On the nature of shape coexistence and quantum phase transition phenomena

José-Enrique García-Ramos

Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemática y Computación, Universidad de Huelva, Spain

Supported by MCIN/AEI/10.13039/501100011033 PID2022-136228NB-C21

LASNPA XIV, Facultad de Ciencias, UNAM (México), June 17-21 2024

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Table of	contents				
1 Wha	t Shape Coexistenc	e and Quantum F	Phase Transition	n are	

- Shape Coexistence: the basics
 - Mean field
 - Shell Model
 - Interacting Boson Model
 - Macroscopic phase transitions
 - Quantum Phase Transitions
- 2 Key indicators
 - Shape coexistence indicators
 - Quantum Phase Transition indicators
- 3 The key region: Sr and Zr
 - Experimental evidences
 - Analysis
- 4 Moving into de border: Mo and Ru
 - Experimental evidences
 - Analysis
- 5 What about odd-even cases: Nb
 - Experimental evidences
 - Analysis
 - Discussion and conclusions

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
●0000000	00000000	00000000	000000	00000	00
Shape Coexistence: the	basics				

What Shape Coexistence (SC) is?

It appears in quantum systems where eigenstates with very different density distribution coexist. Therefore, the existence of a geometric interpretation is implicit.

Quadrupole shape invariants

$$\begin{array}{lll} q_{2,i} &=& \sqrt{5} \langle 0_i^+ | [\hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_{3,i} &=& -\sqrt{\frac{35}{2}} \langle 0_i^+ [\hat{Q} \times \hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_2 &=& q^2, q_3 = q^3 \cos 3 \, \delta. \end{array}$$

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
●0000000	00000000	0000000	000000	00000	00
Shape Coexistence: the	basics				

What Shape Coexistence (SC) is?

It appears in quantum systems where eigenstates with very different density distribution coexist. Therefore, the existence of a geometric interpretation is implicit.

Quadrupole shape invariants

$$\begin{array}{lll} q_{2,i} &=& \sqrt{5} \langle 0_i^+ | [\hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_{3,i} &=& -\sqrt{\frac{35}{2}} \langle 0_i^+ [\hat{Q} \times \hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_2 &=& q^2, q_3 = q^3 \cos 3 \, \delta. \end{array}$$

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
o●oooooo		00000000	000000	00000	00
Shape Coexistence: the	basics				

Mean field: example of triple coexistence

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Shape Coexistence	e: the basics				

Mean field: example of triple coexistence

The angular momentum projected mean field plus the Generator Coordinate Method generates different bands with very different deformation.

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Shape Coexistence: the	basics				

Shell model. Where to be used

- For nuclei near to closed shells, either for neutrons or for protons, it can be energetically favorable to have excitations of 2p-2h, 4p-4h ... crossing the energy gap.
- The np-nh excitations have a lower excitation energy than expected due to the correlation energy: pairing and deformed correlations.
- Restricted to light and medium-heavy nuclei, at present.

In heavy nuclei the huge model space imposes some kind of truncation: symmetry dictated truncation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆□>

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
oo●ooooo	00000000	00000000	000000	00000	00
Shape Coexistence: the	basics				

Shell model. Where to be used

- For nuclei near to closed shells, either for neutrons or for protons, it can be energetically favorable to have excitations of 2p-2h, 4p-4h ... crossing the energy gap.
- The np-nh excitations have a lower excitation energy than expected due to the correlation energy: pairing and deformed correlations.
- Restricted to light and medium-heavy nuclei, at present.

In heavy nuclei the huge model space imposes some kind of truncation: symmetry dictated truncation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 ののの

 QPT vs SC
 Key indicators
 Sr-Zr
 Mo-Ru
 Odd-even
 Discussion

 0000000
 0000000
 000000
 000000
 000000
 00

 Shape Coexistence: the basics
 0000000
 000000
 000000
 000000

A symmetry guided approximation: the IBM

Nucleons couple preferably in pairs with angular momentum either equal to 0 (S) or equal to 2 (D). Those pairs are then described by means of bosons: s and d.

$$s^{\dagger}, d_m^{\dagger}(m = 0, \pm 1, \pm 2) \ s, d_m(m = 0, \pm 1, \pm 2)$$

with

$$\begin{split} & [\gamma_{lm},\gamma^{\dagger}_{l'm'}] = \delta_{ll'}\delta_{mm'}, \\ & [\gamma^{\dagger}_{lm},\gamma^{\dagger}_{l'm'}] = 0, [\gamma_{lm},\gamma_{l'm'}] = 0 \end{split}$$

Simplified Hamiltonian

$$\hat{H}_{ECQF} = \varepsilon \hat{n}_d + \kappa \hat{Q} \cdot \hat{Q} + \kappa' \hat{L} \cdot \hat{L}$$

Model based on a u(6) spectrum generator algebra. It is especially suited for medium and heavy-mass nuclei. The number of bosons, N, corresponds the number of nucleons pairs, regardeless its proton, neutron, particle or hole nature.

A different Hamiltonian, \hat{H}_{ECQF}^{N} and \hat{H}_{ECQF}^{N+2} , acts on the regular [N] and intruder [N+2] sectors, separately. The offset Δ^{N+2} and the mixing interaction $\hat{V}_{mix}^{N,N+2}$ should be provided.

A different Hamiltonian, \hat{H}_{ECQF}^{N} and \hat{H}_{ECQF}^{N+2} , acts on the regular [N] and intruder [N+2] sectors, separately. The offset Δ^{N+2} and the mixing interaction $\hat{V}_{mix}^{N,N+2}$ should be provided.

A different Hamiltonian, \hat{H}_{ECQF}^{N} and \hat{H}_{ECQF}^{N+2} , acts on the regular [N] and intruder [N+2] sectors, separately. The offset Δ^{N+2} and the mixing interaction $\hat{V}_{mix}^{N,N+2}$ should be provided.

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
○○○○●○○		0000000	000000	00000	00
Macroscopic phase trai	nsitions				

Examples of Macroscopic Phase Transitions

т

Φ in the Landau theory

$$\Phi = A(T,...)\beta^{4} + B(T,...)\beta^{2} + C(T,...)\beta$$

Φ in the Landau theory

$$\Phi = A(T,...)\beta^4 + B(T,...)\beta^2 + C(T,...)\beta$$

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
○○○○○○●		00000000	000000	00000	00
Quantum Phase Transit	tions				

What a Quantum Phase Transition (QPT) is?

A QPT appears when the ground state a quantum system experiences a sudden change in its structure (order parameter) when a parameter that affects the Hamiltonian (control parameter) slightly changes around its critical value. This transitions are assumed to occurs at zero temperature.

$$\hat{H}=(1-\xi)\hat{H}_1+\xi\hat{H}_2$$

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
○○○○○○●		00000000	000000	00000	00
Quantum Phase Transi	tions				

What a Quantum Phase Transition (QPT) is?

A QPT appears when the ground state a quantum system experiences a sudden change in its structure (order parameter) when a parameter that affects the Hamiltonian (control parameter) slightly changes around its critical value. This transitions are assumed to occurs at zero temperature.

 $\hat{H} = (1-\xi)\hat{H}_1 + \xi\hat{H}_2$

Pb and Sn regions are ideal regions to study the importance of Shape Coexistence (SC). Sm region is the paradigm of Quantum Phase Transition (QPT) region. Zr region seems to be the ideal region to study the interplay between SC and QPT.

QPT vs SC	Key indicators ○●000000	Sr-Zr 00000000	Mo-Ru 000000	Odd-even	Discussion 00
Shape coexistence	indicators				
Shape c	oexistence				

Pb isotopes

Three families of states are present.

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru 000000	Odd-even	Discussion 00
Shape coexistence	indicators				
Shape c	oexistence				

Pb isotopes

Three families of states are present.

Hg isotopes

QPT vs SC	Key indicators ○0●00000	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Shape coexistence	indicators				
Lead reg	gion				

Pt isotopes

In this case only a suspicious flat area appears at midshell.

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion
Shape coexistence	indicators				

Lead region

Pt isotopes

In this case only a suspicious flat area appears at midshell.

- 日本 - 4 日本 - 4 日本 - 4 日本

QPT vs SC 00000000	Key indicators ○○○●○○○○	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Shape coexistence	indicators				
Unpertu	rbed energie	S			

Pt isotopes

The parabolic energy systematics is clear and the intruder configuration becomes the ground state. JEGR and K. Heyde, NPA **825**, 39 (2009).

QPT vs SC		Key indicators ○00●0000	Sr-Zr 00000000	Mo-Ru 000000	Odd-even	Discussion 00
Shape coexistence	e indic	ators				

Unperturbed energies

Pt isotopes

The parabolic energy systematics is clear and the intruder configuration becomes the ground state. JEGR and K. Heyde, NPA **825**, 39 (2009).

The parabolic energy systematics is obvious, but the ground state always presents a regular nature. JEGR and K. Heyde, PRC **89** 014306 (2014).

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000	○00●0000	00000000	000000	00000	00
Shape coexistence inc	licators				

Unperturbed energies

Pt isotopes

The parabolic energy systematics is clear and the intruder configuration becomes the ground state. JEGR and K. Heyde, NPA **825**, 39 (2009).

The parabolic energy systematics is obvious, but the ground state always presents a regular nature. JEGR and K. Heyde, PRC **89** 014306 (2014).

Intruder and regular configurations are almost degenerated at midshell. JEGR and K. Heyde, PRC **92**, 034309 (2015).

∃ ► < ∃ ► = = < < < <</p>

QPT vs SC	Key indicators ○○○○●○○○	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Shape coexistence	indicators				
Radii					

The three cases show a clear departure from the spherical trend.

QPT vs SC 00000000	Key indicators ○000●000	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Shape coexistence	indicators				
Radii					

The three cases show a clear departure from the spherical trend.

QPT vs SC	Key indicators ○○○○●○○○	Sr-Zr 00000000	Mo-Ru 000000	Odd-even	Discussion 00
Shape coexistence	indicators				
Radii					

The three cases show a clear departure from the spherical trend.

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
	○○○○○●○○	00000000	000000	00000	00
Quantum Phase Trans	ition indicators				

Quantum Phase Transition indicators in the rare-earth region: Type I

Two-neutron separation energy. Why?

QPT vs SC	Key indicators ○○○○●○○	Sr-Zr 00000000	Mo-Ru 000000	Odd-even	Discussion 00
Quantum Phase Tra	ansition indicators				

Quantum Phase Transition indicators in the rare-earth region: Type I

Two-neutron separation energy. Why?

 S_{2n} is connected with the first derivative of the binding energy. Its discontinuity is a hint for the onset a first order QPT.

$E(4_1^+)/E(2_1^+)$

 $E(4_1^+)/E(2_1^+)$ can be used as an order parameter and, therefore, it is a key observable to find where a QPT develops.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回 の

QPT vs SC	Key indicators ○○○○○○●○	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00
Quantum Phase T	ransition indicators				
Hints for	r QPTs in lea	ad region?			

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
	○○○○○●○	00000000	000000	00000	00
Quantum Phase Transit	ion indicators				

Hints for QPTs in lead region?

 $E(4_1^+)/E(2_1^+)$ does not present neither the typical behaviour of an order parameter. Only Pt isotopes resemble the expected trend for an order parameter when approaching midshell from the left.

QPT vs SC 00000000	Key indicators ○○○○○○●	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion
Quantum Phase T	ransition indicators				
Somethi	ng in commo	on?			

- Rapid change in the structure of certain states, including the ground-state.
- Lowering of certain 0⁺ states.
- At the mean-field level several minima coexist.
- Onset of deformation: radii and isotopic shift.

Comosthin	in the second second				
Quantum Phase Tra	nsition indicators				
QPT vs SC	Key indicators ○○○○○○●	Sr-Zr 00000000	Mo-Ru 000000	Odd-even 00000	Discussion 00

- Something in common?
 - Rapid change in the structure of certain states, including the ground-state.
 - Lowering of certain 0⁺ states.
 - At the mean-field level several minima coexist.
 - Onset of deformation: radii and isotopic shift.

physics

LETTERS https://doi.org/10.1038/s41567-018-0292-8

Characterization of the shape-staggering effect in mercury nuclei

B.A.Marsh¹, T.Day Goodacre^{12,4}, S.Sels^{10,4}, Y.Tsunoda⁴, B.Andel^{10,4}, A.H.Andreyev^{4,7}, N.A.Althubit¹, D.Anansov⁴, A.E.Barzah⁴, J.Billowe³, K.Blaum⁴, T.E.Coclios^{1,2}, J.C.Cubiss^{0,4}, J.Dobaczewsk⁶, G.J.Faroog Smith²³, D.V.Fedorov^{0,4}, V.M.Fedosseev^{0,5}, K.T.Flanagan³, L.P.Gaffney^{0,10,4}, LGhys³, M.Huyze⁴, S.Kreim⁴, D.Lunney¹, K.M.Lynch¹, W.Mared³, Y.Martinez Palenzuel³, P.L.Molkanov⁴, T.Otsuka^{1,40,20,20,4}, A.Fastore⁴, M.Rosenbusch^{10,40}, R.Kossel¹, S.Rubit⁴, J.Schweikhard⁴, M.D.Sellwestov¹, P.Spagnolett¹⁰, C.Van Beveren³, P.Van Dupen⁴, M.Weinhard⁴, E.Vestraelen⁴, A.Welker⁴, K.Wendt¹⁷, F.Weinholt²⁷, R.N. Wolf, P.Z.advornaya³ and K.Zuber⁴

"The shape staggering effect manifests characteristic features of a quantum phase transition: in a given nucleus, different phases ... By making small changes in the control parameter, which in this case is the neutron number, the system alternates between the two phases..."

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ●

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		●0000000	000000	00000	00
Experimental evidences					

Energy systematics for even-even Zr nuclei

Blue labels for spherical states while red labels for deformed ones.

QPT vs SC	Key indicators	Sr-Zr o●oooooo	Mo-Ru 000000	Odd-even 00000	Discussion 00
Experimental evidences					

Radii and two-neutron separation energies

- Radii show a shudden increase at N = 60 for Sr, Y, Zr, and Nb being almost smoothed out for Mo.
- S_{2n} present a similar trend that the observed one in rare-earth region, although, once more, the *discontinuity* is smoothed out for Mo.

QPT vs SC	Key indicators	Sr-Zr o●oooooo	Mo-Ru 000000	Odd-even 00000	Discussion 00
Experimental evidences					

Radii and two-neutron separation energies

- Radii show a shudden increase at N = 60 for Sr, Y, Zr, and Nb being almost smoothed out for Mo.
- S_{2n} present a similar trend that the observed one in rare-earth region, although, once more, the *discontinuity* is smoothed out for Mo.

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
	0000000	○○●○○○○○	000000	00000	00
Analysis					

Unperturbed energies

Correlation energies (Zr case)

QPT vs SC	Key indicators	Sr-Zr ○○●○○○○○	Mo-Ru 000000	Odd-even 00000	Discussion 00
Analysis					

Unperturbed energies

Correlation energies (Zr case)

Correlation energies (Sr case)

QPT vs SC	Key indicators	Sr-Zr ○○○●○○○○	Mo-Ru 000000	Odd-even	Discussion 00
Analysis					
Unpertu	rbed energies	S			

Intruder states present a parabolic behaviour while regular

ones flat.

글 🖒 🖃 님

QPT vs SC	Key indicators	Sr-Zr ○○○●○○○○	Mo-Ru 000000	Odd-even 00000	Discussion 00
Analysis					

Unperturbed energies

Intruder states present a parabolic behaviour while regular

ones flat.

Unperturbed spectra (Sr case)

QPT vs SC		Key indicators	Sr-Zr ○○○○●○○○	Mo-Ru 000000	Odd-even 00000	Discussion 00
Analysis						
	-					

Wave function

Regular component and energy (Zr case)

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		○○○○○●○○	000000	00000	00
Analysis					

Radii and isotope shift

Zr isotopes

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000	00000000	○○○○○○●○	000000	00000	00
Analysis					

Mean-field energy surfaces

Mean field energy surface shows up a rapid evolution from a spherical to a well deformed shape. $^{100}{\rm Zr}$ shows the coexistence of two minima.

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000	00000000	○○○○○○○●	000000	00000	00
Analysis					

Hints pointing to a QPT: Type II

$E(4_1^+)/E(2_1^+)$ (Zr case)

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
	00000000	00000000	●00000	00000	00
Experimental evidences					

Energy systematics of Mo and Ru isotopes

Blue labels for spherical states while red labels for deformed ones.

QPT vs SC 00000000	Key indicators 00000000	Sr-Zr 00000000	Mo-Ru ○●○○○○	Odd-even 00000	Discussion 00
Analysis					
Crossing	or not				

Мо

Intruder states present a *parabolic* behaviour while regular ones *flat*. E. Maya-Barbecho, S. Baid, J.M. Arias, and JEGR, PRC **108**, 034316 (2023).

글 🛌 글 🔁

Crossing or not

Ru

Intruder states present a *parabolic* behaviour while regular ones *flat*. E. Maya-Barbecho, S. Baid, J.M. Arias, and JEGR, PRC **108**, 034316 (2023)

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru ○○●○○○	Odd-even 00000	Discussion 00
Analysis					

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru ○○○●○○	Odd-even 00000	Discussion 00
Analysis					

Mean-field energy surfaces

Mean field energy surface shows up a rapid evolution from a spherical to a well deformed shape. 102-104 Mo shows the coexistence of two minima.

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru ○○○○●○	Odd-even 00000	Discussion 00
Analysis					

Mean-field energy surfaces

Mean field energy surface shows up a slow evolution from a spherical to a well deformed shape. ¹⁰⁴Ru shows a rather flat minimum.

QPT vs SC 00000000	Key indicators	Sr-Zr 00000000	Mo-Ru ○○○○○●	Odd-even 00000	Discussion 00
Analysis					
Global v	iew				

The different systematics points toward a QPT/Shape coexistence area in Sr, Zr, and Mo, being Kr and Ru at the border of this area.

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000	00000000	00000000	000000	●○○○○	00
Experimental evidences					

Nb energy systematics and IBFM-CM results

N. Gavrielov, Phys. Rev. C 108, 014320 (2023); N. Gavrielov, A. Leviatan, and F. Iachello, Phys. Rev. C 106, L051304 (2022) introduced the IBFM with configuration mixing (IBFM-CM) in two seminal works.

 $g_{9/2}$ for positive parity and $p_{1/2}$, $p_{3/2}$, and $f_{5/2}$ for negative parity.

<ロ> <部> <部> < 환 > < 환 > 문법

0000	0000	00000000	00000000	000000	0000	00
Analys	sis					
Th	e IBFM	-CM intrins	ic state: th	e shape o	of odd-even	nuclei
	The exte	nsion of the IB	M-CM intrins	ic state		
	$H_{CM}^{IBM} =$	$\left(\begin{array}{c} E^{B}(N,\beta,\gamma)\\ \Omega^{B}(\beta) \end{array}\right)$	$\Omega^B(eta) \ E^B(N+2,eta)$	$(eta,\gamma) \left(ig) igstarrow ig$	inergy surface and equilibrium value eformation parame	eters
	A. Frank, O. (and F. lachello,	Castaños, P. Van Isacker, , PRC 73 , 061302(R) (200	and E. Padilla, AIP Co 06).	nf. Proc. 638, 23 (20	02); A. Frank, P. Van Is	acker,
	The IBFI	M-CM formalis	m for multiple	e j's (prelimi	nary)	
	H ^{IB}	${}^{BFM}_{M} = \left(\begin{array}{c} \left[E^{IBF} \right] \right)$	$\left[egin{smallmatrix} M(m{N},eta,\gamma) \end{bmatrix} \ \left[\Omega(eta) ight] ight]$	$\left[\Omega(\beta \right. \right. \\ \left[E^{IBFM}(N +$	$\left(2,\beta,\gamma \right) \right] $	
	E ^{IBFM} (N	$(\beta, \gamma)_{jmj'm'} = \delta_{jmj'm'}$	$_{jj'}\delta_{mm'}(E^B(N,\mu))$	$(\beta, \gamma) + \epsilon_j) + \delta_j$	$\mathcal{V}^{\mathcal{BF}}(\mathcal{N},eta,\gamma)_{\mathit{jmj}}$	' <i>m</i> '

$$\Omega(\beta)_{jmj'm'} = \delta_{jj'}\delta_{mm'}\Omega^B(\beta)$$

 $\sum_{i}(2j_i + 1)$ energy surfaces and corresponding equilibrium parameters (A. Leviatan, PLB 209, 415 (1988); C.E. Alonso, J.M. Arias, F. Iachello, and A. Vitturi, NPA 539, 59 (1992).)

QPT vs SC	Key indicators	Sr-Zr 00000000	Mo-Ru 000000	Odd-even ○o●oo	Discussion 00
Analysis					

Nb positive parity: ground state energy surface (preliminary)

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
	00000000	00000000	000000	○○○●○	00
Analysis					

Nb positive parity: first intruder energy surface (preliminary)

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
	00000000	00000000	000000	○○○○●	00
Analysis					

Quantum Phase Transitions in Nb: the onset of deformation (preliminary)

(Studied in the case of a single configuration in D. Petrellis, A. Leviatan b, F. Iachello, PLB **705**, 379 (2011); Ann. Phys. **326**, 926 (2011).)

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		00000000	000000	00000	●0
Schemat	ic view				

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000	00000000	00000000	000000	00000	○●

Conclusions or rather open questions

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations (Bonatsos et al).
- Are both descriptions compatible? The answer is in Zr region: type I and type II QPT introduced by Gavrielov, Leviatan and lachello
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- How things change in odd-even nuclei?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		00000000	000000	00000	○●
Constant	the				

- Conclusions or rather open questions
 - Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
 - Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations (Bonatsos et al).
 - Are both descriptions compatible? The answer is in Zr region: type I and type II QPT introduced by Gavrielov, Leviatan and lachello
 - Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
 - How things change in odd-even nuclei?
 - Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		00000000	000000	00000	○●
Constant	the				

- Conclusions or rather open questions
 - Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
 - Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations (Bonatsos et al).
 - Are both descriptions compatible? The answer is in Zr region: type I and type II QPT introduced by Gavrielov, Leviatan and Iachello
 - Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
 - How things change in odd-even nuclei?
 - Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		00000000	000000	00000	○●
Constant	the				

- Conclusions or rather open questions
 - Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
 - Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations (Bonatsos et al).
 - Are both descriptions compatible? The answer is in Zr region: type I and type II QPT introduced by Gavrielov, Leviatan and lachello
 - Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
 - How things change in odd-even nuclei?
 - Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		00000000	000000	00000	○●
Constant	the				

- Conclusions or rather open questions
 - Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
 - Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations (Bonatsos et al).
 - Are both descriptions compatible? The answer is in Zr region: type I and type II QPT introduced by Gavrielov, Leviatan and Iachello
 - Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
 - How things change in odd-even nuclei?
 - Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	Sr-Zr	Mo-Ru	Odd-even	Discussion
00000000		00000000	000000	00000	○●
Constant	the				

Conclusions or rather open questions

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations (Bonatsos et al).
- Are both descriptions compatible? The answer is in Zr region: type I and type II QPT introduced by Gavrielov, Leviatan and Iachello
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- How things change in odd-even nuclei?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

Thanks for your attention

Also to my collaborators: Kris Heyde (U. Gent), Esperanza Maya-Barbacho and Pablo Martín-Higueras (U. Huelva), Samira Baid and Pepe Arias (U. Sevilla)

Supported by MCIN/AEI/10.13039/501100011033, project number PID2022-136228NB-C21