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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape Coexistence: the basics

What Shape Coexistence (SC) is?

It appears in quantum
systems where eigenstates
with very different density
distribution coexist.
Therefore, the existence of
a geometric interpretation
is implicit.

Quadrupole shape invariants

q2,i =
√

5⟨0+
i |[Q̂ × Q̂](0)|0+

i ⟩,

q3,i = −
√

35
2 ⟨0+

i [Q̂ × Q̂ × Q̂](0)|0+
i ⟩,

q2 = q2, q3 = q3 cos 3 δ.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape Coexistence: the basics

Mean field: example of triple coexistence

The angular momentum projected mean field plus the Generator
Coordinate Method generates different bands with very different
deformation.

2



QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape Coexistence: the basics

Mean field: example of triple coexistence

The angular momentum projected mean field plus the Generator
Coordinate Method generates different bands with very different
deformation.

2



QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape Coexistence: the basics

Shell model. Where to be used
For nuclei near to closed shells,
either for neutrons or for protons,
it can be energetically favorable
to have excitations of 2p-2h,
4p-4h . . . crossing the energy gap.
The np-nh excitations have a
lower excitation energy than
expected due to the correlation
energy: pairing and deformed
correlations.
Restricted to light and
medium-heavy nuclei, at present.

“Sum” of configurations
In heavy nuclei the huge model
space imposes some kind of
truncation: symmetry dictated
truncation.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape Coexistence: the basics

A symmetry guided
approximation: the IBM
Nucleons couple preferably in pairs with
angular momentum either equal to 0
(S) or equal to 2 (D). Those pairs are
then described by means of bosons: s
and d.

s†, d†
m(m = 0, ±1, ±2)

s, dm(m = 0, ±1, ±2)

with
[γlm, γ†

l′m′ ] = δll′ δmm′ ,

[γ†
lm, γ†

l′m′ ] = 0, [γlm, γl′m′ ] = 0

Simplified Hamiltonian

ĤECQF = εn̂d + κQ̂ · Q̂ + κ′L̂ · L̂

Model based on a u(6) spectrum
generator algebra. It is especially
suited for medium and
heavy-mass nuclei.
The number of bosons, N,
corresponds the number of
nucleons pairs, regardeless its
proton, neutron, particle or hole
nature.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape Coexistence: the basics

How IBM with configuration mixing works

A different Hamiltonian, ĤN
ECQF and ĤN+2

ECQF , acts on the regular
[N] and intruder [N+2] sectors, separately.
The offset ∆N+2 and the mixing interaction V̂ N,N+2

mix should be
provided.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Macroscopic phase transitions

Examples of Macroscopic Phase Transitions

Tc

C

T

T

ρ
∗

First order phase transition.
Liquid-gas

Tc

m
C

T

T

Second order phase transition.
Paramagnetic-ferromagnetic
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Macroscopic phase transitions

Inside a Quantum Phase Transition
First order

T >Tc

T <Tc

ρ∗

Φ

Second order

T >Tc

T <Tc

Φ

m

Φ in the Landau theory

Φ = A(T , ...)β4 + B(T , ...)β2 + C(T , ...)β
7
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Quantum Phase Transitions

What a Quantum Phase Transition (QPT) is?

A QPT appears when the
ground state a quantum system
experiences a sudden change in
its structure (order parameter)
when a parameter that affects
the Hamiltonian (control
parameter) slightly changes
around its critical value. This
transitions are assumed to
occurs at zero temperature.

Ĥ = (1 − ξ)Ĥ1 + ξĤ2
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Ĥ = (1 − ξ)Ĥ1 + ξĤ2

0 0.5
Control parameter

0

0.5

1

1.5

O
rd

e
r 

p
a

ra
m

e
te

r
0

50

100

150

200

250

G
S

 e
n

e
rg

y
 (

a
rb

it
ra

ry
 u

n
it
s
)

1st order
Symmetric/Non-symmetric

0 0.5
Control parameter

2nd order 
Symmetric/Non-symmetric

8



QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Regions to be explored

Regions of interest

Pb and Sn regions are ideal regions to study the importance of Shape Coexistence
(SC).
Sm region is the paradigm of Quantum Phase Transition (QPT) region.
Zr region seems to be the ideal region to study the interplay between SC and QPT.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape coexistence indicators

Shape coexistence

Pb isotopes

Three families of states are present.

Hg isotopes

The presence of two families of states is self-evident.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape coexistence indicators

Lead region

Pt isotopes

In this case only a suspicious flat area appears at midshell.

Po isotopes

Here, we hardly reach the midshell and no clear conclusions

can be obtained.
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Shape coexistence indicators

Unperturbed energies
Pt isotopes

The parabolic energy
systematics is clear and the
intruder configuration
becomes the ground state.
JEGR and K. Heyde, NPA 825, 39

(2009).

Hg isotopes

The parabolic energy
systematics is obvious, but the
ground state always presents a
regular nature. JEGR and K. Heyde,

PRC 89 014306 (2014).

Po isotopes

Intruder and regular
configurations are almost
degenerated at midshell. JEGR

and K. Heyde, PRC 92, 034309 (2015).
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Shape coexistence indicators

Radii

Pt isotopes

Hg isotopes Po isotopes

The three cases show a clear departure from the spherical trend.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Quantum Phase Transition indicators

Quantum Phase Transition indicators in the rare-earth region: Type I

Two-neutron separation energy.
Why?
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A

exp

theo

60
Nd

62
Sm

64
Gd

66
Dy

S2n is connected with the first derivative of the binding

energy. Its discontinuity is a hint for the onset a first order

QPT.

E (4+
1 )/E (2+

1 )

E(4+
1 )/E(2+

1 ) can be used as an order parameter and,

therefore, it is a key observable to find where a QPT

develops.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Quantum Phase Transition indicators

Hints for QPTs in lead region?

Two-neutron separation energy
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S
2
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M
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The linear trend of S2n , even at midshell, does not suggest

any sign of QPT.

E (4+
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Pt
Hg

Pb
Po

E(4+
1 )/E(2+

1 ) does not present neither the typical

behaviour of an order parameter. Only Pt isotopes resemble

the expected trend for an order parameter when

approaching midshell from the left.
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Quantum Phase Transition indicators

Something in common?
Rapid change in the structure of certain states, including the ground-state.
Lowering of certain 0+ states.
At the mean-field level several minima coexist.
Onset of deformation: radii and isotopic shift.

Nature Physics, October 2018

“The shape staggering effect manifests characteristic features of a

quantum phase transition: in a given nucleus, different phases ... By

making small changes in the control parameter, which in this case is

the neutron number, the system alternates between the two phases...”
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QPT vs SC Key indicators Sr-Zr Mo-Ru Odd-even Discussion

Experimental evidences

Energy systematics for even-even Zr nuclei
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Experimental evidences

Radii and two-neutron separation energies
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Radii show a shudden
increase at N = 60 for Sr, Y,
Zr, and Nb being almost
smoothed out for Mo.
S2n present a similar trend
that the observed one in
rare-earth region, although,
once more, the discontinuity
is smoothed out for Mo.
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Analysis

Unperturbed energies
Correlation energies (Zr case)
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The intruder configuration becomes theground state for

A = 100 and onwards. JEGR and K. Heyde, PRC 100,

044315 (2019).

Correlation energies (Sr case)
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105, 034341 (2022).
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Analysis

Unperturbed energies

Unperturbed spectra (Zr case)
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Analysis

Wave function

Regular component and energy (Zr case)
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Analysis

Radii and isotope shift
Zr isotopes
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Analysis

Mean-field energy surfaces

98Zr 100Zr 102Zr

Mean field energy surface shows up a rapid evolution from a
spherical to a well deformed shape. 100Zr shows the coexistence of
two minima.
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Hints pointing to a QPT: Type II
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Experimental evidences

Energy systematics of Mo and Ru isotopes
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Crossing or not
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Radii and S2n

Radii and isotope shift
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Mean-field energy surfaces

Mo isotopes
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Mean-field energy surfaces

Ru isotopes
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Global view
Relevant systematics
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Experimental evidences

Nb energy systematics and IBFM-CM results

N. Gavrielov, Phys. Rev. C 108,
014320 (2023); N. Gavrielov, A.
Leviatan, and F. Iachello,
Phys. Rev. C 106, L051304 (2022)
introduced the IBFM with
configuration mixing (IBFM-CM)
in two seminal works.

g9/2 for positive parity and
p1/2, p3/2, and f5/2 for
negative parity.
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The IBFM-CM intrinsic state: the shape of odd-even nuclei
The extension of the IBM-CM intrinsic state

H IBM
CM =

(
EB(N, β, γ) ΩB(β)

ΩB(β) EB(N + 2, β, γ)

)
→

Energy surface and
equilibrium value

of deformation parameters

A. Frank, O. Castaños, P. Van Isacker, and E. Padilla, AIP Conf. Proc. 638, 23 (2002); A. Frank, P. Van Isacker,

and F. Iachello, PRC 73, 061302(R) (2006).

The IBFM-CM formalism for multiple j ’s (preliminary)

H IBFM
CM =

 [
E IBFM(N, β, γ)

]
[Ω(β)]

[Ω(β)]
[
E IBFM(N + 2, β, γ)

] 
E IBFM(N, β, γ)jmj′m′ = δjj′δmm′(EB(N, β, γ) + ϵj) + V BF (N, β, γ)jmj′m′

Ω(β)jmj′m′ = δjj′δmm′ΩB(β)∑
i (2ji + 1) energy surfaces and corresponding equilibrium parameters

(A. Leviatan, PLB 209, 415 (1988); C.E. Alonso, J.M. Arias, F. Iachello, and A. Vitturi, NPA 539, 59 (1992).)
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Nb positive parity: ground state energy surface (preliminary)
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Nb positive parity: first intruder energy surface (preliminary)
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Quantum Phase Transitions in Nb: the onset of deformation

(preliminary)
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(Studied in the case of a single configuration in D. Petrellis, A. Leviatan b, F. Iachello, PLB 705, 379 (2011); Ann.

Phys. 326, 926 (2011).)
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Schematic view

Two minima PRC 69, 054304 (2004)
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Conclusions or rather open questions

Lead region clearly shows up the onset of shape coexistence. Large
mixing and relative energies hinder the onset of a Quantum Phase
Transition.

Rare-earth region is the most clear cut example of critical region,
but without clear influence of shape coexistence, although the
SU3-proxy symmetry supports the presence of neutron particle-hole
excitations (Bonatsos et al).

Are both descriptions compatible? The answer is in Zr region: type
I and type II QPT introduced by Gavrielov, Leviatan and Iachello

Can a Quantum Phase Transition be described in terms of the onset
of intruder configurations?

How things change in odd-even nuclei?

Is shape coexistence always present before a Quantum Phase
Transition sets in, or are they fully disconnected?
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