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• An outline of nuclear many-body calculations
  focus on: large scale shell-model calculations

• Using group theory to understand nuclear wave functions

• Apply to island of inversion nuclei 11Li, 29F
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Modern nuclear structure physics is rigorous,
vigorous, and the launchpoint for many other 
investigations. 
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To detect dark matter, 
one needs nuclear cross-sections.
For neutrino physics, nuclear cross-sections.
For neutrinoless bb decay, need nuclear matrix element
For parity/time-reversal violation (e.g. EDM), 
need nuclear matrix elements….
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The	basic	science	question	is	to	model	detailed	quantum	structure	of	
many-body	systems,	such	the	electronic	structure	of	an	atom,
or	structure	of	an	atomic	nucleus.

To	answer	this,	we	attempt	to	solve	Schrödinger’s	
equation:

€ 

ˆ H Ψ = E Ψ

  

€ 

−
2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j )
i< j
∑

% 

& 
' ' 

( 

) 
* * Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

or



XIV LASNPA, June 17, 2024
13

The	basic	science	question	is	to	model	detailed	quantum	structure	of	
many-body	systems,	such	the	electronic	structure	of	an	atom,
or	structure	of	an	atomic	nucleus.

This	differential	equation	is	too	difficult	to	solve	directly
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so we use the matrix formalism
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€ 

ˆ H Ψ = E Ψ

The matrix formalism:
expand in some (many-body) basis

€ 

Ψ = cα α
α

∑
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Hαβ = α ˆ H β
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Hαβcβ
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•How the basis is represented
“occupation representation” 

  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0
ni 1 2 3 4 5 6 7
α=1 1 0 0 1 1 0 1
α=2 1 0 1 0 0 1 1
α=3 0 1 1 1 0 1 0

| ⟩Ψ =𝑐!| ⟩1110001 + 𝑐"| ⟩1101010 +𝑐# | ⟩0110101 +⋯
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Nuclear Hamiltonian: å å
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In the occupation representation:
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4
1 +++å å+= e

single-particle energies two-body matrix elements
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When running a fermion shell model code (e.g. MFD,
BIGSTICK), one enters the following information:

(1) The single-particle valence space 
(such as sd or pf); assumes  inert core

(2) The many-body model space 
(number of protons and 
neutrons, truncations, etc.)

(3) The interaction: 
single-particle energies 
and 
two-body matrix elements
VJT(ab,cd)

inert core

excluded

valence space}
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| ⟩Ψ =𝑐!| ⟩1110001 + 𝑐"| ⟩1101010 +𝑐# | ⟩0110101 +⋯

Convenient for computers…

…and computers are needed, 
for we need millions or 
billions of such simple 

states..…

Maria Mayer
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€ 

ˆ H Ψ = E Ψ

in the matrix formalism

€ 

Ψ = cα α
α

∑
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Hαβ = α ˆ H β
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Hαβcβ
β

∑ = Ecα

Largest (?) known M-scheme calculation
 12Be, Nmax=12, 35 billion basis states  
(A. McCoy, arXiv:2402.12606 ) Anna McCoy
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The shell-model wave 
functions can contain 

thousands, or millions, or 
billions of components

Normally it’s very hard to 
understand what is going on

Group theory can illuminate how 
similar or different wave functions 

are (even for people who don’t 
know group theory)
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ˆ H Ψ = E Ψ

in the matrix formalism

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα

Largest (?) known M-scheme calculation
 12Be, Nmax=12, 35 billion basis states  
(A. McCoy, arXiv:2402.12606 )

“The purpose of computing 
is 

  insight, not numbers”
--Richard Hamming

That’s a lot of numbers! 
How can we understand them?
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M-scheme dimensions are huge—
into the tens of billions*!

How can we possibly ‘understand’ 
them?

*See Anna McCoy’s talk for a possible 
record, M-scheme dimension ~ 35 billion!We can x-ray the wave 

functions with math!
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Specifically, we use eigenvalues
of Casimir operators to label

subspaces (“irreps”)
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!!Ĉ z ,α = z z ,α
Casimir

The best known Casimir is J2,
which has eigenvalues j(j+1)
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!!Ĉ z ,α = z z ,α
Casimir

Another is Elliott’s representation 
of an SU(3) Casimir:  

ĈSU (3) =
!
Q i
!
Q − 1

4
!
L2

For this 2-body SU(3) Casimir, 
the eigenvalue z = λ2+λμ+μ2+3(λ+μ),

where λ, μ label the irreps
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!!Ĉ z ,α = z z ,α
Casimir

If the Casimir(s) commute(s)
with the Hamiltonian, 

then the Hamiltonian is block-diagonal
in the irreps (irreducible representation)

This is known as dynamical symmetry

!! Ĥ ,Ĉ
⎡⎣ ⎤⎦ =0
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A key idea: A Casimir can be used 
to divide up a Hilbert space into subspaces,
labeled by eigenvalues

even if the Casimir does not commute with
the Hamiltonian
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!!Ĉ z ,α = z z ,α
Casimir

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define
the fraction of the wavefunction in an irrep

This can be done efficiently using a variant of the Lanczos algorithm:
CWJ, PRC 91, 034313 (2015) 
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20Ne using phenomenological USDB force

Model space 
is sd-shell

1p-0f
-------
0d-1s
------
   0p
------
   0s

4He

16O

40Ca
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theoretical decomposition,
we can even show that 
the valence-space 
empirical and ab initio
multi-shell wave functions
have similar structure! 

20Ne
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Backbending in 48Cr
(using GXPF1)

R. Herrera and CWJ, 
Phys. Rev. C 95, 024303 (2017) 
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Backbending in 48Cr
(using GXPF1)

Model space 
is pf-shell

0f –1p
-------
0d-1s
------
   0p
------
   0s

4He

16O

40Ca
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Backbending in 48Cr
(using GXPF1)

R. Herrera and CWJ, 
Phys. Rev. C 95, 024303 (2017) 

Wave functions computed in interacting 
shell model* using GXPF1 interaction;
then SU(3) 2-body Casimir read in and 

decomposition done with Lanczos
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SU(3) Casimir Eigenvalue
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A dynamical symmetry would
 be each wave function 
100% in a single irrep

Akito Arima 
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SU(3) Casimir Eigenvalue
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Clearly dynamical symmetry
doesn’t work here, but we
do have “quasi-dynamical 

symmetry”

A dynamical symmetry would
 be each wave function 
100% in a single irrep

Akito Arima 
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What about 
other groups?

Eugene Wigner
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What about non-
rotational nuclei?

Eugene Wigner
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David Rowe

Even more “quasi-
dynamical 
symmetry”!
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11B
Phenomenological Cohen-Kurath m-scheme dimension:  62

NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV
m-scheme dimension: 20 million

What about 
in the

NCSM?
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11B
Phenomenological Cohen-Kurath m-scheme dimension:  62

NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV
m-scheme dimension: 20 million
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Islands of inversions 
and halo nuclei 

form a challenge to standard 
shell-model pictures
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Figure:
Alex Brown
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Figure:
Alex Brown
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Figure:
Alex Brown

11Li

29F
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CASE STUDY: 11LI
11Li makes for an excellent case study:

• Example of “island of inversion”

• Halo or extended state; large deformation

• Small enough to be tackled numerically

• Testbed for techniques
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One proton outside a 
filled shell 
+ filled neutron shell

One proton outside a 
filled shell 
+ neutron 2p-2h

“island of inversion”

CASE STUDY: 11LI
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CASE STUDY: 11LI
11Li makes for an excellent case study

3/2- g.s. is a halo state and on an island of inversion
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CASE STUDY: 11LI

“normal”

“intruder”

Mark Caprio
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CASE STUDY: 11LI
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CASE STUDY: 11LI

Mark Caprio

Radii are 
notorious 
difficult to 
get right
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CASE STUDY: 11LI

Nmax

“normal”

“intruder”
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CASE STUDY: 11LI

modest deformation

Nmaxthis also agrees well
with experiment

“normal”

“intruder”
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CASE STUDY: 11LI

modest deformation

nearly spherical

Nmax

“normal”

“intruder”
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CASE STUDY: 11LI

modest deformation

nearly spherical

highly deformed

Nmax

“normal”

“intruder”
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CASE STUDY: 11LI

We can use the shell 
model to dissect the 

wavefunctions 
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CASE STUDY: 11LI

“normal”

“intruder”



XIV LASNPA, June 17, 2024 65

CASE STUDY: 11LIPrimarily
valence space
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CASE STUDY: 11LI“intruder” Primarily
2p-2h
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CASE STUDY: 11LI

These are 0hw

These are 2hw

“normal”

“intruder”
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Elliot SU(3)

more deformed

“normal”

“intruder”
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)

more deformed

“normal”

“intruder”
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)

more deformed

“normal” “intruder”
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CASE STUDY: 29F
29F is an analog of 11Li

One proton outside a 
filled shell 
+ filled neutron shell

One proton outside a 
filled shell 
+ neutron 2p-2h

“island of inversion”
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CASE STUDY: 29F
29F is an analog of 11Li

“normal”

“intruder”
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CASE STUDY: 29F

nearly spherical

modest deformation

large deformation

“normal”

“intruder”
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CASE STUDY: 29F
29F is an analog of 11Li

0hw

2hw

“normal”

“normal”

“intruder”

“intruder”
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CASE STUDY: 29F

Nmax = 4 (natural orbitals)

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)

“normal”

“intruder”
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CASE STUDY: 29F

Nmax = 4, natural orbitals

Group-
theoretical
decomposition

SU(4)

“normal”

“intruder”
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So basically we have 
intruders!
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So basically we have 
intruders!

Yikes! Intruders 
are scary!
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Summary
• Today we can perform huge configuration-interaction calculations, 
with billions of basis states—how do we understand all those numbers?

* We can turn to group theory to gain insight—even without
understanding much group theory—and see band structure

• We can also use group decompositions to analyze the island of inversion,
where we can see the states actually look quite ‘simple’

• This suggests—without prior assumption—that group theory can
indeed assist in tackling large problems.

Gracias!
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Additional slides

for curious people
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!!Ĉ z ,α = z z ,α
Casimir

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define
the fraction of the wavefunction in an irrep

Some technical details
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!!Ĉ z ,α = z z ,α
Casimir

!!
F(z)= z ,α Ψ

α
∑

2

For some wavefunction | Ψ >, we define
the fraction of the wavefunction in an irrep

How are those 
decompositions calculated?
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How are those 
decompositions calculated?

Naïve method:  Solve eigenpair problems, e.g.

H | Ψn > = En | Ψn > 

         and

L2 | l; a > = l(l+1) |l; a  > 

…and then take overlaps,    |< l; a | Ψn >|2 

PROBLEM: the spectrum of L2 is highly degenerate (labeled by a ); 
Need to sum over all a not orthogonal to | Ψn > !



XIV LASNPA, June 17, 2024
84

(Cornelius Lanczos)
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A v 4 =   

€ 

β3
 v 3 +α4

 v 4 + β4
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Starting from some initial vector (the “pivot”) v1 , the Lanczos algorithm 
iteratively creates a new basis (a “Krylov space”) in which to 
diagonalize the matrix A.

Eigenvectors are then expressed as a linear combination of the 
“Lanczos vectors”:    |ψ> = c1 |v1> + c2 |v2> + c3 |v3> + …
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There are roughly two 
kinds of shell model 

calculations
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“Phenomenological” calculations work 
in a fixed space, usually with a core

inert core

excluded

valence space}
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“Phenomenological” calculations work 
in a fixed space, usually with a core

inert core

excluded

valence space}

The interactions are fit to many-body 
spectra (e.g., to nuclear spectra 
between oxygen and calcium…)
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Such interactions, however, are limited to 
a specific model space (e.g., the sd shell)

inert core

excluded

valence space}

The interactions are fit to many-body 
spectra (e.g., to nuclear spectra 
between oxygen and calcium…)
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”No-core” shell model (NCSM)
calculations do not have a fixed space
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”No-core” shell model (NCSM)
calculations do not have a fixed space

Instead they take the 
limit as the model space 

is increased
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”No-core” shell model (NCSM)
calculations do not have a fixed space

Instead they take the 
limit as the model space 

is increased
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Nuclear force 
from, e.g., 

EFT breaking
chiral 

symmetry
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−
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) 
* * Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

The interaction is calculated 
from an ab initio theory, such 
as chiral effective field theory


