF

VS-IMSRG μ Moments: In Isotopes

Revisit discrepancies in In isotopes with addition of 2BC

Systematic agreement with experiment except in mid-shell region (deformation)

Impact of Two-Body Currents on Magnetic Dipole Moments of Nuclei

T. Miyagi, 1,2,3,*,‡ X. Cao, 4,† R. Seutin, 3,1,2,‡ S. Bacca, $^{5,6,\$}$ R. F. Garcia Ruiz, $^{7,\parallel}$ K. Hebeler, $^{1,2,3,\$}$ J. D. Holt, 8,9,** and A. Schwenk, 0,2,3,††

∂TRIUMF

Searches for BSM Physics

Neutrinoless double beta decay

Dark matter direct detection

Superallowed Fermi transitions

Neutrino scattering

Symmetry-violating moments

Atomic theory
Milestone Result

68

Two-Body Currents for Gamow-Teller Transitions and g_A Quenching

Discrepancy between experimental and theoretical β -decay rates resolved from first principles

Beta-Decay "Puzzle": Quenching of g_A

Long-standing problem¹ in weak decays experimental values systematically smaller than theory

¹ papers from the 1970's

Large-Scale Ab Initio GT Transitions

Ab initio survey of large GT matrix elements

$$M_{\rm GT} = g_A \langle f | \mathcal{O}_{\rm GT} | i \rangle$$

2BC: Coupling of weak force to two nucleons

$$\bigvee^{\mathsf{v}} \mathcal{O}_{\mathrm{GT}}^{\mathsf{N}^{\mathrm{e}}} = \mathcal{O}_{\sigma\tau}^{\mathrm{1b}} + \mathcal{O}_{2BC}^{\mathrm{2b}}$$

- Light → heavy mass regions
- Many-body correlations
- Consistent NN+3N forces + 2BC

NUCLEAR PHYSICS

news & views

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

∂TRIUMF

Solution to g_A-Quenching Problem

VS-IMSRG calculations in regions from $O \rightarrow Ca$ (sd) and $Ca \rightarrow Ni$ (pf) shells

Ab initio calculations across the chart explain data with unquenched g_A Next up: explore double-beta decays...

Nature Physics **15**, 428 (2019)

RIUMF

Milestone Result

0vββ Decay for All Major Players: ⁷⁶Ge ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

standard model two-neutrino beta decay

neutrinoless beta decay

Antoine Belley Lotta Jokiniemi Isabella Ginnett **Jack Pitcher**

Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ${
m ^{48}Ca}$, 76 Ge, and 82 Se

A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, and J. D. Holt Phys. Rev. Lett. 126, 042502 – Published 29 January 2021

Ab initio uncertainty quantification of neutrinoless double-beta decay in Ge Phys. Rev. Lett.

A. Belley, J. M. Yao, B. Bally, J. Pitcher, J. Engel, H. Hergert, J. D. Holt, T. Miyagi, T. R. Rodríguez, A. M. Romero, S. R. Stroberg, and X. Zhang

Physical Sciences - Article

Ab initio calculations of neutrinoless $\beta\beta$ decay refine neutrino mass limits

Status: Under Review

Jason Holt, Antoine Belley, Takayuki Miyagi, Steven Stroberg

nature portfolio

∂TRIUMF

(More) Current Status of NMEs

Updated phenomenology w/ short-range contact Cirigliano et al. PRL (2018)

Uncertainty from sign of short-range term

New(er) results increase factors up to 10 uncertainty 😅 can ab initio help?

Ab Initio Strategy: Predict in Heavy Nuclei

Converged NMEs for major players in global searches: ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

RIUMF

Ab Initio Strategy: Predict in Heavy Nuclei

Converged NMEs for major players in global searches: ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

Ab initio results: differences from models; large NMEs strongly disfavored

RIUMF

Ab Initio Strategy: Predict in Heavy Nuclei

Converged NMEs for major players in global searches: ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

Ab initio results: differences from models; large NMEs strongly disfavored

RIUMF

※TRIME ______Ab Inftit Strategy: Lyplore Correlations

⁷⁶Ge: E lore correlations with other observables from 34 interactions

No obvious correlations, except DG

Use machine learning for further insights?

Belley et al., arXiV:2210.05809 Yao, Ginnett, Belley et al., PRC (2022)

% TRIUMF MM-DGP Emulator for IMSRG: Sensitivity Analysis

 $M_L^{0
u}$

Newly developed MM-DGP data-driven emulator

Sensitivity analysis: Connect energies to terms in chiral forces

Ground state energies

Sensitivity consistent with other complementary studies

% TRIUMF MM-DGP Emulator for IMSRG: Sensitivity Analysis

Newly developed MM-DGP data-driven emulator for VS-IMSRG

Sensitivity analysis: Connect $0\nu\beta\beta$ decay to terms in chiral forces

Ground state energies

Highly sensitive to single constant "C1S0" – related to ¹S₀ phase shift

 $M_L^{0
u}$

TRIUMF MM-DGP Emulator: Correlation w/ ¹S₀ Phase Shift

Clear correlation with ¹S₀ phase-shift

Strong correlation emerges for energies > 50MeV

Constrained by part of interaction for the two nucleons when "close" to each other

※TRIME _____Ab Inftid Strategy: Lxplore Correlations

Explore porrelations with other objervables free als stematic analysis (34 interactions)

Few clear correlations, except DGT in Ge

Novel correlation with **measured** ¹S₀ phase shift!

Ab Initio Strategy: Rigorous Uncertainties

Construct predictive posterior distribution for NME in ⁷⁶Ge

Consider all physics contributing to systematic error

 $y = y_{\text{MM-DDGP}} + \epsilon_{\text{emulator}} + \epsilon_{\text{EFT}} + \epsilon_{\text{many-body}} + \epsilon_{\text{operator}}$

∂TRIUMF

Updated Predictions in Heavy Nuclei

Converged NMEs for major players in global searches: ⁷⁶Ge, ¹⁰⁰Mo ¹³⁰Te, ¹³⁶Xe

Independent PPD agrees with previous spread

% TRIUMF Ab Initio Strategy: Impact on Worldwide Searches

Impact for current searches: large matrix elements disfavored, lowers expected rates

Current experimental reach – improved with effects of contact term

Highly unlikely inverted Hierarchy has been probed

Belley et al, arXiv:2307.15156 Nature (under review)

% TRIUMF Ab Initio Strategy: Impact on Ton-Scale Searches

Impact for next-generation searches: sensitivities from LEGEND, SNO+, nEXO, CUPID

Effect of short-range term improves experimental reach... ¹⁰⁰Mo now a major player

Uncertainty reduced by over one order of magnitude!

Belley et al, arXiv:2307.15156 Nature (under review)

CALC Act II Preview: Future of Ab Initio Theory

(Not so) Bold predictions: Five new directions in the next 5 years

Nucleosynthesis Ab initio input for r-process

Nicole Vassh Maude Larivière

Baishan Hu

CALC Act II Preview: Future of Ab Initio Theory

(Not so) Bold predictions: Five new directions in the next 5 years

Nucleosynthesis Ab initio input for r-process

Nicole Vassh Maude Larivière

Baishan Hu

% TRIUMF Next Big Discovery? Origin of Heavy Elements

Most heavy elements created via rapid-neutron capture process (r-process)

The Origin of the Solar System Elements

Theory input is crucial where no data exists

∂TRIUMF

Act II Preview: Future of Ab Initio Theory

(Not so) Bold predictions: Five new direction in the next 5 years

Nucleosynthesis

Ab initio input for r-process

Dark Matter/v Scattering Ab initio structure functions

CKM Unitarity (V_{ud}) Superallowed Fermi

Symmetry Violation P/T-violating moments

Antoine Belley Jose Munoz

The Magic of Molecules: CP Violation

"One of the most compelling mysteries in all of science is how matter came to dominate over antimatter in the universe." – NSAC LRP

CP violation required beyond our current observations

Searches for CP violation ongoing for 50+ yr neutron/atoms - ¹⁹⁹Hg EDM world leader

Effects enhanced in: Heavy systems, Octupole deformed

The Magic of Molecules: CP Violation

Worldwide race to exploit power of **Radioactive Molecules**

Generate internal fields orders of magnitude above lab possibilities

Enhancements in molecules vs atoms >4000!

The Magic of Molecules: CP Violation

Worldwide race to exploit power of **Radioactive Molecules**

Generate internal fields orders of magnitude above lab possibilities

Enhancements in molecules vs atoms >4000! Probe 1000TeV scale in our lifetimes

The Magic of Molecules: CP Violation

Worldwide race to exploit power of **Radioactive Molecules**

Generate internal fields orders of magnitude above lab possibilities

% TRIUMF The Magic of Molecules: Weak Structure of Nuclei

Hadronic P violation – probe the weak structure of the atomic nucleus!

W,Z exchange between nucleons generates **anapole moment**

Experimental tuning enhances > 10¹¹

C. S. Wood et al., Science (80-.). 275, 1759 (1997).

RESEARCH ARTICLE

Measurement of Parity Nonconservation and an Anapole Moment in Cesium

C. S. Wood, S. C. Bennett, D. Cho,* B. P. Masterson,† J. L. Roberts, C. E. Tanner,‡ C. E. Wieman§

TRIUMF The Magic of Molecules: Weak Stru

Hadronic P violation – probe the weak structure of the atomic nucleus! W,Z exchange between $a_{\text{DDH}}^{\text{spin}} = \sqrt{\frac{1}{6}} \sum_{n=1}^{N} \frac{\langle 1/2^{-} ||a_1|| 1/2_n^+ \rangle \langle 1/2_n^+ |V_{\text{DDH}}| 1/2^- \rangle}{E_{\text{g.s.}} - E_n} + \text{c.c.}$

To date, no rigorous nuclear theory

¹³³Cs underway!

The Magic of Molecules: Weak Stru **RIUMF**

physics

RIUMF

Act II Preview: Future of Ab Initio Theory

Gaurav Tenkila Hrishi Patel Vijay Chand

join our revolution! jholt@triumf.ca Sam Leutheusser Jose Padua

Mathieu Bruneault

RIUMF

Act II Preview: Future of Ab Initio Theory

Gaurav Tenkila Hrishi Patel Vijay Chand

join our revolution! jholt@triumf.ca Sam Leutheusser Jose Padua

Mathieu Bruneault

Nuclear Structure/Astrophysics

Development of forces and currents Ab initio to ²⁰⁸Pb: neutron skin, r-process Dripline predictions to medium-masses Evolution of magic numbers:

masses, radii, spectra, EM transitions Multi-shell theory:

Islands of inversion, forbidden decays Nuclear EOS/Neutron star properties Atomic systems

McGill UNIVERSITY *T. Miyagi, B. S. Hu, L. Jokiniemi*

A. Belley, I. Ginnett, C. G. Payne, A. Grimes, J. Pitcher, D. Araujo

M. Bruneault, J. Padua S. Leutheusser

E. Love

K. Evidence, D. Kush G. Tenkila, H. Patel, V. Chand

B. Wong, X. Cao

Present and Future for Ab Initio Theory

Fundamental Symmetries/BSM Physics

EW operators: GT quenching, muon capture 0vββ **decay matrix elements + DGT/ECEC/Dg WIMP-Nucleus scattering for dark matter detection Coherent elastic neutrino-nucleus scattering Superallowed Fermi transitions** Symmetry-violating moments: EDM, anapole...

Work in progress

Higher-order many-body physics: IMSRG(3) Monte Carlo shell model diagonalization Extension to superheavy nuclei

Now clear correlation with **measured** ¹S₀ phase shift!

Two-Body Currents for Gamow-Teller Transitions and g_A Quenching

LETTERS https://doi.org/10.1038/s41567-019-0450-7

nature physics

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

P. Gysbers^{1,2}, G. Hagen^{3,4*}, J. D. Holt¹, G. R. Jansen^{3,5}, T. D. Morris^{3,4,6}, P. Navrátil¹, T. Papenbrock^{3,4}, S. Quaglioni⁷, A. Schwenk^{8,9,10}, S. R. Stroberg^{1,11,12} and K. A. Wendt⁷

Beta-Decay "Puzzle": Quenching of g_A

∂TRIUMF

Long-standing problem in weak decays: experimental values systematically smaller than theory $M_{\rm GT} = g_A \langle f | \mathcal{O}_{\rm GT} | i \rangle \ \mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$ Using $g_A^{\mathrm{eff}} pprox 0.77 imes g_A^{\mathrm{free}}$ agrees with data π T(GT) 1.0 Missing Wavefunction correlationsEFFECTIVE FREE-NUCLEON 8.0 Renormalized VS operator? EXPERIMENT 0.6 Naglected two-body currents? 0.4 Model-space truncations? ۲ 0.2 Large M_{GT} **Explore in ab initio framework** in sd-shel 0.0 .2 0.6 0.8 0.8 0.4 THEORY Brown, Wildenthal (1985)

TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Range of NN+3N forces
- Consistent inclusion of 2BC

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

GT Transitions in Light Nuclei + ¹⁰⁰Sn

NCSM in light nuclei, **CC** calculations of GT transition in ¹⁰⁰Sn from different forces

Large quenching from correlations in ¹⁰⁰Sn

Addition of 2BC further quenches; reduces spread in results

∂TRIUMF

Complete GT Picture: Light to ¹⁰⁰Sn

Ab initio calculations throughout sd and pf shells

Ab initio calculations across the chart explain data with unquenched g_A Including p-shell: q=0.99(21)

*****TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

All operators truncated at two-body level IMSRG(2) **IMSRG(3)** in progress

Step 1: Decouple core

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

Can we achieve accuracy of large-space methods?

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

 $\underbrace{\tilde{\Psi}_n | P\tilde{H}P | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$

 $|\Phi_0\rangle = |^{16}O\rangle$

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$

$$\tilde{H} = e^{\Omega}He^{-\Omega} = H + [\Omega, H] + \frac{1}{2} \left[\Omega, [\Omega, H]\right] + \cdots$$

$$\tilde{\mathcal{O}} = e^{\Omega}\mathcal{O}e^{-\Omega} = \mathcal{O} + [\Omega, \mathcal{O}] + \frac{1}{2} \left[\Omega, [\Omega, \mathcal{O}]\right] + \cdots$$

$$\text{Step 1: Decouple core}$$

$$\text{Step 2: Decouple valence space}$$

$$\text{Step 3: Decouple additional operators}$$

$$\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$$

$$\langle \tilde{\Psi}_n | P\tilde{M}_{0\nu}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\text{Careful benchmarking essential}$$

$\langle P H P angle$	$\langle P H Q\rangle \to 0$
$\langle Q H P angle ightarrow 0$	$\langle Q H Q angle$

TRIUMF Strategy II: "Uncertainties" from Input Forces

"Uncertainty" bands from input NN+3N forces with 5 chiral Hamiltonians

VS-IMSRG: clear convergence for ⁴⁸Ca, ⁷⁶Ge, ⁸²Se

TRIUMF Strategy II: "Uncertainties" from Many-Body Methods

Calculations in ⁴⁸Ca from IM-GCM and CC theory using same interactions

Key development: treatment of deformation in CC and IMSRG

% TRIUMF The Year(s) We Lost Hope: Leading-Order Contact

Proper renormalization requires short-range contact term at leading order

Physics

A Missing Piece in the Neutrinoless Beta-Decay Puzzle

May 16, 2018 • Physics 11, s58

The inclusion of short-range interactions in models of neutrinoless double-beta decay could impact the interpretation of experimental searches for the elusive decay.

Cirigliano et al. PRL (2018)

New paradigm for $0\nu\beta\beta$ decay: include long- and short-range terms

$$M^{0\nu} \to M_L + M_S = M_{\rm GT} + \frac{M_{\rm F}}{g_A^2} + M_{\rm T} + M_{\rm CT}$$

TRIUMF The Year We Regained Hope: Coupling Constant Fit

Match nn \rightarrow pp+ee amplitude from approximate QCD methods: estimate contact term to 30%

Increase of 40% (⁷⁶Ge) to 60% (¹³⁰Te/¹³⁶Xe)

Towards Ab Initio Calculation of ¹⁰⁰Mo

Final competitive candidate in worldwide searches: AMoRE, NEMO 3, CUORE...

full

Highly mid-shell, difficult for SM - access with p-h truncations in KSHELL

RIUMF

Final results with multiple NN+3N forces coming soon!

Strategy IIIb: Sensitivity Analysis

Explore dependence on chiral EFT LECs: requires many samples (as in ²⁰⁸Pb)

Use gaussian processes as an emulator

Multi-Fidelity Gaussian Process: connects few (complicated) high-fidelity data points (eg, full IMSRG) w/ many low-fidelity data points (HF, low e_{max}, etc)

 $k_{inputs} \otimes k_{outputs}$

Difference function fit with Gaussian process: predict HF from LF

When relation between LF and HF is complicated, MFGP fails

Strategy IIIb: Sensitivity Analysis

Explore dependence on chiral EFT LECs: requires many samples (as in ²⁰⁸Pb)

Use gaussian processes as an emulator

Multi-Fidelity Gaussian Process: connects few (complicated) high-fidelity data points (eg, full

IMSRG) w/ many low-fidelity data points (HF, low e_{max}, etc)

Difference function fit with Gaussian process: predict HF from LF

Deep Gaussian Process: Neural network links multiple GP

Include outputs of previous fidelity as new HF point: Improves modeling of difference between LF and HF

Adapted for multi output: Multi-Output Multi-Fidelity Deep Gaussian Process (MM-DGP)

Belley Pitcher et al., in preparation

∂TRIUMF

MM-DGP Emulator: Ground-State Energies

Testing MM-DGP: use delta-full chiral EFT at N2LO

Improved energy predictions with high-fidelity training points

Belley, Pitcher et al. in prep.

∂TRIUMF

MM-DGP Emulator: 0vββ-Decay

Testing MM-DGP: use delta-full chiral EFT at N2LO

Improved energy predictions with high-fidelity training points

Belley, Pitcher et al. in prep.