

Matching effective models to lattice QCD: few-body and many-body physics

Varese S. Timóteo University of Campinas – UNICAMP, SP, Brasil

XIV LASNPA – Ciudad de México, June 17 – 21, 2024

hein a position that which stand

N :

Collaborators

R. Farias (UFSM)

S. Avancini (UFSC)

W. Tavares (UERJ)

G. Krein (UNESP)

U. van Kolck (IJCLab)

M. Benghi (UFSC)

Acknowledgements

Financial Support

* Lattice QCD predictions

Two-body potentials

Three-body bindings

Outline (Few-Body)

Dedicated to Prof. Manuel Malheiro

Thermo-magnetic NJL coupling *

Thermodynamics and meson properties *

Magnetization *

Outline (Many-Body)

Dedicated to Prof. Manuel Malheiro

Introduction / Motivation (Few-Body)

Lattice QCD

Lüscher formula

S.R.Beane *et al.* [NPLQCD], Phys. Rev. C 88 (2013) 024003

S.R.Beane *et al.* [NPLQCD], Phys. Rev. D 87 (2013) 034506

Verify if lattice QCD predictions for two and three nucleons are supported by effective calculations with separable potentials

> for a review of 3N system, see works from Bochum, Krakow and Ohio groups

Separable 2N potentials

Faddeev equation

(two-nucleons)

(three-nucleons)

Introduction / Motivation (Many-Body)

Verify if lattice QCD predictions for hot and magnetized quark matter are supported by calculations with effective NJL models

> paramagnetic squeezing

LHC / RHIC

Phys. Rev. Lett. 112 (2014) 042301 G. S. Bali, F. Bruckmann, G. Endrődi, and A. Schäfer

Magnetars

neutron stars

hadronic matter

Lattice QCD predictions

$m_{\pi} = 806 \,\,{\rm MeV}$

triplet: singlet:

 $m_N = 1.634 (0) (0) (18) \text{ GeV}$

$a_{21} = 1.82^{+0.14+0.17}_{-0.13-0.12} \text{ fm}, \quad r_{21} = 0.906^{+0.068+0.068}_{-0.075-0.084} \text{ fm}$ $a_{20} = 2.33^{+0.19+0.27}_{-0.17-0.20} \text{ fm}, \quad r_{20} = 1.130^{+0.071+0.059}_{-0.077-0.063} \text{ fm}$

 $a \sim 2r$

S.R.Beane *et al.* [NPLQCD], Phys. Rev. C 88 (2013) 024003

2N separable potentials

$$g(p) = \left(1 + \frac{p^2}{\alpha^2}\right)^2$$

Separable two-nucleon potentials

$$V_2(p',p) = \frac{4\pi}{m} \lambda g(p')g(p)$$

$$\alpha$$
, λ
 $a = 2 r$ (LQCD)
 $a_{s,t}$, $r_{s,t}$ (empirical)

Y. Yamaguchi, Phys. Rev. 95 (1954) 1628

4

2

p (fm⁻¹)

Analytical T-matrix:

$$T_2(p', p; k) = \frac{4\pi}{m} \frac{g(p')g(p)}{\Lambda^{-1}(-ik) - \lambda^{-1}}$$

with

$$\frac{1}{a_2} = \frac{1}{\lambda} + \frac{2}{\pi} \int_0^\infty dl \, g^2(l) \qquad \qquad R(k) = \frac{1}{a_2 k^2} \left(g^{-2}(k) - 1 \right) + \frac{i}{k} - \frac{2}{\pi} g^{-2}(k) \int_0^\infty dl \, \frac{g^2(l)}{l^2 - k^2 - i k^2} dl \, \frac{g^2($$

$$\Lambda^{-1}(-ik) = -\frac{2}{\pi} \int_0^\infty dl \, g^2(l) - ik + R(k)k^2$$

Pole:

 $k = i \kappa_2$

2N T-matrix

$$= \frac{4\pi}{m} \frac{g(p')g(p)}{g^2(k)} \left[-ik - \frac{1}{a_2} + R(k)k^2 \right]^{-1}$$

 $\lambda = \Lambda(\kappa_2)$

iE

Double pole

$$g(p) = \left(1 + \frac{p^2}{\alpha^2}\right)^{-1/2} \qquad \frac{1}{a_2}$$

For
$$\lambda < -\frac{1}{\alpha}$$
 the separable potential with the ab

$$\kappa_2 = \alpha$$

$$\frac{1}{\lambda} = -\frac{\alpha^2}{\kappa_2 + \alpha}$$

pove g(p) generates two poles:

(independent of λ)

2

2N phase-shifts

 $a \sim 2r$

k *r*₂

Spinless three-body system

Jacobi momenta

$$\vec{k}_{ij} = \frac{1}{2} \left(\vec{p}_i - \vec{p}_j \right), \quad \vec{k}_i = \frac{1}{3} \left(2\vec{p}_i - \vec{p}_j - \vec{p}_k \right)$$

Wave function

$$\Psi(p,q) = -\frac{\lambda g(p)}{\kappa_3^2 + p^2 + 3q^2/4} a(q) \qquad \left(\det \left[\delta_{ij} - \mathscr{K}(q_i, q'_j; \kappa_3) \right] = 0 \right)$$

Profile function

Kernel

$$\mathscr{K}(q,q';\kappa_3) = \left[\Lambda^{-1}\left(\sqrt{\kappa_3^2 + \frac{3q^2}{4}}\right) - \lambda^{-1}\right]^{-1} \int_{-1}^{1} dy \frac{g(\pi_2)g(\pi_1)}{\kappa_3^2 + q^2 + {q'}^2 + qq'y}$$

A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49 (1963) 15

V. S. Timóteo, Ann. Phys. 432 (2021) 168573

 $a(q) = \frac{2}{\pi} \int_0^\infty dq' q'^2 \mathscr{K}(q,q';\kappa_3) a(q')$

$$\pi_1 = \sqrt{q^2/4 + {q'}^2 + qq'y}, \quad \pi_2 = \sqrt{q^2 + {q'}^2/4}$$

Three-nucleon system

Wave functions

$$\begin{pmatrix} \Psi_1 \\ \Psi_0 \end{pmatrix} = -\frac{1}{\kappa_3^2 + p^2 + 3q^2/4} \begin{pmatrix} \lambda_1 g_1(p) a(q) \\ \lambda_0 g_0(p) b(q) \end{pmatrix}$$

Profile functions

$$\begin{pmatrix} a(q) \\ b(q) \end{pmatrix} = \frac{1}{2\pi} \int_0^\infty dq' q'^2 \begin{pmatrix} \mathscr{K}_{11}(q,q';\kappa_3) & 3\mathscr{K}_{10}(q,q';\kappa_3) \\ 3\mathscr{K}_{01}(q,q';\kappa_3) & \mathscr{K}_{00}(q,q';\kappa_3) \end{pmatrix} \begin{pmatrix} a(q') \\ b(q') \end{pmatrix}$$

Kernel

$$\mathscr{K}_{ss'}(q,q';\kappa_3) = \left[\Lambda_s^{-1}\left(\sqrt{\kappa_3^2 + 3q^2/4}\right) - \lambda_s^{-1}\right]^{-1} \int_{-1}^{1} dy \, \frac{g_s(\pi_2) \, g_{s'}(\pi_1)}{\kappa_3^2 + p^2 + {q'}^2 + qq'y}\right]^{-1} dy \, \frac{g_s(\pi_2) \, g_{s'}(\pi_1)}{\kappa_3^2 + p^2 + {q'}^2 + qq'y}$$

$$\det \begin{pmatrix} \mathbf{1} - \tilde{\mathscr{K}}_{11}(q, q'; \kappa_3) & -3\tilde{\mathscr{K}}_{10}(q, q'; \kappa_3) \\ -3\tilde{\mathscr{K}}_{01}(q, q'; \kappa_3) & \mathbf{1} - \tilde{\mathscr{K}}_{00}(q, q'; \kappa_3) \end{pmatrix} = 0$$

A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49 (1963) 15

V. S. Timóteo, Ann. Phys. 432 (2021) 168573

Lattice QCD ER parameters, unphysical pion mass

	Square-Root	Yamaguchi	Gaussian	LQCD
B_{21} /MeV	25.3	19.5	18.4	19.5 (3.6) (3.1) (0.2)
B_{20} /MeV	12.7	11.1	10.7	15.9 (2.7) (2.7) (0.2)

Empirical ER parameters, unphysical pion mass

	Square-Root	Yamaguchi	Gaussian	experiment
B_{21}/MeV	13.4949	9.26145	8.69714	2.224575(9)
B_{20}/MeV	5.66342	3.88675	3.64993	

Two-Nucleon Binding Energies

Three-Nucleon Binding Energies

Lattice QCD ER parameters, unphysical pion mass

	Square-Root	Yamaguchi	Gaussian	LQCD
B_3/MeV	56.5	56.6	56.5	53.9 (7.1) (8.0) (0.6)

Empirical ER parameters, physical pion mass

	Square-Root	Yamaguchi	Gaussian	experiment
B_3/MeV	7.496939	8.945608	8.397675	8.481798(2)

QCD complications

Force carriers interact directly (increases the number of possible processes)

Couplings are strong (high order processes are not necessarily less important)

Effective Models

Models are less powerful than theories They are used when the fundamental theory is too complicated Many examples: meson exchange, van der Waals, quark-meson coupling, ... Built to explain part of the features of a complex theory

QCD

Confinement Asymptotic freedom Symmetry breaking Mass generation

NJL

No confinement No asymptotic freedom Symmetry breaking Mass generation

Nambu-Jona-Lasinio Models

SU(2) SU(3) + PL $\mathcal{L} = \bar{q} \left[i \gamma_{\mu} D^{\mu} - \hat{m}_{c} \right] q + \mathcal{L}_{sym} + \mathcal{L}_{det}$

 $\mathcal{L}_{sym} = \frac{G_s}{2} \sum_{i=1}^{8} \left[(\bar{q}\lambda_a q)^2 + (\bar{q}i\gamma_5\lambda_a q)^2 \right]$ a=0

 $\mathcal{L}_{det} = -K \left\{ \det \left[\bar{q}(1 + \gamma_5)q \right] + \det \left[\bar{q}(1 - \gamma_5)q \right] \right\}$

Buballa, Bernard, Klevansky, Ratti, Weise,...

 $\mathcal{L}_{\rm NJL} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\not\!\!D - m \right) \psi + G \left[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau\psi)^2 \right]$

 $+ \mathcal{U}\left(\Phi, \bar{\Phi}; T\right) - \frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu}$

NJL gap equation: simple view

 $\mathcal{L}_{\mathrm{D}} = \bar{\psi} \, i\gamma^{\mu} \partial_{\mu} \, \psi - m \, (\bar{\psi}\psi)$

 $\mathcal{L}_{\rm NJL} = \bar{\psi} \, i\gamma^{\mu} \partial_{\mu} \, \psi \, + \, G \, (\bar{\psi}\psi)^2$

 $\langle \bar{\psi}\psi\rangle \sim \int d^4p \frac{1}{p^2 + m^2} \sim \int^{\Lambda} dp \ p_{\sqrt{p^2 + m^2}}^2$

see review by Weise

- $(i\gamma^{\mu}\partial_{\mu}-m)\psi = 0$
- $(i\gamma^{\mu}\partial_{\mu} + 2G\langle\bar{\psi}\psi\rangle)\psi = 0$

 $m = -2G \langle \bar{\psi}\psi \rangle$

G

Rotational symmetry is broken

Collective Goldstone mode: spin waves

External field H_0 (explicit breaking)

Chiral symmetry is broken

Collective Goldstone mode: pions

Current quark mass m₀ (explicit breaking)

Gap equations at finite temperature and magnetic field

$$M_{u} = m_{u} - 2G\langle \bar{u}u \rangle - 2K\langle \bar{d}d \rangle \langle \bar{s}s \rangle$$
$$M_{d} = m_{d} - 2G\langle \bar{d}d \rangle - 2K\langle \bar{s}s \rangle \langle \bar{u}u \rangle$$
$$M_{s} = m_{s} - 2G\langle \bar{s}s \rangle - 2K\langle \bar{u}u \rangle \langle \bar{d}d \rangle$$

$$\langle \bar{q}q \rangle \rightarrow \langle \bar{q}q \rangle_{\rm vac} + \langle \bar{q}q \rangle_{\rm mag} + \langle \bar{q}q \rangle_{\rm Tmag}$$

Condensates

 $\langle \bar{\psi}_f \psi_f \rangle^{vac} = -\frac{MN_c}{2\pi^2}$

 $\langle \bar{\psi}_f \psi_f \rangle^{mag} = -\frac{M|q_f|BN_c}{2\pi^2} \left[\ln \Gamma(x_f) \right]$

 $\langle \bar{\psi}_f \psi_f \rangle^{Tmag} = \sum^{\infty} \alpha_k$ k = 0

 $\epsilon_A = \left(A \\ E_f = \left(p \\ x_f = \frac{1}{2} \right) \right)$

 $n(E_f) = \frac{1}{1}$

$$\left[\Lambda \epsilon_A - M^2 \ln\left(\frac{\Lambda + \epsilon_A}{M}\right)\right]$$

$$(x_f) - \frac{1}{2}\ln(2\pi) + x_f - \frac{1}{2}(2x_f - 1)\ln(x_f)$$

$$k \frac{M|q_f|BN_c}{2\pi^2} \int_{-\infty}^{+\infty} \mathrm{d}p \, \frac{n(E_f)}{E_f}$$

$$\frac{A^{2} + M^{2}}{p^{2} + M^{2} + 2|q_{f}|Bk}^{1/2} \\
\frac{M^{2}}{|q_{f}|B} \\
\frac{1}{1} \\
+ \exp(E_{f}/T)$$

 $\mu = 0$

Grand canonical potential in MFA

 $\Omega = -T \ln \mathcal{Z}$

$$\Omega(T,\mu) = G_s \sum_{\substack{f=u,d,s}} \langle \bar{q}_f q_f \rangle^2 + 4$$

$$\Omega_{\rm vac}^f = -6 \int_{\Lambda} \frac{d^3 p}{(2\pi)^3} \sqrt{p^2 + M_f^2}$$

$$\Omega_{\text{mag}}^{f} = -\frac{3(|q_f|B)^2}{2\pi^2} \left[\zeta'(-1, x_f) - \frac{1}{2}(x_f^2 - x_f) \ln x_f + \frac{x_f^2}{4} \right]$$

$$\Omega_{\mathbf{T},\mathbf{B}}^{f} = -T\frac{|q_{f}B|}{2\pi}\sum_{k=0}^{\infty}\alpha_{k}\int_{-\infty}^{+\infty}\frac{dp_{z}}{2\pi}$$

$$\mathcal{Z} = Tr \ e^{-\beta(H-\mu N)}$$

 $4K\left\langle \bar{q}_{u}q_{u}\right\rangle \left\langle \bar{q}_{d}q_{d}\right\rangle \left\langle \bar{q}_{s}q_{s}\right\rangle$

$$+\mathcal{U}(\Phi,\bar{\Phi},T) + \sum_{f=u,d,s} \left(\Omega_{\text{vac}}^{f} + \Omega_{\text{med}}^{f} + \Omega_{\text{mag}}^{f}\right)$$

$$\zeta'(-1, x_f) = \frac{\mathrm{d}\zeta(z, x_f)}{\mathrm{d}z}\Big|_{z=-1}$$

 $\frac{z}{z} \ln \{1 + \exp[-(E_f/T)]\}$

 $\mu = 0$

Thermodynamics

$\Omega = -T \ln Z$

$p = -\Omega$

 $\Delta = \epsilon - 3 p$

$\mathcal{Z} = Tr \ e^{-\beta(H-\mu N)}$

$\epsilon = \Omega + T \ s + \mu \ \rho$

 $s = -\frac{\partial \Omega}{\partial T}$

 $c_v = T \frac{dS}{dT}$

 $v_s^2 = \frac{dp}{d\epsilon}$

 $\mathcal{M} = -\frac{\partial \Omega}{\partial B}$

Some lattice QCD results

JHEP¹08 (2014) ul+77/dr

T[MeV]

Thermo-magnetic coupling: prototype

 $\alpha_s \sim \overline{b \ln(eB/\Lambda_{\rm QCD}^2)}$

 $= eB >> \Lambda_{\rm QCD}^2$

T = 0

 $G(B) = \frac{G_0}{1 + \alpha \ln \left(1 + \beta \frac{eB}{\Lambda_{QCD}^2}\right)}$ T > 0 $G(B,T) = G(B) \left(1 - \gamma \frac{|eB|}{\Lambda_{QCD}^2} \frac{T}{\Lambda_{QCD}}\right)$ Farias, Gomes, Krein, Pinto

Phys. Rev. C 90, 025203 (2014)

Matching the NJL model to lattice QCD

Build a thermo-magnetic coupling for the NJL model from lattice QCD results

For given values of T and eB:

- start with an initial attempt for G(T, eB)
- for this G, make an initial guess for M
- solve the gap equation
- with M, compute the condensate averages
- repeat until the best G(T, eB) is found

- compare to lattice QCD result for that T and eB

Thermo-magnetic dependent coupling

Eur. Phys. J. A 53 (2017) 101

G(eB, T)

Thermal Susceptibilities and Specific Heat

G

Eur. Phys. J. A 53 (2017) 101

G(eB, T)

G

Eur. Phys. J. A 53 (2017) 101

0

50

Pressure and Entropy

G(eB, T)

 $eB=0.6 \text{ GeV}^2$

150 200

T[MeV]

100

 $eB=0.8~{\rm GeV}^2$

250 300

Sound Velocity and Interaction Measure

G

G(eB, T)

Eur. Phys. J. A 53 (2017) 101

Pseudo-critical temperature

Eur. Phys. J. A 53 (2017) 101

Magnetization

 $\mathcal{M} = -\frac{\partial \Omega}{\partial B}\Big|_{\{\phi_f\},\rho} - \frac{\partial \Omega}{\partial \phi_f} \frac{\partial \phi_f}{\partial B} - \frac{\partial \Omega}{\partial \rho} \frac{\partial \rho}{\partial B}$

 $\frac{\partial \Omega}{\partial \phi_f} = 0$

 $\mathcal{M} = \sum_{f} \left(\frac{\partial P_f^{\text{mag}}}{\partial B} + \frac{\partial P_f^{\text{Tmag}}}{\partial B} \right)$

 $\frac{\partial \Omega}{\partial \rho} = 0$

 $P = -\Omega$

Meson properties under strong magnetic fields T = 0

$$(ig_{\pi_0 qq})^2 i D_{\pi_0}(k^2) = \frac{2iG}{1 - 2G\Pi_{\rm PS}(k^2)}$$

$$\mathcal{L}_{\pi qq} = i g_{\pi qq} \bar{\psi} \gamma_5 \vec{\tau} \cdot \vec{\pi} \psi$$

$$\overline{\psi} \gamma_5 \overline{\tau} \cdot \overline{\pi} \psi \qquad S_q(x, x') = e^{i\Phi_q(x, x')} \sum_{n=0}^{\infty} S_{q,n}(x - x') , \ q = u, d$$

$$\frac{1}{i} \Pi_{\text{PS}}(k^2) = -\sum_{q=u,d} \int \frac{d^4p}{(2\pi)^4} Tr \left[i\gamma_5 iS_q \left(p + \frac{k}{2} \right) i\gamma_5 iS_q \left(p - \frac{k}{2} \right) \right] \qquad \begin{array}{l} k_{\parallel} = k_0 - k_3 \\ g_n = 2 - \delta_{n0} \end{array}$$

$$\frac{1}{i}\Pi_{\rm PS}(k_{\|}^2) = -i\left(\frac{M-m}{2MG}\right) - \sum_{q=u,d}\beta_q N_c \frac{k_{\|}^2}{(2\pi)^3} \sum_{n=0}^{\infty} g_n I_{q,n}(k_{\|}^2)$$

$$1 - 2G \Pi_{\rm PS}(k^2)|_{k^2 = m_{\pi_0}^2} = 0$$

$$m_{\pi_0}^2(B) = -\frac{m}{M(B)} \frac{1}{4iGN_cN_fI(m_{\pi_0}^2, B)}$$

$$D_{\pi_0}(k^2) = \frac{1}{k^2 - m_{\pi_0}^2}$$

$$I_{q,n}(k_{\parallel}^2) = \int d^2 p_{\parallel} \frac{1}{[p_{\parallel}^2 - M^2 - 2\beta_q n][(p+k)_{\parallel}^2 - M^2 - 2\beta_q n]}$$

$$I(k_{\parallel}^{2}, B) = I_{vac}(k_{\parallel}^{2}) + I(k_{\parallel}^{2}, B)$$
$$I(m_{\pi_{0}}^{2}, B) = \frac{1}{4(2\pi)^{3}} \sum_{q=u,d} \beta_{q} \sum_{n=0}^{\infty} g_{n}I_{q,n}(k_{\parallel}^{2} = m_{\pi}^{2})$$

Phys. Rev. D 93 (2016) 014010 Physics Letters B 767 (2017) 247-252

Simple G(eB) at T = 0

- interpolation to generate a larger set - fit of the larger set to a shifted gaussian

 $G(eB) = \alpha$

- fit to lattice QCD condensates (few values of eB)

$$z + \beta e^{-\gamma (eB)^2}$$

- $\alpha = 1.44373 \text{ GeV}^{-2}, \ \beta = 3.06 \text{ GeV}^{-2} \text{ and } \gamma = 1.31 \text{ GeV}^{-4}$
 - $G(0) = \alpha + \beta$
 - Physics Letters B 767 (2017) 247-252

Condensates at T = 0

Physics Letters B 767

π_0 and σ masses at T=0

Oburies 1 atters B 767 (2017) 247-252

Renormalized Magnetization

SU(3)

Eur. Phys. J. A (2021) 57:278

$$\mathcal{M}^{r} \cdot eB = \mathcal{M} \cdot eB - (eB)^{2} \lim_{eB \to 0} \left. \frac{\mathcal{M} \cdot eB}{(eB)^{2}} \right|_{T=0}$$

0.6

- The results with unphysical masses are close to the lattice QCD calculations *
- * The results with physical masses are close to the experimental values
- Our calculations with effective potentials support the lattice QCD results *

* NJL models with fixed coupling fails to describe lattice QCD calculations

* Thermo-magnetic coupling seems to be adequate to improve NJL results

Many-Body

Thermodynamic quantities are all affected by the variation of the coupling *

Sign of magnetization changes when $G \rightarrow G(eB, T)$ *

Pion mass at T = 0 matches lattice QCD calculations with G(eB)*

Final Remarks

Few-Body

