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GUT, but yield measurable cLFV observables.

Just as an example we will show a result from Hernandez-
Tomé—Illana—Masip—López-Castro—Roig'20, which only 

includes a pair of additional heavy (O (TeV)) R's, simple enough 
to get the relevant H-L mixings driving LFV processes.

/e ->  conversion in nuclei has been revived recently 
(Gninenko et al.'01 & '18, Husek—Monsálvez-Pozo—Portolés
21', Ramírez—Roig'22, Fortuna—Marcano—Marín—Roig'23, 

etc.) and will be studied at NA62, EIC, ILC, LHeC...

Solid (Dashed) is current (future) limit:
mu-e (Ti) will lead!!
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(Bars, +h.c., etc. to be understood where approppriate, see additional material for full expressions)



Nuclear physics input to cLFV searches (l->l' conversion in nuclei) Pablo Roig (Cinvestav, Mexico City)

NUCLEAR PHYSICS INPUT (Kitano-Koide-Okada'02,...)
The effective Lagrangian for ->e conversion in nuclei contains dipole operators (->e ) and (e  ) (q  q) structures, 
with =S, P, V, A, T.



Nuclear physics input to cLFV searches (l->l' conversion in nuclei) Pablo Roig (Cinvestav, Mexico City)

NUCLEAR PHYSICS INPUT (Kitano-Koide-Okada'02,...)
The effective Lagrangian for ->e conversion in nuclei contains dipole operators (->e ) and (e  ) (q  q) structures, 
with =S, P, V, A, T.

|i> is 1s of muonic atom, with BE=b & |f> is E eigenstate with E=m-b. Both wf are determined by solving Dirac eq. In 
presence of the E field of the nucleus.



Nuclear physics input to cLFV searches (l->l' conversion in nuclei) Pablo Roig (Cinvestav, Mexico City)

NUCLEAR PHYSICS INPUT (Kitano-Koide-Okada'02,...)
The effective Lagrangian for ->e conversion in nuclei contains dipole operators (->e ) and (e  ) (q  q) structures, 
with =S, P, V, A, T.

|i> is 1s of muonic atom, with BE=b & |f> is E eigenstate with E=m-b. Both wf are determined by solving Dirac eq. In 
presence of the E field of the nucleus.

We are generally most interested in the coherent case <=> |i>Nucleus=|f>Nucleus, which dominates (Feinberg&Weinberg'59)



Nuclear physics input to cLFV searches (l->l' conversion in nuclei) Pablo Roig (Cinvestav, Mexico City)

NUCLEAR PHYSICS INPUT (Kitano-Koide-Okada'02,...)
The effective Lagrangian for ->e conversion in nuclei contains dipole operators (->e ) and (e  ) (q  q) structures, 
with =S, P, V, A, T.

|i> is 1s of muonic atom, with BE=b & |f> is E eigenstate with E=m-b. Both wf are determined by solving Dirac eq. In 
presence of the E field of the nucleus.

We are generally most interested in the coherent case <=> |i>Nucleus=|f>Nucleus, which dominates (Feinberg&Weinberg'59)

Thus, the only non-vanishing relevant m.e. are <N|qq|N> & <N|q0q|N>, which are straightforwardly related to the p/n 
densities in nuclei, (p/n):



Nuclear physics input to cLFV searches (l->l' conversion in nuclei) Pablo Roig (Cinvestav, Mexico City)

NUCLEAR PHYSICS INPUT (Kitano-Koide-Okada'02,...)
The effective Lagrangian for ->e conversion in nuclei contains dipole operators (->e ) and (e  ) (q  q) structures, 
with =S, P, V, A, T.

|i> is 1s of muonic atom, with BE=b & |f> is E eigenstate with E=m-b. Both wf are determined by solving Dirac eq. In 
presence of the E field of the nucleus.

We are generally most interested in the coherent case <=> |i>Nucleus=|f>Nucleus, which dominates (Feinberg&Weinberg'59)

Thus, the only non-vanishing relevant m.e. are <N|qq|N> & <N|q0q|N>, which are straightforwardly related to 
the p/n densities in nuclei, (p/n): <N|qq|N>= Z GS

(q,p)(p)+(A-Z)GS
(q,n)(n),<N|q0q|N>=2Z(p)+(A-Z)(n), for q=u with Z<->A-Z for 

q=d.

GS
(q,p/n) are O(5), Kosmas et al. '93, ...



Nuclear physics input to cLFV searches (l->l' conversion in nuclei) Pablo Roig (Cinvestav, Mexico City)

NUCLEAR PHYSICS INPUT (Kitano-Koide-Okada'02,...)
The effective Lagrangian for ->e conversion in nuclei contains dipole operators (->e ) and (e  ) (q  q) structures, 
with =S, P, V, A, T.

|i> is 1s of muonic atom, with BE=b & |f> is E eigenstate with E=m-b. Both wf are determined by solving Dirac eq. In 
presence of the E field of the nucleus.

We are generally most interested in the coherent case <=> |i>Nucleus=|f>Nucleus, which dominates (Feinberg&Weinberg'59)

Thus, the only non-vanishing relevant m.e. are <N|qq|N> & <N|q0q|N>, which are straightforwardly related to 
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(q,p)(p)+(A-Z)GS
(q,n)(n),<N|q0q|N>=2Z (p)+(A-Z)(n), for q=u with Z<->A-Z for 

q=d.

The conversion probability depends on the effective Lagrangian couplings, GS
(q,p/n) and the overlap integrals: D, S/V(p,n), 

which depend on the /e wf, (p/n)(which determine E in the nucleus, that is also needed) and A&Z. For instance,
wconv/(2GF

2)=|…+gLS
(p)S(p)+…|2+|L<->R|2.

D integrates the nucleus E, while S&V (p/n) times wfs weighted by Z (A-Z).

~
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proton atoms.

For light nuclei, assuming (n)=(p) works at the percent level. For heavy nuclei it is better to use info from -atoms or from 
polarized p scatt. Exps. (the former tend to give 10-20% smaller integrals).

In any case, conversion rates increase as Z for Z <30, are largest for 30<Z<60, and then decrease.

Uncertainties are relatively small for Ti (Z=22), but 
not for Au (Z=79) or Pb (Z=82).
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process can be described in perturbative QCD and the rest depends on the nuclear PDFs (nCTEQ15 project,
incorporated within the ManeParse Mathematica package).
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NUCLEAR PHYSICS INPUT (For e/-> conversions...)

These are DIS experiments with an O(100)GeV e/ beam hits a nucleus (fixed target, Fe/Pb). In this case the parton level 
process can be described in perturbative QCD and the rest depends on the nuclear PDFs (nCTEQ15 project,
incorporated within the ManeParse Mathematica package).

Until a ratio between the conversion and capture rates of ~10-15 is reached (~100 times larger at NA62), these processes 
are not competitive with the bounds coming from BaBar/Belle (which are/will be superseded by Belle-II).
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but we will need better sensitivity than NA62 (by ~ 2 orders of magnitude) so that they are at the level of other cLFV 
processes involving  leptons.

THANK YOU!
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ADDITIONAL 
MATERIAL





EFFECTIVE LAGRANGIAN FOR ->e CONVERSION IN NUCLEI



AMPLITUDE FOR ->e CONVERSION IN NUCLEI



->e CONVERSION RATE (IN NUCLEI)

Couplings redefinition:



->e CONVERSION RATE (IN NUCLEI)

Overlap integrals:



->e CONVERSION RATE (IN NUCLEI)

Wave functions:

me->0 =>
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