

Precision Spectroscopy of Heavy and Superheavy Elements with AETHER

Erich Leistenschneider

Nuclear Science Division, Heavy Element Group

June 2024

GANE TIME!

Only Rule: Do not google it!

What is the quantity represented in the color code of this Periodic Table?

Н																	He
Li	Ве		Lov	vest				High	nest			В	С	Ν	ο	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
κ	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

What is the quantity represented in the color code of this Periodic Table?

н																	На
	Pa		2 00						:0 a\/			Р		N		E	Ne
	Бе		3.08	Jev				24.0	9 ev			₽	<u> </u>		0		ne
Na	Mg									AI	Si	Р	S	СІ	Ar		
κ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

1st Ionization Potential

Least amount of energy needed to remove an electron from a neutral atom

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

What is the IP of Paladium?

н											/	•					Не
Li	Ве		3.89	9 eV				24.5	59 eV			В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Р	S	CI	Ar
κ	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Ni	Pd	Pt
•		
		-
		-
		-
		-
1	I	l

What is the IP of Paladium?

н											/	•					Не
Li	Ве		3.89	9 eV				24.5	59 eV			В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Р	S	CI	Ar
κ	Са	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Modified from www.webelements.com

8.3369(1) eV

		•
		-
		-
		-
		-
		-
1		
Ni	Pd	Pt

What is the quantity represented in the color code of this Periodic Table?

Н																	He
Li	Ве		Lov	vest				Higł	nest			в	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

What is the quantity represented in the color code of this Periodic Table?

Н																	Не
Li	Be		0.01	5 eV				3.61	3 eV			В	С	Ν	0	F	Ne
Na	Mg								AI	Si	Р	S	CI	Ar			
к	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

Electron Affinity

Energy needed to remove an electron from a **negative ion**

Of fundamental importance for **chemistry**: Strongly related to how much an element is prone to form chemical bonds by sharing electrons

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Modified from www.webelements.com

7

What is the EA of Paladium?

н																	He
Li	Ве		0.01	5 eV				3.61	3 eV			В	С	Ν	0	F	Ne
Na	Mg							-				AI	Si	Ρ	S	СІ	Ar
κ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

2.4 2.2 2.0 2.0 1.8 1.6 1.4 1.2 1.0 0.8

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Ι	I	I
		-
		• -
		-
		-
		-
		-
•		-
		-
Ni	Pd	Pt

What is the EA of Paladium?

н																	Не
Li	Be		0.01	5 eV				3.61	3 eV			В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	СІ	Ar
κ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Modified from www.webelements.com

0.5621(1) eV

•		-
-		
-1		
Ni	Pd	Pt

The Electron Affinity Landscape

Negative lons are challenging...

Н																	He
Li	Ве		0.01	5 eV				3.61	3 eV			в	С	Ν	0	F	Ne
Na	Mg									AI	Si	Ρ	S	CI	Ar		
к	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe
Cs	Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

... theoretically ...

Mostly bound by **electron-electron correlations** Therefore they cannot be described through mean-field approaches.

Of fundamental importance for atomic physics: Ideal systems to benchmark atomic theories by their ability to describe many-body dynamics.

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

The Electron Affinity Landscape

Negative lons are challenging...

Н																	He
Li	Ве		0.01	5 eV				3.61	3 eV			в	С	Ν	0	F	Ne
Na	Mg									AI	Si	Ρ	S	CI	Ar		
κ	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Modified from www.webelements.com

... and experimentally!

- Techniques often require macroscopic quantities Not sensitive enough to handle rare elements,
- which mostly affects actinides/superheavies.

The Electron Affinity Landscape

~1/3 of EAs in the Periodic Table are unknown

н													Не				
Li	Be		0.01	5 eV				3.613 eV				в	С	Ν	0	F	Ne
Na	Mg	g										AI	Si	Ρ	S	СІ	Ar
κ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТΙ	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Missing opportunities on:

Radioprotection Nuclear medicine F-block chemistry

Modified from www.webelements.com

Fundamental & applied chemistry:

Fundamental atomic physics:

SHE and Actinides: highly-correlated systems,

relativistic effects very pronounced

The AETHER Project at LBNL

Advanced Electrostatic Trap for Heavy Element Research

- **The sensitivity gap:** how do we plan to solve the problem with Negative Ion Spectroscopy? 1.
- **AETHER's Concept:** our plans for the future infrastructure at LBNL 2.
- **Its status:** how far is our progress on assembly? 3.

Its "side quest": high precision mass spectrometry for nuclear structure 4.

Laser Photodetachment Threshold (LPT) probes the energy to dismantle the negative ion:

Laser Photodetachment Threshold (LPT) probes the energy to dismantle the negative ion:

Laser Photodetachment Threshold (LPT) probes the energy to dismantle the negative ion:

What is the magnitude of the problem?

What is the magnitude of the problem?

Extremely rare species require atom-at-a-time sensitivity!

$$_{n} \approx 1 \qquad \Gamma = \frac{N_{ev}}{N_{ion} \cdot \Phi \cdot \sigma}$$

- at a reasonable target precision above threshold (here we take 0.001 eV, or $~\sigma \approx 1~{\rm Mb}$)
- at a technologically attainable laser power (here we take 1 W)

Increase ion exposure to lasers by confinement

lons are confined in an ion trap

Particles stay exposed to laser for much longer time - requires less particles for same signal

Expected gain of orders of magnitude in sensitivity

... but storage medium must direct neutralized atoms towards detector

Our trap of choice: MR-TOFs

Expertise on their use to increase sensitivity of several laser spectroscopy techniques with

Multiple-Reflection Time-of-Flight devices

Widely used in rare isotope sciences as high precision mass spectrometers for over a decade

Proof-of-Concept at CERN-ISOLDE with MIRACLS

Proof-of-Concept at CERN-ISOLDE with MIRACLS

MIRACLS 3.612720(44) ~3000

~2.0

520 ms 60k "passes"

Berzinsh et al.* 3.612726(27) ~10⁹ ~13.0

few µs single pass

* U. Berzinsh, et al. Phys. Rev. A 51, 231 (1995)

Proof-of-Concept at CERN-ISOLDE with MIRACLS

Proof-of-Concept at CERN-ISOLDE with MIRACLS

24

Detector employed detected about **1.5%** of all

- Detector displaced to avoid direct laser incidence - Detected atoms only at one side of the MR-TOF

- Detector not suitable to detect low-energy atoms

Towards AETHER...

MIRACLS Proof-of-Principle MR-TOF was sent to LBNL to seed the new infrastructure

low energy ion bunches

in place

- Spectroscopy experiments require cold (low emitance),

FIONA mass spectrometer also require such properties! A stopping cell and a cooler & buncher are already

Double charge-exchange with metal vapors:

Double-cell approach:

- Independent optimization of each conversion step
- Full parameter-space flexibility
- Theory support from Dr. Remi Cabrera Trujillo (UNAM) for charge exchange cross sections **Bonus:** indirect determination of EA and atomic radii!

First cases: MIRACLS PoP spectrometer

Transparent Neutral Particle Detector

State-of-the-art detectors are crucial for required sensitivity!

- Large area
- Transparent to laser (graphene impact plate)
- CW-laser friendly low photoelectron emission
- Built at University of Gothemburg
- To be developed:
- Alpha-tagging capabilities

(to be built from the work of E.M. Lykiardopoulou)

Transparent Neutral Particle Detector

State-of-the-art detectors are crucial for required sensitivity!

- Large area
- Transparent to laser (graphene impact plate)
- CW-laser friendly low photoelectron emission
- Built at University of Gothemburg
- To be developed:
- Alpha-tagging capabilities

(to be built from the work of E.M. Lykiardopoulou)

October 2023 MR-TOF arrives from CERN

Ongoing in 2024 Cave 2 cleared from older beamline Seismic provisions ready FIONA equipment to be rearranged

Ongoing in 2024 Coupling beam line under development

MR-TOF ready to be craned into Cave 2

Other modifications ongoing

First ions in the new beam line segment New DAQ comissioned

43

Secured space for a laser lab right above Cave 2

Legacy laser system to serve as a starting point

AETHER's "Side Quest"

MR-TOFs are also superb TOF-MS mass spectrometers

Highly sensitive (up to ~1 count/day) Precise/accurate to measure **nuclear binding energy** (~10s keV/c²) Fast (~50 ms measurement cycle) Highly tolerant to sample contamination

Ideal for nuclear structure investigations of rare, short-lived species!

AETHER's "Side Quest"

MR-TOFs are also superb TOF-MS mass spectrometers

Outlook

1. Electron Affinities are fundamental observables to chemistry and atomic physics.

Provide insights into an element's reactivity and electron-electron correlations. Experimental techniques lack sensitivity to measure EAs of rare elements.

2. AETHER will be a dedicated setup at LBNL to measure the rarest EAs in the Periodic Table.

Atom-at-a-time sensitivity by increased observation time using MIRACLS technique. Benefit from samples uniquely produced by the BGS.

3. AETHER will also perform high precision mass spectrometry for nuclear structure investigations.

Thank you!

Heavy Elements Group at LBNL:

Jacklyn Gates Jennifer Pore Rodney Orford Erich Leistenschneider Marilena Lykiardopoulou John Gooding Mirza Grebo

MIRACLS Team at CERN-ISOLDE: F. Maier (CERN) M. Reponen (JYFL) S. Malbrunot-Ettenauer (TRIUMF) V. Lagaki (CERN)

- E. Ganzke (KIT)
- S. Lechner (CERN)
- P. Plattner (CERN)
- L. Schweikhard (U. Greifswald)
- M. Vilen (CERN)
- M. Au (CERN)

- S. Rothe (CERN) U. Berzinsh (U. Latvia)
- D. Hanstorp (U. Gothenburg)
- D. Leimbach (U. Gothenburg)
- M. Nichols (U. Gothenburg)

J. Warbinek (U. Gothenburg)

Reach with BGS

Mostly limited by efficiency through gas cell and beam conversion efficiency

Toughest scenario would require about 10 counts Or $\sim 1/day$ for a roughly 1 week beamtime

Charge exchange in metal vapors

Cross sections highly depend on EA, atomic radii and other properties of both target and projectile.

Studying the collisional process that leads to the creation of negative ions already provides a wealth of information.

 $B^{+} + T^{0} \rightarrow B^{0} + T^{+} + \Delta E \left(IP_{B} - IP_{T} \right)$ $B^{0} + T^{0} \rightarrow B^{-} + T^{+} + \Delta E \left(EA_{B} - IP_{T} \right)$

Heinemeier & Hvelplund, NIM 148 (1978)

90

Multiple Reflection Time-of-Flight Mass Spectrometry

Resolution scales with *L* - recycle *L* many times

In MR-TOF-MS, flight path length can reach several km in a compact device. Resolution is close to what PTMS offers.

Mass Spectrometry for Nuclear Structure

Opportunities at the BGS: (3) Transuraniums & Superheavy Elements

What could be done with a High-Res MR-TOF?

State-of-the-art: R = 1 M

Why do they matter?

- (One of the) ultimate tests of atomic theory

Very pronounced relativistic effects Highly correlated electron systems Higher order QED effects sizeable

- Support SHE chemistry experiments
- Inspect validity of periods in the Periodic **Table of Elements**

2.6 Astatine (Z=81) Tennessine 2.5 -1.6 Experiment 35 Br EA [eV] 1.5 -2.4 53 2.3 -1.4 85 At 1.8% spread 7% spread 117 Ts 2.2 Steph AND S AND 1.3 Lamach 2020 2010 Milin 200 Seigentu 2016 - orschevely 2015 Fimer 2019 Chang 2010 Milin 2006 Thefelder 2009 12012 11122006

9 F

17

Ċ

Tennessine (Z=117)

Why do they matter?

- (One of the) ultimate tests of atomic theory

Very pronounced relativistic effects Highly correlated electron systems Higher order QED effects sizeable

- Support SHE chemistry experiments
- Inspect validity of periods in the Periodic Table of Elements

Why do they matter?

- (One of the) ultimate tests of atomic theory

Very pronounced relativistic effects Highly correlated electron systems Higher order QED effects sizeable

- Support SHE chemistry experiments
- Inspect validity of periods in the Periodic Table of Elements

Just the observation of Og⁻ would demonstrate a remarkable deviation from PTE patterns!

LPT, one atom at a time

Goal: 100% photodetachment probability with less than 0.1 eV from threshold

Halogen-like (Tennessine)1.0 W continuous laser power

Single pass, 50 µs of laser exposure

^{1.5} mm laser radius, 70% laser-ion overlap, 60% of trapping time inside drift tube

LPT, one atom at a time

1.0 W continuous laser power

10 ms trapping

1.5 mm laser radius, 70% laser-ion overlap, 60% of trapping time inside drift tube

LPT, one atom at a time

^{1.5} mm laser radius, 70% laser-ion overlap, 60% of trapping time inside drift tube

LPT, one atom at a time

