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Introduction / Motivation (Few-Body)

Verify if lattice QCD predictions for two and three nucleons 

are supported by effective calculations with separable potentials

Separable 2N potentials

S.R.Beane et al. [NPLQCD], Phys. Rev. C 88 (2013) 024003

S.R.Beane et al. [NPLQCD], Phys. Rev. D 87 (2013) 034506

(two-nucleons)

(three-nucleons)

Faddeev equation

Lattice QCD

Lüscher formula

for a review of 3N system, see works 
from Bochum, Krakow and Ohio groups 



Introduction / Motivation (Many-Body)

LHC / RHIC Magnetars

Phys. Rev. Lett. 112 (2014) 042301

Paramagnet ic squeezing of QCD mat t er

G. S. Bali,1, 2 F. Bruckmann,1 G. Endrődi,1, * and A. Schäfer1
1 Insti tute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg, Germany

2Department of Theoretical Physics, Tata Insti tute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.

We determine the magnet izat ion of Quantum Chromodynamics (QCD) for several temperatures
around and above the t ransit ion between the hadronic and the quark-gluon phases of st rongly
interact ing mat ter. We obtain a paramagnet ic response that increases in st rength with the tem-
perature. We argue that due to this paramagnet ism, chunks of quark-gluon plasma produced in
non-cent ral heavy ion collisions should become elongated along the direct ion of the magnet ic eld.
This anisot ropy will then cont ribute to the ellipt ic ow 푣2 observed in such collisions, in addit ion to
the pressure gradient that is usually taken into account . We present a simple est imate for the mag-
nitude of this new e ect and a rough comparison to the e ect due to the init ial collision geomet ry.
We conclude that the paramagnet ic e ect might have a signi cant impact on the value of 푣2.

1. I N T RODUCT ION

In heavy-ion collisions (HICs) st rongly interact ing
mat ter is exposed to ext reme condit ions to probe the
QCD phase diagram and to reveal propert ies of the
quark-gluon plasma (QGP). It is however not st raight -
forward to relate characterist ics of the so produced QCD
medium to experimental signatures. One of the most
prominent experimental observables is the ellipt ic flow
푣2 [1], which marks the onset of hydrodynamic behavior
at very early t imes (hydroizat ion). Connect ing 푣2 to the
centrality of HICs in a model-independent way is crucial
to ext ract the rat io of viscosity to ent ropy density 휂/푠of
the QGP [2].
Another important aspect of the init ial phase of HICs

is the generat ion of ext remely st rong magnet ic fields [3–
6]. We show that these magnet ic fields may have an
impact on푣2 and, therefore, should be taken into account
in a quant itat ive analysis of the ellipt ic flow. Irrespect ive
of this observable e!ect , the response to magnet ic fields
is a fundamental property of QCD matter which deserves
to be studied in its own right . Other applicat ions of our
findings include models of neutron stars (magnetars [7])
and primordial magnet ic fields in the early universe (see,
e.g., Ref. [8]).
All informat ion about the response of QCD to mag-

net ic fields can be deduced from the free energy density
푓= −푇/푉 · log풵, given in terms of the part it ion func-
t ion 풵. Applying a constant external magnet ic field 퐵
induces a nonzero magnet izat ion

푀 = − 휕푓
휕(푒퐵) , (1)

which we normalized by the elementary charge (푒> 0).
The sign of 푀 determines whether the QCD vacuum as
a medium exhibits a paramagnet ic response (푀 > 0)
or a diamagnet ic one (푀 < 0) [9]. In the former case
themagnet izat ion is aligned parallel to theexternal field,

* Corresponding author, email: gergely.endrodi@physik.uni-r.de

FIG. 1: Typical magnet ic eld pro le in the t ransverse plane
of a non-cent ral heavy-ion collision (darker colors represent
st ronger elds). The paramagnet ic squeezing exerts the force
indicated by the red arrows. Asa result , theQGP iselongated
in the푦-direct ion.

while in the lat ter case it is ant iparallel. One clue about
the sign of 푀 came from a low-energy e!ect ive model
of QCD — the hadron resonance gas (HRG) model —
which predicted the magnet izat ion to be posit ive and
thus the QCD vacuum to be a paramagnet [10]. Sev-
eral methods were since developed to study the problem
on the lat t ice [11–14]. All of the results agree qualita-
t ively, confirming the finding of the HRG model that the
QCD vacuum is paramagnet ic.
In the present let ter we extend the lat t ice measure-

ments of Ref. [11] to cover several temperatures in and
above the t ransit ion region. We do not yet provide fi-
nal, cont inuum extrapolated values for the magnet iza-
t ion, but instead aim at a first est imate of the e!ect of
QCD paramagnet ism on thephenomenology of heavy ion
collisions. To thisend, let usconsider a chunk of theQGP
exposed to a non-uniform magnet ic field. Owing to the
posit ivity of 푀 , the free energy is minimized when the
medium is located in regions where 퐵 is maximal. The
minimizat ion of 푓thus results in a net force, which st rives
to change the shape of the medium. For a non-central
HIC (with 푧̂being the direct ion of the collision axis, 푥̂-푧̂
the react ion plane and 푦̂ the direct ion of the magnet ic
field induced by the beams), this force will elongate the
dist ribut ion of QCD matter along the 푦-direct ion, see
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Lattice QCD predictions

4. Three-nucleon system

The wavefunction for the three-nucleon system is antisymmetric under permutations of any of the three pairs of
nucleons. Both total spin S and total isospin T may be either 1/2 or 3/2. Here we concentrate on the triton, which
consists of one proton and two neutrons, with T = 1/2 and S = 1/2. In this case, there are contributions from two
channels, a nucleon pair being in a spin-singlet state s = 0 or in the triplet state s = 1. We take each channel to
be governed by an S-wave separable potential of the type discussed in Sec. 2 but allow for different parameters in
each two-nucleon channel, which we label with a subscript 0 or 1 according to its spin. Again, we expect ultraviolet
convergence without three-nucleon forces, in contrast to the situation in Pionless EFT with standard power counting
[52]. The wavefunction can then be written in terms of two components [48]

✓
y1
y0

◆
=� 1

k2
3 + p2 +3q2/4

✓
l1 g1(p)a(q)
l0 g0(p)b(q)

◆
. (27)

The two profile functions obey a set of coupled integral equations,
✓

a(q)
b(q)

◆
=

1
2p

Z •

0
dq

0
q
02
✓

K11(q,q0;k3) 3K10(q,q0;k3)
3K01(q,q0;k3) K00(q,q0;k3)

◆✓
a(q0)
b(q0)

◆
, (28)

where

Kss0(q,q
0;k3) =


L�1

s

✓q
k2

3 +3q2/4
◆
�l�1

s

��1 Z 1

�1
dy

gs(p2)gs0(p1)

k2
3 + p2 +q02 +qq0y

. (29)

Again, the system described in Eq. (28) has a non-trivial solution provided

det
✓

1� ¯K11(q,q0;k3) �3 ¯K10(q,q0;k3)
�3 ¯K01(q,q0;k3) 1� ¯K00(q,q0;k3)

◆
= 0, (30)

where ¯Kss0(q,q
0;k3) = (1/2p)Kss0(q,q

0;k3)q
02

dq
0, and the profile functions are obtained from the eigenvectors of the

block matrix. The value of k3 for which the determinant is zero corresponds to the triton binding energy B = k2
3/mN ,

where mN is the nucleon mass.
In the following, we consider the case when there are two independent dimensionful parameters because a2s = 2r2s

for both s = 0,1. We typically find various bound states at the same values of the ratio r21/r20. We postpone a more
comprehensive analysis of the structure of these states to a future publication. In the following, we consider two cases
of interest to nuclear physics. We compare our results for the three-nucleon system with those obtained in LQCD at
an unphysical pion mass mp ' 806 MeV and with experiment at physical pion mass.

5. Lattice QCD predictions for two and three nucleons

At the quark masses for which mp ' 806 MeV, the nucleon mass is mN = 1.634(0)(0)(18) GeV, with errors
corresponding to statistics, fitting systematics, and lattice spacing [2]. The two-nucleon ERE parameters are found [8]
to be somewhat large on the scale set by the pion Compton wavelength m

�1
p ' 0.25 fm:

a21 = 1.82+0.14+0.17
�0.13�0.12 fm, r21 = 0.906+0.068+0.068

�0.075�0.084 fm, (31)

a20 = 2.33+0.19+0.27
�0.17�0.20 fm, r20 = 1.130+0.071+0.059

�0.077�0.063 fm, (32)

suggesting that a Pionless EFT with power counting based on r2s = O(¿�1) should hold. (The results from Ref. [9]
are consistent within errors.)

The ERE parameters satisfy a2s = 2r2s > 0 within errors. To the extent that higher ERE parameters are small [8],
we expect that for each two-nucleon S-wave channel there are two near-degenerate poles in the positive imaginary
axis, approximately described by the square-root potential. The two-nucleon binding energies obtained from these
ERE parameter values are given in Table 3 for the three separable potentials we consider here. There is a ⇡ 25%
spread in predictions, which fall into the errors of the direct LQCD determination [2], also shown in the table. Table
4 gives the values of the corresponding shape parameters, which lie well inside the range of values from Ref. [8]. For

7

mπ = 806 MeV mN = 1.634 (0) (0) (18) GeV

a ∼ 2 r

S.R.Beane et al. [NPLQCD], Phys. Rev. C 88 (2013) 024003

triplet:

singlet:



2N separable potentials

Separable two-nucleon potentials

A common characteristic of these LQCD calculations, which might survive improvements, is a positive effective
range that is large on the scale of m

�1
p , which presumably determines the range of the interaction. It is not difficult to

incorporate a large and negative effective range in Pionless EFT, which then excludes redundant poles [19, 20]. As we
discuss in this paper, allowing for a large and positive effective range with negligible shape parameters — and thus
two shallow two-body poles — demands a reformulation of Pionless EFT: a resummation of derivative interactions
and thus a nonlocal potential. In this case, only one A = 2 bound state exists; the other pole (if not degenerate) is
redundant in the sense of not being associated with a normalizable wavefunction.

When two shallow S-wave poles coalesce into a double pole on the positive imaginary axis of the complex-
momentum plane, the theory at LO has a single parameter, which we can take to be the effective range, or alternatively
the two-body binding energy B2. Contrary to the standard pionless power counting, the new LO potential ensures
many-body systems have well-defined ground states without a three-body force. The LO ratios 2BA/AB2 ⌘ VA are
then universal numbers, independent of the details of the short-range potential. Here we compute V3 in the case of a
single S-wave two-body channel.

When two S-wave channels (labeled 0 and 1) are present, as in the two-nucleon system, the VA are functions only
of the ratio of two-body binding energies, B21/B20. For nucleons, we entertain the possibility that the pole structure is
in some sense close to the double-pole situation found in Refs. [8, 9] and ask what its implications are for the three-
nucleon system from an EFT perspective. At unphysical pion mass, we predict the three-nucleon binding energy and
compare it with the result from Ref. [2].

The same LO potential, with a different constraint among two-body scattering lengths and effective ranges, has
been arrived at by quite different considerations in Ref. [21] and applied to the two-nucleon system at physical pion
mass to next-to-leading order (NLO). Similar approaches for nuclear systems with explicit pion fields [22–25] and for
halo nuclei with P-wave nucleon-core interactions [26] have also been explored recently. We therefore consider here
also the triton binding energy in the real world. At physical pion mass, a

(3
S1)

2 /r
(3

S1)
2 ' 3.2 and a

(1
S0)

2 /r
(1

S0)
2 ' �8.8.

These numbers are not particularly close to the value of 2 corresponding to the double pole. However, the relatively
large scattering lengths are due to fine tuning and hopefully can be corrected at higher orders.

This letter is organized as follows. In Sec. 2 we present the two-nucleon properties of our separable potential in
LO; we also introduce two other separable potentials that we use subsequently to gauge the sensitivity to higher ERE
parameters. Results for the system of three spinless particles are presented in Sec. 3. The generalization to three
nucleons in the triton channel is given in Sec. 4. It is applied to unphysical mp ' 806 MeV and physical mp ' 140
MeV in Secs. 5 and 6, respectively. Conclusions can be found in Sec. 7.

2. Two-body system

We are concerned with two particles of mass m � R
�1 which form S-wave bound states with size ¿�1 � R, where

R is the range of the underlying interaction. The standard power counting of Pionless EFT [3] is designed to account
for a single T -matrix pole, which can be such a shallow bound or virtual state. It demands a single, nonderivative
contact interaction at LO, which scales as ¿�1 [27–30]. Two shallow S-wave poles can be accounted for with an
additional two-derivative interaction at LO, which scales as ¿�3 [19, 20]. Renormalization requires r2  0 [31, 32]
and, in the various possible pole configurations that result, at most one pole is on the positive imaginary momentum
axis and corresponds to a bound state [19, 20]. In both cases, the EFT is local in the sense that at any order only a
finite number of derivatives enter interactions at any given order.

Unless we allow for energy-dependent interactions, two shallow S-wave poles on the positive imaginary axis
demand LO nonlocality in the sense of an infinite number of contact interactions. The origin of this strong nonlocality
is nebulous at best. It appears to go against the principles of EFT where the only nonlocal forces are produced by the
exchange of virtual particles, which are kept as explicit degrees of freedom. Assuming nevertheless that this situation
can be realized in physical systems, all contact interactions must have large, correlated parts whose strengths are set by
powers of ¿�1, so that they should be resummed into a nonanalytic function. It is simplest to search for a combination
of contact interactions that produces an (energy-independent) separable two-body potential supporting only these two
poles. In terms of the magnitudes of the incoming and outgoing relative momenta ~p and ~p0, this type of two-body
potential is written as [33]

V2(p
0, p) =

4p
m

l g(p
0)g(p) (1)

2

Y. Yamaguchi, Phys. Rev. 95 (1954) 1628 

which decreases as the radial coordinate r increases. The two possibilities arise from two choices in a one-parameter
family of separable potentials that reproduce the ERE at the effective-range level [34], of which the form (7) is the
simplest. The situation here is the counterpart to the phase-equivalent, exponentially decreasing local potentials of
Ref. [38], where different choices of parameters can make either the shallower or the deeper pole a bound state.
In-between these two cases, a double pole arises at k2 = a = 1/r2 = 2/a2 for l = �2/a . Despite the sign of the
S-matrix residue, the wavefunction

y2(r) = 4
⇣k2

p

⌘3/2
K0(k2r), (11)

where K0(x) is the modified Bessel function of the second kind, also decreases with distance albeit as exp(�k2r)/
p

r.
NLO two-body corrections, which allow for a perturbative shape parameter (the coefficient of the k

4 term in the
ERE), have been discussed in Refs. [21, 25]. For the purposes of benchmarking and of gauging the effects of higher
ERE parameters in the three-body system, we consider here also two other separable potentials with form factors g(x)
that go to 0 increasingly faster at large x. One choice is the original Yamaguchi potential [33],

g(p) =

✓
1+

p
2

a2

◆�1

, (12)

for which
1
a2

=
1
l
+

a
2
, r2 =

1
a

✓
1� 4

la

◆
, 2R(k) = r2 �

2k
2

la4 . (13)

The Yamaguchi potential generates a (dimensionless) shape parameter P2 = �(la)�1(1� 4/la)�3
r

3
2, and for l <

�2/a there are three poles on the positive imaginary momentum axis: a double pole at k2 = a independently of l ,
and a bound state related to l by

L�1(k2) =� a3

2(k2 +a)2 . (14)

This bound state has the usual S-matrix residue sign and a Hulthén-type wavefunction [33]. It is shallower than the
double pole as long as l > �8/a , and found at k2 = (

p
2�1)a = 2(

p
2�1)/r2 ' 0.828/r2 for l = �4/a , when

a2 = 2r2.
The other choice is the toy potential of Refs. [39–43], which consists of a Gaussian form factor

g(p) = e
�p

2/a2
, (15)

for which

1
a2

=
1
l
+

ap
2p

, r2 =
4
a

✓
1p
2p

� 1
la

◆
,

2R(k) = r2 +
4
a

"
a2

2k2

✓
e

2k
2/a2 �1� 2k

2

a2

◆
+

r
2
p

✓Z 1

0
dt e

2k
2
t
2/a2 �1

◆#
, (16)

and
L�1(k2) =� ap

2p
+k2 exp

�
2k2

2/a2� erfc
⇣p

2k2/a
⌘
, (17)

where erfc is the complementary error function. The Gaussian potential gives rise to all ERE parameters and, since
g(p) has no poles, all poles of the T matrix on the positive imaginary axis are solutions of Eq. (17), i.e. bound states.
The attractive potential that generates a2 = 2r2 has l = �

p
2p/(1�p/4)/a ' �5.41/a . For this value there is a

bound state with k2 ' 0.795/r2.
While in general a choice of a2 and r2 leads to two possible set of values for a and l , for a2 = 2r2 only one

set produces finite-energy bound states. The constraint a2 = 2r2 imposes a relation between l and a: la = �c,
with c = 2,4,

p
2p/(1�p/4) for square-root, Yamaguchi, and Gaussian forms respectively. This leaves a single

independent, dimensionful parameter, which we may choose as r2. The ground-state binding energy can be written as

B2 =
b2

mr
2
2
, (18)

4

which decreases as the radial coordinate r increases. The two possibilities arise from two choices in a one-parameter
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p
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g(p) =

✓
1+

p
2

a2

◆�1

, (12)

for which
1
a2
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l
+

a
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, r2 =

1
a

✓
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la

◆
, 2R(k) = r2 �

2k
2

la4 . (13)
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2, and for l <

�2/a there are three poles on the positive imaginary momentum axis: a double pole at k2 = a independently of l ,
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p
2�1)a = 2(
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a2 = 2r2.
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g(p) = e
�p

2/a2
, (15)

for which

1
a2

=
1
l
+

ap
2p

, r2 =
4
a

✓
1p
2p

� 1
la

◆
,

2R(k) = r2 +
4
a

"
a2

2k2

✓
e

2k
2/a2 �1� 2k

2

a2

◆
+

r
2
p

✓Z 1

0
dt e

2k
2
t
2/a2 �1

◆#
, (16)

and
L�1(k2) =� ap

2p
+k2 exp

�
2k2

2/a2� erfc
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2k2/a
⌘
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p
2p/(1�p/4)/a ' �5.41/a . For this value there is a

bound state with k2 ' 0.795/r2.
While in general a choice of a2 and r2 leads to two possible set of values for a and l , for a2 = 2r2 only one

set produces finite-energy bound states. The constraint a2 = 2r2 imposes a relation between l and a: la = �c,
with c = 2,4,

p
2p/(1�p/4) for square-root, Yamaguchi, and Gaussian forms respectively. This leaves a single

independent, dimensionful parameter, which we may choose as r2. The ground-state binding energy can be written as

B2 =
b2

mr
2
2
, (18)

4

with a strength l and a real function g(p) obeying g(0) = 1. The two-body T matrix at energy E = k
2/m is then

T2(p
0, p;k) =

4p
m

g(p
0)g(p)

L�1(�ik)�l�1 =
4p
m

g(p
0)g(p)

g2(k)


�ik� 1

a2
+R(k)k

2
��1

, (2)

where
1
a2

=
1
l
+

2
p

Z •

0
dl g

2(l), R(k) =
1

a2k2

�
g
�2(k)�1

�
+

i

k
� 2

p
g
�2(k)

Z •

0
dl

g
2(l)

l2 � k2 � ie
, (3)

and
L�1(�ik) =� 2

p

Z •

0
dl g

2(l)� ik+R(k)k2. (4)

Some of the poles of Eq. (2) are determined by the form of g(p) alone, while others depend on the strength l . The
strength that produces a pole on the positive imaginary axis, k = ik2 with k2 > 0, satisfies

l = L(k2). (5)

This relation can also be obtained from the Schrödinger equation, which yields a momentum-space wavefunction [33]

y2(p) = N
g(p)

p2 +k2
2
, N =


1

2p2

Z •

0
d p

p
2
g

2(q)

(p2 +k2
2 )

2

��1/2

. (6)

A single shallow S-wave pole arises at k2 = 1/a2 for l = O(¿�1). Regularization can be effected with a mo-
mentum cutoff L introduced at intermediate stages of the calculation; one way to do so is through a g(p) which obeys
g(p � L)! 0 and is viewed as just a regulator. After renormalization, when the L dependence of l is chosen appro-
priately — for example, so that k2 in Eq. (5) be finite — the on-shell T matrix T2(k,k;k) takes the form of the ERE
truncated at the scattering length, R(k) being arbitrarily small. To generate instead the ERE truncated at the effective
range, which leads to two poles, we can take [32, 34, 35]

g(p) =

✓
1+

p
2

a2

◆�1/2

, (7)

with a parameter a > 0, such that
1
a2

=
1
l
+a, 2R(k) = r2 =� 2

la2 . (8)

If a =L, this g(p) is but one example of a regulator in the EFT for a single pole. In contrast, if a =O(¿) is a physical
parameter, the form factor (7) represents correlated parts of all higher-derivative contact interactions, which are now
LO: the effective range is finite and r2 > 0 for l < 0. On shell, the two-body T matrix is the same as that obtained
with a dimer field [36, 37], which is a ghost for r2 > 0. Off shell, it decreases faster with momenta on account of the
form factor.

This separable potential generates two poles on the positive imaginary momentum axis for l < �1/a: i) a pole
at k2 = a , which is redundant in the sense of being independent of l , and ii) a bound state at k2 related to l through

L�1(k2) =� a2

k2 +a
. (9)

For �2/a < l < �1/a , the bound state is the shallower pole, at which the S matrix has a negative imaginary
residue. For l <�2/a the bound state is deeper than the redundant pole. The opposite sign for the S-matrix residue
translates into an opposite sign for the full two-body propagator, which in turn means that if the state were considered
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2N T-matrix
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A single shallow S-wave pole arises at k2 = 1/a2 for l = O(¿�1). Regularization can be effected with a mo-
mentum cutoff L introduced at intermediate stages of the calculation; one way to do so is through a g(p) which obeys
g(p � L)! 0 and is viewed as just a regulator. After renormalization, when the L dependence of l is chosen appro-
priately — for example, so that k2 in Eq. (5) be finite — the on-shell T matrix T2(k,k;k) takes the form of the ERE
truncated at the scattering length, R(k) being arbitrarily small. To generate instead the ERE truncated at the effective
range, which leads to two poles, we can take [32, 34, 35]
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truncated at the scattering length, R(k) being arbitrarily small. To generate instead the ERE truncated at the effective
range, which leads to two poles, we can take [32, 34, 35]

g(p) =

✓
1+

p
2

a2

◆�1/2

, (7)

with a parameter a > 0, such that
1
a2

=
1
l
+a, 2R(k) = r2 =� 2

la2 . (8)

If a =L, this g(p) is but one example of a regulator in the EFT for a single pole. In contrast, if a =O(¿) is a physical
parameter, the form factor (7) represents correlated parts of all higher-derivative contact interactions, which are now
LO: the effective range is finite and r2 > 0 for l < 0. On shell, the two-body T matrix is the same as that obtained
with a dimer field [36, 37], which is a ghost for r2 > 0. Off shell, it decreases faster with momenta on account of the
form factor.

This separable potential generates two poles on the positive imaginary momentum axis for l < �1/a: i) a pole
at k2 = a , which is redundant in the sense of being independent of l , and ii) a bound state at k2 related to l through

L�1(k2) =� a2

k2 +a
. (9)

For �2/a < l < �1/a , the bound state is the shallower pole, at which the S matrix has a negative imaginary
residue. For l <�2/a the bound state is deeper than the redundant pole. The opposite sign for the S-matrix residue
translates into an opposite sign for the full two-body propagator, which in turn means that if the state were considered
as elementary it would require an imaginary coupling to the two particles [35]. Nevertheless, both situations are
associated with a coordinate-space wavefunction

y2(r) =

✓
a �k2

pk2

◆1/2
(k2 +a)3/2

✓
1

rk2
�1

◆
e
�k2r, (10)

3

λ < −
1
α

κ2 = α

1
λ

= −
α2

κ2 + α

For the separable potential with the above g(p) generates two poles:
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Table 1: Values for the coefficient b2 of the correlation (18) between the two-body binding energy and the effective range for the square-root,
Yamaguchi, and Gaussian separable potentials, when a2 = 2r2.

0 1 2 3 4 5
0

50

100

150

200

k r2

δ
(d
eg
re
es

)

Figure 1: Phase shifts (in degrees) as a function of the center-of-mass momentum in units of the inverse effective range for square-root (green line),
Yamaguchi (red line), and Gaussian (blue line) potentials. Physical values from the Granada phase-shift analysis [44] for two nucleons in the 3

S1
(brown squares) and 1

S0 (black squares) channels are shown for comparison.

where the dimensionless number b2, which depends on the potential, is given in Table 1.
Similarly, for each of the potentials the phase shifts are universal as a function of the momentum k in units of 1/r2.

The phase shifts for the three potentials we consider are plotted in Fig. 1. The square-root potential gives the same
phase shifts as the ERE truncated at the effective range. The Yamaguchi and Gaussian potentials give phase shifts
that are essentially the same as those of the square-root potential for small momenta but decrease more rapidly as a
consequence of increasing shape parameters. Despite the very different two-body pole structure, the dimensionless
shape parameters are relatively small: r

3
2/32 for the Yamaguchi potential and ' 0.05r

3
2 for the Gaussian potential.

Few-body results might then not be very different from the square-root potential.

3. Spinless three-body system

The EFT with a single two-body pole, characterized by a nonderivative two-body contact interaction at LO, pro-
duces three- and more-body observables with essential cutoff dependence, unless a nonderivative three-body contact
interaction is also present at LO [45, 46]. Incorporating the range at LO through a dimer field [36, 37], no three-body
force is needed for renormalization but the second pole leads to an unphysical three-body threshold that poses prob-
lems in the solution of the three-body equations [47]. Here, the LO two-body amplitude not only has a sufficiently soft
ultraviolet behavior but also does not suffer from an unphysical threshold because the redundant pole is not a solution
of the Schrödinger equation. Since there is no longer a renormalization rationale to assume three- or more-body forces
at LO, all energies should scale with the single two-body parameter controlling the a2 = 2r2 limit.

One of the first momentum-space calculations of the three-nucleon system was made by Sitenko and Kharchenko
[48]. Employing Jacobi momenta

~ki j =
1
2
(~pi �~p j) , ~ki =

1
3
(2~pi �~p j �~pk) , (19)

for i , j , k, where ~pi stands for the momentum of particle i in the center-of-mass frame of the three-body system,
they solved the Faddeev equations [49, 50] in the case of a separable two-body potential. We follow the formulation of

5
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Table 1: Values for the coefficient b2 of the correlation (18) between the two-body binding energy and the effective range for the square-root,
Yamaguchi, and Gaussian separable potentials, when a2 = 2r2.
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S0 (black squares) channels are shown for comparison.

where the dimensionless number b2, which depends on the potential, is given in Table 1.
Similarly, for each of the potentials the phase shifts are universal as a function of the momentum k in units of 1/r2.

The phase shifts for the three potentials we consider are plotted in Fig. 1. The square-root potential gives the same
phase shifts as the ERE truncated at the effective range. The Yamaguchi and Gaussian potentials give phase shifts
that are essentially the same as those of the square-root potential for small momenta but decrease more rapidly as a
consequence of increasing shape parameters. Despite the very different two-body pole structure, the dimensionless
shape parameters are relatively small: r

3
2/32 for the Yamaguchi potential and ' 0.05r

3
2 for the Gaussian potential.

Few-body results might then not be very different from the square-root potential.

3. Spinless three-body system

The EFT with a single two-body pole, characterized by a nonderivative two-body contact interaction at LO, pro-
duces three- and more-body observables with essential cutoff dependence, unless a nonderivative three-body contact
interaction is also present at LO [45, 46]. Incorporating the range at LO through a dimer field [36, 37], no three-body
force is needed for renormalization but the second pole leads to an unphysical three-body threshold that poses prob-
lems in the solution of the three-body equations [47]. Here, the LO two-body amplitude not only has a sufficiently soft
ultraviolet behavior but also does not suffer from an unphysical threshold because the redundant pole is not a solution
of the Schrödinger equation. Since there is no longer a renormalization rationale to assume three- or more-body forces
at LO, all energies should scale with the single two-body parameter controlling the a2 = 2r2 limit.

One of the first momentum-space calculations of the three-nucleon system was made by Sitenko and Kharchenko
[48]. Employing Jacobi momenta

~ki j =
1
2
(~pi �~p j) , ~ki =

1
3
(2~pi �~p j �~pk) , (19)

for i , j , k, where ~pi stands for the momentum of particle i in the center-of-mass frame of the three-body system,
they solved the Faddeev equations [49, 50] in the case of a separable two-body potential. We follow the formulation of

5

Jacobi momenta

Square-Root Yamaguchi Gaussian
V3 3.73 3.80 3.54

Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
Gaussian separable potentials, when a2 = 2r2.

Ref. [48] closely — see also the pedagogical review [43] — to calculate the ground-state binding energy B3 = k3/m

when a2 = 2r2.
We start with the simplest case, that of three spinless particles. The wavefunction being symmetric under permu-

tation of any pair of particles, it can be written as

y3(~p1,~p2,~p3) = y(~k23,~k1)+y(~k31,~k2)+y(~k12,~k3), y(�~k,~ki) = y(~k,~ki). (20)

For a separable potential with only S-wave interactions, as we are interested in here, the wavefunction components
are given by

y(p,q) =� lg(p)

k2
3 + p2 +3q2/4

a(q), (21)

where the profile function a(q) is governed by a one-dimensional integral equation

a(q) =
2
p

Z •

0
dq

0
q
02

K (q,q0;k3)a(q0), (22)

with the kernel

K (q,q0;k3) =

"
L�1

 r
k2

3 +
3q2
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#�1 Z 1

�1
dy

g(p2)g(p1)

k2
3 +q2 +q02 +qq0y

, (23)

p1 =
q

q2/4+q02 +qq0y, p2 =
q

q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided

det
⇥
di j � ¯K (qi,q

0
j
;k3)

⇤
= 0, (25)

where ¯K (qi,q0j;k3) = (2/p)K (qi,q0j;k3)q
2
j
Dq

0
j, j+1 is the weighted kernel. The problem becomes a search for the

value of k3 that makes the determinant vanish. The profile function a(q) is then obtained from the eigenvectors.
For a2 = 2r2, we typically find more than one solution. The single potential parameter implies that we can write

for the deepest three-body bound state, analogously to Eq. (18),

B3

3
=

b3

3mr
2
2
=

2b3

3b2

B2

2
⌘ V3

B2

2
, (26)

where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.

6

Wave function

Square-Root Yamaguchi Gaussian
V3 3.73 3.80 3.54

Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
Gaussian separable potentials, when a2 = 2r2.

Ref. [48] closely — see also the pedagogical review [43] — to calculate the ground-state binding energy B3 = k3/m

when a2 = 2r2.
We start with the simplest case, that of three spinless particles. The wavefunction being symmetric under permu-

tation of any pair of particles, it can be written as

y3(~p1,~p2,~p3) = y(~k23,~k1)+y(~k31,~k2)+y(~k12,~k3), y(�~k,~ki) = y(~k,~ki). (20)

For a separable potential with only S-wave interactions, as we are interested in here, the wavefunction components
are given by

y(p,q) =� lg(p)

k2
3 + p2 +3q2/4

a(q), (21)

where the profile function a(q) is governed by a one-dimensional integral equation

a(q) =
2
p

Z •

0
dq
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q
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with the kernel
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, (23)

p1 =
q

q2/4+q02 +qq0y, p2 =
q

q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided

det
⇥
di j � ¯K (qi,q

0
j
;k3)

⇤
= 0, (25)

where ¯K (qi,q0j;k3) = (2/p)K (qi,q0j;k3)q
2
j
Dq

0
j, j+1 is the weighted kernel. The problem becomes a search for the

value of k3 that makes the determinant vanish. The profile function a(q) is then obtained from the eigenvectors.
For a2 = 2r2, we typically find more than one solution. The single potential parameter implies that we can write

for the deepest three-body bound state, analogously to Eq. (18),
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
Gaussian separable potentials, when a2 = 2r2.

Ref. [48] closely — see also the pedagogical review [43] — to calculate the ground-state binding energy B3 = k3/m

when a2 = 2r2.
We start with the simplest case, that of three spinless particles. The wavefunction being symmetric under permu-

tation of any pair of particles, it can be written as

y3(~p1,~p2,~p3) = y(~k23,~k1)+y(~k31,~k2)+y(~k12,~k3), y(�~k,~ki) = y(~k,~ki). (20)

For a separable potential with only S-wave interactions, as we are interested in here, the wavefunction components
are given by

y(p,q) =� lg(p)

k2
3 + p2 +3q2/4

a(q), (21)

where the profile function a(q) is governed by a one-dimensional integral equation

a(q) =
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q2/4+q02 +qq0y, p2 =
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q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided

det
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⇤
= 0, (25)

where ¯K (qi,q0j;k3) = (2/p)K (qi,q0j;k3)q
2
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0
j, j+1 is the weighted kernel. The problem becomes a search for the

value of k3 that makes the determinant vanish. The profile function a(q) is then obtained from the eigenvectors.
For a2 = 2r2, we typically find more than one solution. The single potential parameter implies that we can write

for the deepest three-body bound state, analogously to Eq. (18),
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
Gaussian separable potentials, when a2 = 2r2.

Ref. [48] closely — see also the pedagogical review [43] — to calculate the ground-state binding energy B3 = k3/m

when a2 = 2r2.
We start with the simplest case, that of three spinless particles. The wavefunction being symmetric under permu-

tation of any pair of particles, it can be written as

y3(~p1,~p2,~p3) = y(~k23,~k1)+y(~k31,~k2)+y(~k12,~k3), y(�~k,~ki) = y(~k,~ki). (20)

For a separable potential with only S-wave interactions, as we are interested in here, the wavefunction components
are given by

y(p,q) =� lg(p)

k2
3 + p2 +3q2/4

a(q), (21)

where the profile function a(q) is governed by a one-dimensional integral equation
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q2/4+q02 +qq0y, p2 =
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q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided

det
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⇤
= 0, (25)

where ¯K (qi,q0j;k3) = (2/p)K (qi,q0j;k3)q
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0
j, j+1 is the weighted kernel. The problem becomes a search for the

value of k3 that makes the determinant vanish. The profile function a(q) is then obtained from the eigenvectors.
For a2 = 2r2, we typically find more than one solution. The single potential parameter implies that we can write

for the deepest three-body bound state, analogously to Eq. (18),
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Table 2: Slope V3 of the correlation (26) between three- and two-body binding energies per spinless particle for the square-root, Yamaguchi and
Gaussian separable potentials, when a2 = 2r2.

Ref. [48] closely — see also the pedagogical review [43] — to calculate the ground-state binding energy B3 = k3/m

when a2 = 2r2.
We start with the simplest case, that of three spinless particles. The wavefunction being symmetric under permu-

tation of any pair of particles, it can be written as

y3(~p1,~p2,~p3) = y(~k23,~k1)+y(~k31,~k2)+y(~k12,~k3), y(�~k,~ki) = y(~k,~ki). (20)

For a separable potential with only S-wave interactions, as we are interested in here, the wavefunction components
are given by
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where the profile function a(q) is governed by a one-dimensional integral equation
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q

q2 +q02/4+qq0y. (24)

Thanks to the factors of g(p) in the kernel, Eq. (22) is ultraviolet convergent and, as anticipated, no three-body
force is needed for renormalization at LO. We compute the angular integration in Eq. (23) numerically. The integral
equation (22) is solved on a momentum grid (with points labeled by i), a non-trivial solution existing provided
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⇤
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where ¯K (qi,q0j;k3) = (2/p)K (qi,q0j;k3)q
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0
j, j+1 is the weighted kernel. The problem becomes a search for the

value of k3 that makes the determinant vanish. The profile function a(q) is then obtained from the eigenvectors.
For a2 = 2r2, we typically find more than one solution. The single potential parameter implies that we can write

for the deepest three-body bound state, analogously to Eq. (18),
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where V3 is another potential-dependent dimensionless parameter. The values for V3 are given in Table 2 for the
three potentials considered in this work. Our value for the square-root potential is not inconsistent with the results at
smaller r2/a2 shown in Ref. [51]. Surprisingly, it falls in-between the potentials with softer ultraviolet behavior (and
nonzero higher ERE parameters). The numbers for the various potentials are the same within about 5% despite the
difference in potential shapes, indicating an approximate universality. The small effects of higher ERE parameters
must be amenable to a distorted-wave perturbative treatment around the square-root potential.
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Three-nucleon system

4. Three-nucleon system

The wavefunction for the three-nucleon system is antisymmetric under permutations of any of the three pairs of
nucleons. Both total spin S and total isospin T may be either 1/2 or 3/2. Here we concentrate on the triton, which
consists of one proton and two neutrons, with T = 1/2 and S = 1/2. In this case, there are contributions from two
channels, a nucleon pair being in a spin-singlet state s = 0 or in the triplet state s = 1. We take each channel to
be governed by an S-wave separable potential of the type discussed in Sec. 2 but allow for different parameters in
each two-nucleon channel, which we label with a subscript 0 or 1 according to its spin. Again, we expect ultraviolet
convergence without three-nucleon forces, in contrast to the situation in Pionless EFT with standard power counting
[52]. The wavefunction can then be written in terms of two components [48]

✓
y1
y0

◆
=� 1

k2
3 + p2 +3q2/4

✓
l1 g1(p)a(q)
l0 g0(p)b(q)

◆
. (27)

The two profile functions obey a set of coupled integral equations,
✓
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1
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Z •
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, (28)

where
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◆
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s

��1 Z 1
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Again, the system described in Eq. (28) has a non-trivial solution provided

det
✓

1� ¯K11(q,q0;k3) �3 ¯K10(q,q0;k3)
�3 ¯K01(q,q0;k3) 1� ¯K00(q,q0;k3)

◆
= 0, (30)

where ¯Kss0(q,q
0;k3) = (1/2p)Kss0(q,q

0;k3)q
02

dq
0, and the profile functions are obtained from the eigenvectors of the

block matrix. The value of k3 for which the determinant is zero corresponds to the triton binding energy B = k2
3/mN ,

where mN is the nucleon mass.
In the following, we consider the case when there are two independent dimensionful parameters because a2s = 2r2s

for both s = 0,1. We typically find various bound states at the same values of the ratio r21/r20. We postpone a more
comprehensive analysis of the structure of these states to a future publication. In the following, we consider two cases
of interest to nuclear physics. We compare our results for the three-nucleon system with those obtained in LQCD at
an unphysical pion mass mp ' 806 MeV and with experiment at physical pion mass.

5. Lattice QCD predictions for two and three nucleons

At the quark masses for which mp ' 806 MeV, the nucleon mass is mN = 1.634(0)(0)(18) GeV, with errors
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Two-Nucleon Binding Energies

Square-Root Yamaguchi Gaussian LQCD
B21/MeV 25.3 19.5 18.4 19.5 (3.6) (3.1) (0.2)
B20/MeV 12.7 11.1 10.7 15.9 (2.7) (2.7) (0.2)

Table 3: Two-nucleon binding energies B2s (in MeV) for the spin s = 0,1 channels supported by the square-root, Yamaguchi, and Gaussian
separable potentials with ERE parameters from lattice QCD [8], compared to the direct LQCD value [2].

Yamaguchi Gaussian LQCD
P1 (fm3) 0.023 0.037 [�0.147, 0.176]
P0 (fm3) 0.044 0.070 [�0.205, 0.117]

Table 4: Shape parameters Ps (in fm3) in spin s = 0,1 channels for the Yamaguchi and Gaussian separable potentials with ERE parameters from
lattice QCD [8], compared to the range of LQCD values [8].

a2s = 2r2s, the phase shifts in the two channels can be read off Fig. 1 when r2 is replaced by the respective effective-
range value. The phase shifts do not turn negative as suggested by the higher-energy LQCD data. Nevertheless, the
closeness of the predictions from the various potentials to each other and to direct LQCD values at low and moderate
energies suggest that the latter can be reproduced in perturbation theory around the LO square-root potential.

Table 5 shows results for the binding energy of the deepest three-body bound state we found with the Gaussian
separable potential, where we varied the ERE parameters (32) within error bars (errors added in quadrature). The
relatively large uncertainties in the effective ranges generate large uncertainties in binding energies. The Gaussian
potential yields the most stable results, but other potentials produce similar outcomes. In Table 6, central results for
the three potentials are compared with the direct LQCD value [2]. Although uncertainties are large, central values for
the three potentials are extremely close, and well within the range of values obtained directly from LQCD [2]. These
results add further support to the view that the NPLQCD results at these unphysical quark masses can be described by
a nonlocal potential with a near-degenerate double two-body pole.

6. Physical pion mass

At physical quark masses, the average nucleon mass is mN ' 938.92 MeV [53], while the two-nucleon ERE
parameters are extracted from data as [54, 55]

a21 = 5.4194(20) fm, r21 = 1.7536(25) fm, (33)
a20 =�23.7154(80) fm, r20 = 2.706(67) fm. (34)

While the scattering lengths are certainly large compared to m
�1
p ' 1.4 fm, the situation is less clear cut for the

effective ranges. It has been suggested [36, 37] that an expansion based on r2s = O(¿�1) might be more effective
than the standard Pionless EFT expansion with r2s = O(R). However, its implementation through energy-dependent
interactions is not optimal for many-body applications. The formulation through a separable potential considered here
and in Ref. [21] might be useful. Analogous statements can be made about Chiral EFT for energy- [56, 57] and
momentum- [22–25] dependent interactions.

3S1 \ 1S0 Lower Central Upper
Lower 26.1 57.4 52.0
Central 67.3 56.5 89.8
Upper 59.2 57.1 52.6

Table 5: Three-nucleon binding energy (in MeV) supported by the Gaussian separable potential with ERE parameters from lattice QCD values [8].
“Lower”, “central”, and “upper” refer to the minimum, central, and maximum values of the scattering lengths a2s and effective ranges r2s (in 3

S1
and 1

S0 channels) .
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Square-Root Yamaguchi Gaussian LQCD
B3/MeV 56.5 56.6 56.5 53.9 (7.1) (8.0) (0.6)

Table 6: Three-nucleon binding energy B3 (in MeV) supported by the square-root, Yamaguchi, and Gaussian separable potentials with ERE
parameters from lattice QCD values [8], compared to the direct LQCD value [2].

Square-Root Yamaguchi Gaussian experiment
B21/MeV 13.4949 9.26145 8.69714 2.224575(9)
B20/MeV 5.66342 3.88675 3.64993 —

Table 7: Two-nucleon binding energies B2s (in MeV) for the spin s = 0,1 channels, supported by the square-root, Yamaguchi, and Gaussian
separable potentials with empirical r2s parameters [54, 55] and a2s = 2r2s, compared to the experimental value [54].

The triton binding energy with input similar to Eqs. (33) and (34) has been discussed many times in the literature,
for example Ref. [35] for the square-root potential, Ref. [48] for Yamaguchi, and Ref. [43] for Gaussian. Results
fall in a wide range ' 7� 12 MeV, a sensitivity to the two-nucleon interaction that is encapsulated in the so-called
Phillips line [58]. We therefore focus here on the possibility of an expansion around a2s = 2r2s. The 3

S1 channel is
not far from this limit. In 1

S0, one finds a very shallow pole at negative imaginary momentum, while a20 = 2r20 gives
relatively shallow poles at positive imaginary momentum thanks to the relatively large effective range. One might
hope that these departures from two-body data at very low energies are not so important for the deeper ground states
of larger nuclei. It is known that for the Yamaguchi potential there is little sensitivity of the triton binding energy to
a20, at least when the latter is large and negative [59].

In Table 7 we give the two-body binding energies for our separable potentials when r2s is fixed by the empirical
values in Eqs. (33) and (34), and a2s = 2r2s. We also compare our results with the experimental binding energy of
the deuteron [54]. As one would expect from the shallowness of the observed deuteron and 1

S0 virtual state, our
unrealistic scattering lengths lead to deeper bound states in both cases. Clearly the very low-energy region cannot be
described well by our potentials. The issue is whether they capture the physics at higher energies and deeper bound
states as the triton. Indeed, for the three potentials we find a state with energy close to the triton’s [60], as shown in
Table 8. Again, the spread among potentials is relatively small and particularly close to experiment for Yamaguchi
and Gaussian.

This agreement is likely a manifestation of the folklore that nuclear ground states are not very sensitive to two-
nucleon scattering near threshold, which in conventional Pionless EFT is incorporated through an expansion around
the unitarity limit [61, 62]. The phase shifts for a2s = 2r2s can again be read off Fig. 1 once the physical values for r2s

are used. To facilitate the comparison with empirical values, we plot in Fig. 1 the results of the Granada phase-shift
analysis [44] for the 3

S1 and 1
S0 channels. We see that all three potentials are close to the empirical 3

S1 phase shifts
despite our scattering length not taking the experimental value. The three potentials also give 1

S0 phase shifts close to
empirical for kr20 >⇠ 1, differences at smaller momenta reflecting the existence of a bound state when a20 = 2r20 > 0.
The fact that these small-momentum differences do not dramatically affect our results for the triton binding energy
supports existing folklore. Still, it is surprising that such a good agreement is found in the same framework that
accommodates LQCD results.

Square-Root Yamaguchi Gaussian experiment
B3/MeV 7.496939 8.945608 8.397675 8.481798(2)

Table 8: Triton binding energy B3 (in MeV) supported by the square-root, Yamaguchi, and Gaussian separable potentials with empirical r2s

parameters [54, 55] and a2s = 2r2s, compared to experiment [60].
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More recently, this very same strategy was adopted in
the case of hot magnetized quark matter. In particular,
in ref. [58], the IMC phenomenon found by lattice simu-
lations was explained within the two-flavor Nambu–Jona-
Lasinio model (NJL) when the coupling constant, G, is
forced to decrease with both the magnetic field strength
B and the temperature T , simulating effects not captured
with the conventional NJL model. A similar procedure was
used with a SU(3) Polyakov-NJL (PNJL) model, but with
G depending only on the magnetic field [59]; this leads,
however, to a non-monotonic decrease of Tpc at high field
values. In a very recent work [60], an explicit calculation
of the one-loop correction to the quark-gluon vertex has
shown that competing effects between quark and gluon
color charges make the effective quark-gluon coupling to
decrease as the strength of the magnetic field increases at
finite temperatures. This certainly lends strong support
to the idea [58] that the IMC is due to the decrease of
the effective coupling between quarks and gluons in the
presence of magnetic fields at high temperatures.

In the present paper we investigate the implications
of using a B- and T -modified NJL coupling for thermo-
dynamic quantities of magnetized quark matter. We are
particularly interested in the qualitative changes that a
G(B, T ) causes in quantities very sensitive to the chiral
transition, such as the speed of sound, thermal suscepti-
bility and specific heat. This is an important open question
since the interaction that is implied by a G(B, T ) gives rise
to a new phenomenology that has not been fully explored
in the literature. The investigation of the correlation be-
tween a T and B dependence of the NJL coupling G used
to describe IMC with other physical quantities is impor-
tant to get further insight into the role played by effects
not captured by the normal NJL. As we shall show, the
very same G(B, T ) required to fit the lattice result for Tpc,
gives results for the pressure, entropy and energy density
that are in qualitative agreement with corresponding lat-
tice results, while a B- and T -independent coupling gives
qualitatively different results for those quantities. This
seems to be a clear indication that the B and T depen-
dence in G needed to describe Tpc is neither fortuitous nor
valid for a single physical quantity only; it seems to cap-
ture correctly the physics left out in the conventional NJL
model. Instead of the parametrization used in ref. [58],
based on qualitative arguments referring to asymptotic
freedom, in the present paper we base the parametrization
of G on a precise fit of recent LQCD calculations. In doing
so, one avoids any particular interpretation on the effects
behind fitting formulas used for the B and T dependence
of G, as any interpolation formula of the lattice data points
leads to qualitatively similar results for the thermodynam-
ical quantities. We fit LQCD results for the magnetized
quark condensates with a particularly simple Fermi-type
distribution formula for G(B, T ), parametrized by four B-
dependent coefficients. As we shall demonstrate, one of the
main physical implications of using such thermo-magnetic
effects in the coupling constant is that the signatures asso-
ciated with the chiral transition in thermodynamic quan-
tities become more markedly defined as the field strength
increases. Also, our results for the pressure and magneti-

zation are in line with LQCD predictions, which find that
at a fixed temperature, these quantities always increase
with B. This behavior, especially close to the transition
region, is not observed with the NJL model with a B- and
T -independent coupling G.

In the next section we review the results for the mag-
netized NJL pressure within the mean field approximation
(MFA). In sect. 2 we extract G(B, T ) from an accurate fit
of LQCD results. Numerical results for different thermo-
dynamical quantities are presented in sect. 3. Our conclu-
sions and final remarks are presented in sect. 4.

1 Magnetized NJL pressure

Here we consider the isospin-symmetric two-flavor version
of the NJL model [61], defined by the Lagrangian density

LNJL = −1
4
FµνFµν + ψ̄

(
/D − m

)
ψ

+G
[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
, (1)

where the field ψ represents a flavor iso-doublet of u and d
quark flavors and Nc-plet of quark fields, τ are the isospin
Pauli matrices, Dµ = (i∂µ − QAµ) the covariant deriva-
tive, Q = diag(qu = 2e/3, qd = −e/3) the charge matrix
and Aµ, Fµν = ∂µAν − ∂νAµ are, respectively, the elec-
tromagnetic gauge and tensor fields1. Since the model is
non-renormalizable, we need to specify a regularization
scheme. In this work we use a non-covariant cutoff regu-
larization parametrized by Λ, within the magnetic-field–
independent regularization scheme (MFIR). The MFIR
scheme, originally formulated in terms of the proper-time
regularization method [62], was recently reformulated [63]
using dimensional regularization by performing a sum over
all Landau levels in the vacuum term. In this way, one
is able to isolate the divergencies into a term that has
the form of the zero magnetic field vacuum energy and
thereby can be renormalized in a standard fashion. The
MFIR was recently employed in the problems of magne-
tized color superconducting cold matter [64,65], where its
advantages, such as the avoidance of unphysical oscilla-
tions, are fully discussed. Other interesting application of
the MFIR scheme can be found in [66,67], where the prop-
erties of magnetized neutral mesons were studied. Within
this regularization scheme, the cutoff Λ, the coupling G
and the current quark mass m represent free parameters
which are fixed [68,69] by fitting the vacuum values of the
pion mass mπ, pion decay constant fπ and quark conden-
sate ⟨ψ̄fψf ⟩.

In the MFA, the NJL pressure2 in the presence of a
magnetic field can be expressed as a sum of quasi-particle

1 In this work we adopt Gaussian natural units where
1 GeV2 ≃ 5.13 × 1019 G and e = 1/

√
137.

2 Note that in this work we are concerned only with the
longitudinal components of the pressure, sound velocity, etc.
For simplicity they will be denoted as pressure, sound velocity,
etc.
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running coupling constant of the chiral invariant quar-
tic quark interaction in NJL and PNJL models with the
magnetic field. The damping of the strength of the effec-
tive quartic interaction is built phenomenologically, keep-
ing SU(3) flavor symmetry, under different assumptions
inspired by lattice results for the quark condensate at
finite temperature and magnetic field.

This paper is organized as follows. In Sec. II, we briefly
present the PNJL model used in this work, the Polyakov
loop potential, and the parametrizations chosen. In Sec.
III, the importance of the running coupling in the (P)NJL
models for magnetized quark matter is discussed. Also,
the behavior of the condensates with temperature and
the magnetic field intensity is compared with the LQCD
results. Finally, in Sec. IV, the main conclusions are
drawn.

II. MODEL AND FORMALISM

The PNJL Lagrangian with explicit chiral symmetry
breaking, where the quarks couple to a (spatially con-
stant) temporal background gauge field, represented in
terms of the Polyakov loop, and in the presence of an
external magnetic field is given by [18]

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet

+ U
(

Φ, Φ̄; T
)

−
1

4
FµνF µν , (1)

where the quark sector is described by the SU(3) version
of the NJL model which includes scalar-pseudoscalar and
the ’t Hooft six fermion interactions that models the axial
UA(1) symmetry breaking [19], with Lsym and Ldet given
by [20],

Lsym =
Gs

2

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λaq)2
]

, (2)

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]} (3)

where q = (u, d, s)T represents a quark field with three
flavors, m̂c = diagf (mu, md, ms) is the corresponding

(current) mass matrix, λ0 =
√

2/3I where I is the unit
matrix in the three-flavor space, and 0 < λa ≤ 8 de-
note the Gell-Mann matrices. The coupling between the
(electro)magnetic field B and quarks, and between the
effective gluon field and quarks is implemented via the
covariant derivative Dµ = ∂µ − iqf Aµ

EM − iAµ where
qf represents the quark electric charge (qd = qs =
−qu/2 = −e/3), AEM

µ and Fµν = ∂µAEM
ν − ∂νAEM

µ

are used to account for the external magnetic field and
Aµ(x) = gstrongAµ

a(x)λa

2 where Aµ
a is the SUc(3) gauge

field. We consider a static and constant magnetic field
in the z direction, AEM

µ = δµ2x1B. In the Polyakov
gauge and at finite temperature the spatial compo-
nents of the gluon field are neglected: Aµ = δµ

0 A0 =
−iδµ

4 A4. The trace of the Polyakov line defined by

Φ = 1
Nc

⟨⟨P exp i
∫ β

0
dτ A4 (x⃗, τ) ⟩⟩

β
is the Polyakov loop

which is the order parameter of the Z3 symmetric/broken
phase transition in pure gauge.

To describe the pure-gauge sector an effective potential
U

(

Φ, Φ̄; T
)

is chosen in order to reproduce the results
obtained in lattice calculations [21],

U
(

Φ, Φ̄; T
)

T 4
= −

a (T )

2
Φ̄Φ

+ b(T )ln
[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

, (4)

where a (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2
, b(T ) = b3

(

T0

T

)3
.

The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
GsΛ2 = 3.67 and KΛ5 = 12.36 as in [23]. The thermo-
dynamical potential for the three-flavor quark sector Ω
is written as

Ω(T, µ) = Gs

∑

f=u,d,s

⟨q̄f qf ⟩2 + 4K ⟨q̄uqu⟩ ⟨q̄dqd⟩ ⟨q̄sqs⟩

+U(Φ, Φ̄, T ) +
∑

f=u,d,s

(

Ωf
vac + Ωf

med + Ωf
mag

)

(5)

where the flavor contributions from vacuum Ωvac
f ,

medium Ωmed
f , and magnetic field Ωmag

f [24] are given
by

Ωf
vac = −6

∫

Λ

d3p

(2π)3

√

p2 + M2
f (6)

Ωf
med = −T

|qf B|

2π

∑

k=0

αk

∫ +∞

−∞

dpz

2π

(

Z+
Φ (Ef ) + Z−

Φ (Ef )
)

(7)

Ωf
mag = −

3(|qf |B)2

2π2

[

ζ
′

(−1, xf ) −
1

2
(x2

f − xf ) ln xf +
x2

f

4

]

(8)

where Ef =
√

p2
z + M2

f + 2|qf |Bk , α0 = 1 and

αk>0 = 2, xf = M2
f /(2|qf |B), and ζ

′

(−1, xf) =
dζ(z, xf )/dz|z=−1, where ζ(z, xf ) is the Riemann-
Hurwitz zeta function. At zero chemical potential the
quark distribution functions Z+

Φ (Ef ) and Z−
Φ (Ef ) read

Z+
Φ = Z−

Φ = ln
{

1 + 3Φe−βEf + 3Φe−2βEf + e−3βEf
}

(9)

once Φ̄ = Φ.
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breaking, where the quarks couple to a (spatially con-
stant) temporal background gauge field, represented in
terms of the Polyakov loop, and in the presence of an
external magnetic field is given by [18]

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet

+ U
(

Φ, Φ̄; T
)

−
1

4
FµνF µν , (1)

where the quark sector is described by the SU(3) version
of the NJL model which includes scalar-pseudoscalar and
the ’t Hooft six fermion interactions that models the axial
UA(1) symmetry breaking [19], with Lsym and Ldet given
by [20],

Lsym =
Gs

2

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λaq)2
]

, (2)

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]} (3)

where q = (u, d, s)T represents a quark field with three
flavors, m̂c = diagf (mu, md, ms) is the corresponding

(current) mass matrix, λ0 =
√

2/3I where I is the unit
matrix in the three-flavor space, and 0 < λa ≤ 8 de-
note the Gell-Mann matrices. The coupling between the
(electro)magnetic field B and quarks, and between the
effective gluon field and quarks is implemented via the
covariant derivative Dµ = ∂µ − iqf Aµ

EM − iAµ where
qf represents the quark electric charge (qd = qs =
−qu/2 = −e/3), AEM

µ and Fµν = ∂µAEM
ν − ∂νAEM

µ

are used to account for the external magnetic field and
Aµ(x) = gstrongAµ

a(x)λa

2 where Aµ
a is the SUc(3) gauge

field. We consider a static and constant magnetic field
in the z direction, AEM

µ = δµ2x1B. In the Polyakov
gauge and at finite temperature the spatial compo-
nents of the gluon field are neglected: Aµ = δµ

0 A0 =
−iδµ

4 A4. The trace of the Polyakov line defined by

Φ = 1
Nc

⟨⟨P exp i
∫ β

0
dτ A4 (x⃗, τ) ⟩⟩

β
is the Polyakov loop

which is the order parameter of the Z3 symmetric/broken
phase transition in pure gauge.

To describe the pure-gauge sector an effective potential
U

(

Φ, Φ̄; T
)

is chosen in order to reproduce the results
obtained in lattice calculations [21],

U
(

Φ, Φ̄; T
)

T 4
= −

a (T )

2
Φ̄Φ

+ b(T )ln
[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

, (4)

where a (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2
, b(T ) = b3

(

T0

T

)3
.

The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
GsΛ2 = 3.67 and KΛ5 = 12.36 as in [23]. The thermo-
dynamical potential for the three-flavor quark sector Ω
is written as

Ω(T, µ) = Gs

∑

f=u,d,s

⟨q̄f qf ⟩2 + 4K ⟨q̄uqu⟩ ⟨q̄dqd⟩ ⟨q̄sqs⟩

+U(Φ, Φ̄, T ) +
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f=u,d,s

(
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vac + Ωf

med + Ωf
mag

)

(5)

where the flavor contributions from vacuum Ωvac
f ,

medium Ωmed
f , and magnetic field Ωmag

f [24] are given
by

Ωf
vac = −6

∫

Λ

d3p

(2π)3

√

p2 + M2
f (6)

Ωf
med = −T

|qf B|
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dpz
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(
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Φ (Ef ) + Z−

Φ (Ef )
)

(7)

Ωf
mag = −
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ζ
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(−1, xf ) −
1

2
(x2
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f

4

]

(8)
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√
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f /(2|qf |B), and ζ
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(−1, xf) =
dζ(z, xf )/dz|z=−1, where ζ(z, xf ) is the Riemann-
Hurwitz zeta function. At zero chemical potential the
quark distribution functions Z+

Φ (Ef ) and Z−
Φ (Ef ) read

Z+
Φ = Z−

Φ = ln
{

1 + 3Φe−βEf + 3Φe−2βEf + e−3βEf
}

(9)

once Φ̄ = Φ.
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NJL gap equation: simple view
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Gap equations at finite temperature and magnetic field

Mu = mu � 2Ghūui � 2Khd̄dihs̄si

Ms = ms � 2Ghs̄si � 2Khūuihd̄di

Md = md � 2Ghd̄di � 2Khs̄sihūui

hq̄qi ! hq̄qivac + hq̄qimag + hq̄qimedTmag



Condensates

Eur. Phys. J. A (2017) 53: 101 Page 3 of 12

and condensate contributions [63,70]:

P =
B2

2
+ Pu + Pd − (M − m)2

4G
, (2)

where B2/2 comes from the first term in eq. (1), and each
of the remaining terms can be written as a sum of three
terms (f = u, d):

Pf = P vac
f + Pmag

f + PTmag
f , (3)

⟨ψ̄fψf ⟩ = ⟨ψ̄fψf ⟩vac + ⟨ψ̄fψf ⟩mag + ⟨ψ̄fψf ⟩Tmag, (4)

with the quasi-particle terms given by

P vac
f =

NcM4

8π2

[
ϵΛΛ3

M4

(
1 +

ϵ2Λ
Λ2

)
− ln

(
Λ + ϵΛ

M

)]
, (5)

Pmag
f =

Nc(|qf |B)2

2π2

[
x2

f

4
− xf

2
(xf − 1) ln xf

+ ζ ′(−1, xf )

]
, (6)

PTmag
f = T

∞∑

k=0

αk
|qf |BNc

2π2

×
∫ +∞

−∞
dp ln {1 + exp[−(Ef/T )]} . (7)

The quark condensates are given by

⟨ψ̄fψf ⟩vac = −MNc

2π2

[
Λ ϵΛ − M2 ln

(
Λ + ϵΛ

M

)]
, (8)

⟨ψ̄fψf ⟩mag = −M |qf |BNc

2π2

[
ln Γ (xf ) − 1

2
ln(2π)

+xf − 1
2

(2xf − 1) ln(xf )
]
, (9)

⟨ψ̄fψf ⟩Tmag =
∞∑

k=0

αk
M |qf |BNc

2π2

∫ +∞

−∞
dp

n(Ef )
Ef

, (10)

where Γ (xf ) is usual gamma function, and the other quan-
tities appearing in these equations are given by

ϵΛ =
(
Λ2 + M2

)1/2
, (11)

Ef =
(
p2 + M2 + 2|qf |Bk

)1/2
, (12)

xf =
M2

2|qf |B
, (13)

n(Ef ) =
1

1 + exp(Ef/T )
, (14)

ζ ′(−1, xf ) =
dζ(z, xf )

dz

∣∣∣∣
z=−1

, (15)

where ζ(z, xf ) is the Riemann-Hurwitz zeta function. To
take further derivatives of this function, as well as for nu-
merical purposes, it is useful to use the following repre-
sentation [71]:

ζ ′(−1, xf ) = ζ ′(−1, 0)

+
xf

2

[
xf − 1 − ln(2π) + ψ(−2)(xf )

]
, (16)

where ψ(m)(xf ) is the m-th polygamma function and the
xf independent constant is ζ ′(−1, 0) = −1/12. In the sum
in eq. (10), k represents the Landau levels. In addition,
M represents the MFA effective quark mass, which is the
solution of the gap equation

M = m − 2G
d∑

f=u

⟨ψ̄fψf ⟩. (17)

Notice that although the quark condensate for the fla-
vors u and d in the presence of a magnetic field are differ-
ent due to their different electric charges, the masses of the
u and d constituent quarks are equal to each other since we
work here in the isospin-symmetric limit, mu = md = m—
for details, see ref. [70]. Finally note that the term B2/2
in eq. (2) does not contribute to the normalized pressure
PN (T,B) = P (T,B) − P (0, B) (see ref. [63] for further
details).

At vanishing densities, the energy density ϵ is de-
fined as ϵ = −PN + Ts, where s is the entropy density,
s = ∂PN/∂T . Other thermodynamical observables such
as the interaction measure, ∆, the specific heat, cv, the
velocity of sound, c2

s, and the magnetization, M, which
contain valuable information on the role played by the
magnetic field on the onset of chiral transition, will also
be investigated here. They are defined as follows:

cv =
(

∂ε

∂T

)

v

, ∆ =
ε − 3PN

T 4
, c2

s =
(

∂PN

∂ε

)

v
(18)

and
M =

dPN

dB
. (19)

2 Thermo-magnetic NJL coupling

We start describing the fitting procedure used to ob-
tain the thermo-magnetic dependence of the NJL cou-
pling constant. Our strategy is to reproduce with the
model the lattice results of ref. [13] for the quark con-
densate average, (Σu + Σd)/2. In the lattice calculation,
the condensates are normalized in a way which is remi-
niscent of the Gell-Mann–Oakes–Renner relation (GOR),
2m⟨ψ̄fψf ⟩ = m2

πf2
π + . . ., as

Σf (B, T ) =
2m

m2
πf2

π

[
⟨ψ̄fψf ⟩BT − ⟨ψ̄fψf ⟩00

]
+ 1, (20)

with ⟨ψ̄fψf ⟩00 representing the quark condensates at T =
0 and B = 0. In order to fit the lattice results, the other
physical quantities appearing in eq. (20) should be those
of ref. [13]; namely, mπ = 135MeV, fπ = 86MeV, and
m = 5.5MeV so that, by invoking the GOR relation,
one can use the LQCD value ⟨ψ̄fψf ⟩1/3

00 = −230.55MeV.
Therefore, as far as eq. (20) is concerned, only ⟨ψ̄fψf ⟩BT

is to be evaluated with the NJL model. As we show be-
low, the NJL predictions for the in-vacuum scalar conden-
sate are numerically very close to those obtained with the
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M = m − 2G
d∑

f=u

⟨ψ̄fψf ⟩. (17)

Notice that although the quark condensate for the fla-
vors u and d in the presence of a magnetic field are differ-
ent due to their different electric charges, the masses of the
u and d constituent quarks are equal to each other since we
work here in the isospin-symmetric limit, mu = md = m—
for details, see ref. [70]. Finally note that the term B2/2
in eq. (2) does not contribute to the normalized pressure
PN (T,B) = P (T,B) − P (0, B) (see ref. [63] for further
details).

At vanishing densities, the energy density ϵ is de-
fined as ϵ = −PN + Ts, where s is the entropy density,
s = ∂PN/∂T . Other thermodynamical observables such
as the interaction measure, ∆, the specific heat, cv, the
velocity of sound, c2

s, and the magnetization, M, which
contain valuable information on the role played by the
magnetic field on the onset of chiral transition, will also
be investigated here. They are defined as follows:

cv =
(

∂ε

∂T

)

v

, ∆ =
ε − 3PN

T 4
, c2

s =
(

∂PN

∂ε

)

v
(18)

and
M =

dPN

dB
. (19)

2 Thermo-magnetic NJL coupling

We start describing the fitting procedure used to ob-
tain the thermo-magnetic dependence of the NJL cou-
pling constant. Our strategy is to reproduce with the
model the lattice results of ref. [13] for the quark con-
densate average, (Σu + Σd)/2. In the lattice calculation,
the condensates are normalized in a way which is remi-
niscent of the Gell-Mann–Oakes–Renner relation (GOR),
2m⟨ψ̄fψf ⟩ = m2

πf2
π + . . ., as

Σf (B, T ) =
2m

m2
πf2

π

[
⟨ψ̄fψf ⟩BT − ⟨ψ̄fψf ⟩00

]
+ 1, (20)

with ⟨ψ̄fψf ⟩00 representing the quark condensates at T =
0 and B = 0. In order to fit the lattice results, the other
physical quantities appearing in eq. (20) should be those
of ref. [13]; namely, mπ = 135MeV, fπ = 86MeV, and
m = 5.5MeV so that, by invoking the GOR relation,
one can use the LQCD value ⟨ψ̄fψf ⟩1/3

00 = −230.55MeV.
Therefore, as far as eq. (20) is concerned, only ⟨ψ̄fψf ⟩BT

is to be evaluated with the NJL model. As we show be-
low, the NJL predictions for the in-vacuum scalar conden-
sate are numerically very close to those obtained with the
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and condensate contributions [63,70]:

P =
B2

2
+ Pu + Pd − (M − m)2

4G
, (2)

where B2/2 comes from the first term in eq. (1), and each
of the remaining terms can be written as a sum of three
terms (f = u, d):

Pf = P vac
f + Pmag

f + PTmag
f , (3)

⟨ψ̄fψf ⟩ = ⟨ψ̄fψf ⟩vac + ⟨ψ̄fψf ⟩mag + ⟨ψ̄fψf ⟩Tmag, (4)

with the quasi-particle terms given by

P vac
f =

NcM4

8π2

[
ϵΛΛ3

M4

(
1 +

ϵ2Λ
Λ2

)
− ln

(
Λ + ϵΛ

M

)]
, (5)

Pmag
f =

Nc(|qf |B)2

2π2

[
x2

f

4
− xf

2
(xf − 1) ln xf

+ ζ ′(−1, xf )

]
, (6)

PTmag
f = T

∞∑

k=0

αk
|qf |BNc

2π2

×
∫ +∞

−∞
dp ln {1 + exp[−(Ef/T )]} . (7)

The quark condensates are given by

⟨ψ̄fψf ⟩vac = −MNc

2π2

[
Λ ϵΛ − M2 ln

(
Λ + ϵΛ

M

)]
, (8)

⟨ψ̄fψf ⟩mag = −M |qf |BNc

2π2

[
ln Γ (xf ) − 1

2
ln(2π)

+xf − 1
2

(2xf − 1) ln(xf )
]
, (9)

⟨ψ̄fψf ⟩Tmag =
∞∑

k=0

αk
M |qf |BNc

2π2

∫ +∞

−∞
dp

n(Ef )
Ef

, (10)

where Γ (xf ) is usual gamma function, and the other quan-
tities appearing in these equations are given by

ϵΛ =
(
Λ2 + M2

)1/2
, (11)

Ef =
(
p2 + M2 + 2|qf |Bk

)1/2
, (12)

xf =
M2

2|qf |B
, (13)

n(Ef ) =
1

1 + exp(Ef/T )
, (14)

ζ ′(−1, xf ) =
dζ(z, xf )

dz

∣∣∣∣
z=−1

, (15)

where ζ(z, xf ) is the Riemann-Hurwitz zeta function. To
take further derivatives of this function, as well as for nu-
merical purposes, it is useful to use the following repre-
sentation [71]:

ζ ′(−1, xf ) = ζ ′(−1, 0)

+
xf

2

[
xf − 1 − ln(2π) + ψ(−2)(xf )

]
, (16)

where ψ(m)(xf ) is the m-th polygamma function and the
xf independent constant is ζ ′(−1, 0) = −1/12. In the sum
in eq. (10), k represents the Landau levels. In addition,
M represents the MFA effective quark mass, which is the
solution of the gap equation

M = m − 2G
d∑

f=u

⟨ψ̄fψf ⟩. (17)

Notice that although the quark condensate for the fla-
vors u and d in the presence of a magnetic field are differ-
ent due to their different electric charges, the masses of the
u and d constituent quarks are equal to each other since we
work here in the isospin-symmetric limit, mu = md = m—
for details, see ref. [70]. Finally note that the term B2/2
in eq. (2) does not contribute to the normalized pressure
PN (T,B) = P (T,B) − P (0, B) (see ref. [63] for further
details).

At vanishing densities, the energy density ϵ is de-
fined as ϵ = −PN + Ts, where s is the entropy density,
s = ∂PN/∂T . Other thermodynamical observables such
as the interaction measure, ∆, the specific heat, cv, the
velocity of sound, c2

s, and the magnetization, M, which
contain valuable information on the role played by the
magnetic field on the onset of chiral transition, will also
be investigated here. They are defined as follows:

cv =
(

∂ε

∂T

)

v

, ∆ =
ε − 3PN

T 4
, c2

s =
(

∂PN

∂ε

)

v
(18)

and
M =

dPN

dB
. (19)

2 Thermo-magnetic NJL coupling

We start describing the fitting procedure used to ob-
tain the thermo-magnetic dependence of the NJL cou-
pling constant. Our strategy is to reproduce with the
model the lattice results of ref. [13] for the quark con-
densate average, (Σu + Σd)/2. In the lattice calculation,
the condensates are normalized in a way which is remi-
niscent of the Gell-Mann–Oakes–Renner relation (GOR),
2m⟨ψ̄fψf ⟩ = m2

πf2
π + . . ., as

Σf (B, T ) =
2m

m2
πf2

π

[
⟨ψ̄fψf ⟩BT − ⟨ψ̄fψf ⟩00

]
+ 1, (20)

with ⟨ψ̄fψf ⟩00 representing the quark condensates at T =
0 and B = 0. In order to fit the lattice results, the other
physical quantities appearing in eq. (20) should be those
of ref. [13]; namely, mπ = 135MeV, fπ = 86MeV, and
m = 5.5MeV so that, by invoking the GOR relation,
one can use the LQCD value ⟨ψ̄fψf ⟩1/3

00 = −230.55MeV.
Therefore, as far as eq. (20) is concerned, only ⟨ψ̄fψf ⟩BT

is to be evaluated with the NJL model. As we show be-
low, the NJL predictions for the in-vacuum scalar conden-
sate are numerically very close to those obtained with the
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×
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2π2

∫ +∞

−∞
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, (10)

where Γ (xf ) is usual gamma function, and the other quan-
tities appearing in these equations are given by

ϵΛ =
(
Λ2 + M2

)1/2
, (11)

Ef =
(
p2 + M2 + 2|qf |Bk

)1/2
, (12)

xf =
M2

2|qf |B
, (13)

n(Ef ) =
1

1 + exp(Ef/T )
, (14)

ζ ′(−1, xf ) =
dζ(z, xf )

dz
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z=−1

, (15)

where ζ(z, xf ) is the Riemann-Hurwitz zeta function. To
take further derivatives of this function, as well as for nu-
merical purposes, it is useful to use the following repre-
sentation [71]:

ζ ′(−1, xf ) = ζ ′(−1, 0)

+
xf

2

[
xf − 1 − ln(2π) + ψ(−2)(xf )

]
, (16)

where ψ(m)(xf ) is the m-th polygamma function and the
xf independent constant is ζ ′(−1, 0) = −1/12. In the sum
in eq. (10), k represents the Landau levels. In addition,
M represents the MFA effective quark mass, which is the
solution of the gap equation

M = m − 2G
d∑

f=u

⟨ψ̄fψf ⟩. (17)

Notice that although the quark condensate for the fla-
vors u and d in the presence of a magnetic field are differ-
ent due to their different electric charges, the masses of the
u and d constituent quarks are equal to each other since we
work here in the isospin-symmetric limit, mu = md = m—
for details, see ref. [70]. Finally note that the term B2/2
in eq. (2) does not contribute to the normalized pressure
PN (T,B) = P (T,B) − P (0, B) (see ref. [63] for further
details).

At vanishing densities, the energy density ϵ is de-
fined as ϵ = −PN + Ts, where s is the entropy density,
s = ∂PN/∂T . Other thermodynamical observables such
as the interaction measure, ∆, the specific heat, cv, the
velocity of sound, c2

s, and the magnetization, M, which
contain valuable information on the role played by the
magnetic field on the onset of chiral transition, will also
be investigated here. They are defined as follows:

cv =
(

∂ε

∂T

)

v

, ∆ =
ε − 3PN

T 4
, c2

s =
(

∂PN

∂ε

)

v
(18)

and
M =

dPN

dB
. (19)

2 Thermo-magnetic NJL coupling

We start describing the fitting procedure used to ob-
tain the thermo-magnetic dependence of the NJL cou-
pling constant. Our strategy is to reproduce with the
model the lattice results of ref. [13] for the quark con-
densate average, (Σu + Σd)/2. In the lattice calculation,
the condensates are normalized in a way which is remi-
niscent of the Gell-Mann–Oakes–Renner relation (GOR),
2m⟨ψ̄fψf ⟩ = m2

πf2
π + . . ., as

Σf (B, T ) =
2m

m2
πf2

π

[
⟨ψ̄fψf ⟩BT − ⟨ψ̄fψf ⟩00

]
+ 1, (20)

with ⟨ψ̄fψf ⟩00 representing the quark condensates at T =
0 and B = 0. In order to fit the lattice results, the other
physical quantities appearing in eq. (20) should be those
of ref. [13]; namely, mπ = 135MeV, fπ = 86MeV, and
m = 5.5MeV so that, by invoking the GOR relation,
one can use the LQCD value ⟨ψ̄fψf ⟩1/3

00 = −230.55MeV.
Therefore, as far as eq. (20) is concerned, only ⟨ψ̄fψf ⟩BT

is to be evaluated with the NJL model. As we show be-
low, the NJL predictions for the in-vacuum scalar conden-
sate are numerically very close to those obtained with the
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where Γ (xf ) is usual gamma function, and the other quan-
tities appearing in these equations are given by
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dζ(z, xf )

dz

∣∣∣∣
z=−1

, (15)

where ζ(z, xf ) is the Riemann-Hurwitz zeta function. To
take further derivatives of this function, as well as for nu-
merical purposes, it is useful to use the following repre-
sentation [71]:

ζ ′(−1, xf ) = ζ ′(−1, 0)

+
xf

2

[
xf − 1 − ln(2π) + ψ(−2)(xf )

]
, (16)

where ψ(m)(xf ) is the m-th polygamma function and the
xf independent constant is ζ ′(−1, 0) = −1/12. In the sum
in eq. (10), k represents the Landau levels. In addition,
M represents the MFA effective quark mass, which is the
solution of the gap equation

M = m − 2G
d∑

f=u

⟨ψ̄fψf ⟩. (17)

Notice that although the quark condensate for the fla-
vors u and d in the presence of a magnetic field are differ-
ent due to their different electric charges, the masses of the
u and d constituent quarks are equal to each other since we
work here in the isospin-symmetric limit, mu = md = m—
for details, see ref. [70]. Finally note that the term B2/2
in eq. (2) does not contribute to the normalized pressure
PN (T,B) = P (T,B) − P (0, B) (see ref. [63] for further
details).

At vanishing densities, the energy density ϵ is de-
fined as ϵ = −PN + Ts, where s is the entropy density,
s = ∂PN/∂T . Other thermodynamical observables such
as the interaction measure, ∆, the specific heat, cv, the
velocity of sound, c2

s, and the magnetization, M, which
contain valuable information on the role played by the
magnetic field on the onset of chiral transition, will also
be investigated here. They are defined as follows:

cv =
(

∂ε
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, ∆ =
ε − 3PN

T 4
, c2
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∂PN
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2 Thermo-magnetic NJL coupling

We start describing the fitting procedure used to ob-
tain the thermo-magnetic dependence of the NJL cou-
pling constant. Our strategy is to reproduce with the
model the lattice results of ref. [13] for the quark con-
densate average, (Σu + Σd)/2. In the lattice calculation,
the condensates are normalized in a way which is remi-
niscent of the Gell-Mann–Oakes–Renner relation (GOR),
2m⟨ψ̄fψf ⟩ = m2

πf2
π + . . ., as

Σf (B, T ) =
2m

m2
πf2

π

[
⟨ψ̄fψf ⟩BT − ⟨ψ̄fψf ⟩00

]
+ 1, (20)

with ⟨ψ̄fψf ⟩00 representing the quark condensates at T =
0 and B = 0. In order to fit the lattice results, the other
physical quantities appearing in eq. (20) should be those
of ref. [13]; namely, mπ = 135MeV, fπ = 86MeV, and
m = 5.5MeV so that, by invoking the GOR relation,
one can use the LQCD value ⟨ψ̄fψf ⟩1/3

00 = −230.55MeV.
Therefore, as far as eq. (20) is concerned, only ⟨ψ̄fψf ⟩BT

is to be evaluated with the NJL model. As we show be-
low, the NJL predictions for the in-vacuum scalar conden-
sate are numerically very close to those obtained with the

µ = 0
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running coupling constant of the chiral invariant quar-
tic quark interaction in NJL and PNJL models with the
magnetic field. The damping of the strength of the effec-
tive quartic interaction is built phenomenologically, keep-
ing SU(3) flavor symmetry, under different assumptions
inspired by lattice results for the quark condensate at
finite temperature and magnetic field.

This paper is organized as follows. In Sec. II, we briefly
present the PNJL model used in this work, the Polyakov
loop potential, and the parametrizations chosen. In Sec.
III, the importance of the running coupling in the (P)NJL
models for magnetized quark matter is discussed. Also,
the behavior of the condensates with temperature and
the magnetic field intensity is compared with the LQCD
results. Finally, in Sec. IV, the main conclusions are
drawn.

II. MODEL AND FORMALISM

The PNJL Lagrangian with explicit chiral symmetry
breaking, where the quarks couple to a (spatially con-
stant) temporal background gauge field, represented in
terms of the Polyakov loop, and in the presence of an
external magnetic field is given by [18]

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet

+ U
(

Φ, Φ̄; T
)

−
1

4
FµνF µν , (1)

where the quark sector is described by the SU(3) version
of the NJL model which includes scalar-pseudoscalar and
the ’t Hooft six fermion interactions that models the axial
UA(1) symmetry breaking [19], with Lsym and Ldet given
by [20],

Lsym =
Gs

2

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λaq)2
]

, (2)

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]} (3)

where q = (u, d, s)T represents a quark field with three
flavors, m̂c = diagf (mu, md, ms) is the corresponding

(current) mass matrix, λ0 =
√

2/3I where I is the unit
matrix in the three-flavor space, and 0 < λa ≤ 8 de-
note the Gell-Mann matrices. The coupling between the
(electro)magnetic field B and quarks, and between the
effective gluon field and quarks is implemented via the
covariant derivative Dµ = ∂µ − iqf Aµ

EM − iAµ where
qf represents the quark electric charge (qd = qs =
−qu/2 = −e/3), AEM

µ and Fµν = ∂µAEM
ν − ∂νAEM

µ

are used to account for the external magnetic field and
Aµ(x) = gstrongAµ

a(x)λa

2 where Aµ
a is the SUc(3) gauge

field. We consider a static and constant magnetic field
in the z direction, AEM

µ = δµ2x1B. In the Polyakov
gauge and at finite temperature the spatial compo-
nents of the gluon field are neglected: Aµ = δµ

0 A0 =
−iδµ

4 A4. The trace of the Polyakov line defined by

Φ = 1
Nc

⟨⟨P exp i
∫ β

0
dτ A4 (x⃗, τ) ⟩⟩

β
is the Polyakov loop

which is the order parameter of the Z3 symmetric/broken
phase transition in pure gauge.

To describe the pure-gauge sector an effective potential
U

(

Φ, Φ̄; T
)

is chosen in order to reproduce the results
obtained in lattice calculations [21],

U
(

Φ, Φ̄; T
)

T 4
= −

a (T )

2
Φ̄Φ

+ b(T )ln
[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

, (4)

where a (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2
, b(T ) = b3

(

T0

T

)3
.

The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
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f ,

medium Ωmed
f , and magnetic field Ωmag

f [24] are given
by

Ωf
vac = −6

∫

Λ

d3p

(2π)3

√

p2 + M2
f (6)

Ωf
med = −T

|qf B|

2π

∑
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−∞

dpz
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(

Z+
Φ (Ef ) + Z−

Φ (Ef )
)

(7)

Ωf
mag = −

3(|qf |B)2

2π2

[

ζ
′

(−1, xf ) −
1

2
(x2

f − xf ) ln xf +
x2

f

4

]

(8)

where Ef =
√

p2
z + M2

f + 2|qf |Bk , α0 = 1 and

αk>0 = 2, xf = M2
f /(2|qf |B), and ζ

′

(−1, xf) =
dζ(z, xf )/dz|z=−1, where ζ(z, xf ) is the Riemann-
Hurwitz zeta function. At zero chemical potential the
quark distribution functions Z+

Φ (Ef ) and Z−
Φ (Ef ) read

Z+
Φ = Z−

Φ = ln
{

1 + 3Φe−βEf + 3Φe−2βEf + e−3βEf
}

(9)

once Φ̄ = Φ.

⌦ = � T ln Z Z = Tr e��(H�µN)

T, B
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and condensate contributions [63,70]:

P =
B2

2
+ Pu + Pd − (M − m)2

4G
, (2)

where B2/2 comes from the first term in eq. (1), and each
of the remaining terms can be written as a sum of three
terms (f = u, d):

Pf = P vac
f + Pmag

f + PTmag
f , (3)

⟨ψ̄fψf ⟩ = ⟨ψ̄fψf ⟩vac + ⟨ψ̄fψf ⟩mag + ⟨ψ̄fψf ⟩Tmag, (4)

with the quasi-particle terms given by

P vac
f =

NcM4

8π2

[
ϵΛΛ3

M4

(
1 +

ϵ2Λ
Λ2

)
− ln

(
Λ + ϵΛ

M

)]
, (5)

Pmag
f =

Nc(|qf |B)2

2π2

[
x2

f

4
− xf

2
(xf − 1) ln xf

+ ζ ′(−1, xf )

]
, (6)

PTmag
f = T

∞∑

k=0

αk
|qf |BNc

2π2

×
∫ +∞

−∞
dp ln {1 + exp[−(Ef/T )]} . (7)

The quark condensates are given by

⟨ψ̄fψf ⟩vac = −MNc

2π2

[
Λ ϵΛ − M2 ln

(
Λ + ϵΛ

M

)]
, (8)

⟨ψ̄fψf ⟩mag = −M |qf |BNc

2π2

[
ln Γ (xf ) − 1

2
ln(2π)

+xf − 1
2

(2xf − 1) ln(xf )
]
, (9)

⟨ψ̄fψf ⟩Tmag =
∞∑

k=0

αk
M |qf |BNc

2π2

∫ +∞

−∞
dp

n(Ef )
Ef

, (10)

where Γ (xf ) is usual gamma function, and the other quan-
tities appearing in these equations are given by

ϵΛ =
(
Λ2 + M2

)1/2
, (11)

Ef =
(
p2 + M2 + 2|qf |Bk

)1/2
, (12)

xf =
M2

2|qf |B
, (13)

n(Ef ) =
1

1 + exp(Ef/T )
, (14)

ζ ′(−1, xf ) =
dζ(z, xf )

dz

∣∣∣∣
z=−1

, (15)

where ζ(z, xf ) is the Riemann-Hurwitz zeta function. To
take further derivatives of this function, as well as for nu-
merical purposes, it is useful to use the following repre-
sentation [71]:

ζ ′(−1, xf ) = ζ ′(−1, 0)

+
xf

2

[
xf − 1 − ln(2π) + ψ(−2)(xf )

]
, (16)

where ψ(m)(xf ) is the m-th polygamma function and the
xf independent constant is ζ ′(−1, 0) = −1/12. In the sum
in eq. (10), k represents the Landau levels. In addition,
M represents the MFA effective quark mass, which is the
solution of the gap equation

M = m − 2G
d∑

f=u

⟨ψ̄fψf ⟩. (17)

Notice that although the quark condensate for the fla-
vors u and d in the presence of a magnetic field are differ-
ent due to their different electric charges, the masses of the
u and d constituent quarks are equal to each other since we
work here in the isospin-symmetric limit, mu = md = m—
for details, see ref. [70]. Finally note that the term B2/2
in eq. (2) does not contribute to the normalized pressure
PN (T,B) = P (T,B) − P (0, B) (see ref. [63] for further
details).

At vanishing densities, the energy density ϵ is de-
fined as ϵ = −PN + Ts, where s is the entropy density,
s = ∂PN/∂T . Other thermodynamical observables such
as the interaction measure, ∆, the specific heat, cv, the
velocity of sound, c2

s, and the magnetization, M, which
contain valuable information on the role played by the
magnetic field on the onset of chiral transition, will also
be investigated here. They are defined as follows:

cv =
(

∂ε

∂T

)

v

, ∆ =
ε − 3PN

T 4
, c2

s =
(

∂PN

∂ε

)

v
(18)

and
M =

dPN

dB
. (19)

2 Thermo-magnetic NJL coupling

We start describing the fitting procedure used to ob-
tain the thermo-magnetic dependence of the NJL cou-
pling constant. Our strategy is to reproduce with the
model the lattice results of ref. [13] for the quark con-
densate average, (Σu + Σd)/2. In the lattice calculation,
the condensates are normalized in a way which is remi-
niscent of the Gell-Mann–Oakes–Renner relation (GOR),
2m⟨ψ̄fψf ⟩ = m2

πf2
π + . . ., as

Σf (B, T ) =
2m

m2
πf2

π

[
⟨ψ̄fψf ⟩BT − ⟨ψ̄fψf ⟩00

]
+ 1, (20)

with ⟨ψ̄fψf ⟩00 representing the quark condensates at T =
0 and B = 0. In order to fit the lattice results, the other
physical quantities appearing in eq. (20) should be those
of ref. [13]; namely, mπ = 135MeV, fπ = 86MeV, and
m = 5.5MeV so that, by invoking the GOR relation,
one can use the LQCD value ⟨ψ̄fψf ⟩1/3

00 = −230.55MeV.
Therefore, as far as eq. (20) is concerned, only ⟨ψ̄fψf ⟩BT

is to be evaluated with the NJL model. As we show be-
low, the NJL predictions for the in-vacuum scalar conden-
sate are numerically very close to those obtained with the
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small magnetic fields, eB & 0:1 GeV2, T & 100 MeV.
(We remark that the inclusion of the hadron resonance
gas contribution to the condensate in !PT [35] improves
the agreement with lattice results, as was shown at B ¼ 0
in Ref. [50]. One would expect a similar improvement at
B> 0.) Since the PNJL model condensate is calculated
using a Polyakov loop effective potential that was obtained
from Nf ¼ 2 lattice results [18], differences between the
model and our Nf ¼ 1þ 1þ 1 results at T > 0 are ex-
pected to be large, as both the transition temperature and
the transition strength (the slope of the condensate at Tc)
strongly depend on the number of flavors. To enable a
comparison, we linearly rescaled the temperature axis
(only for the PNJL curves) to match our lattice inflection
point at B ¼ 0. Nevertheless, the B dependence of the
condensate for the PNJL model also reveals qualitative
differences in comparison to the QCD results.

Finally, in Fig. 5 we plot !"u #!"d ¼ "u # "d as a
function of the temperature for several magnetic field

strengths. At zero magnetic field isospin symmetry is exact
since we employed mass-degenerate light quarks. As B
increases, due to the difference between the electric
charges, "u # "d develops a temperature dependence
similar to that of ð"u þ"dÞ=2, see Fig. 4. The results for
"u & "d are also listed in Table I.

V. SUMMARY

We determined the QCD light quark condensates at
nonzero external magnetic field strengths for physical
quark masses in the continuum limit. Our results are in
quantitative agreement with chiral perturbation theory and
PNJL model predictions for small magnetic fields and at
small temperatures. Note that the constants within these
parametrizations have not been adjusted to our data but
were taken from the literature where they have been ob-
tained at vanishing magnetic field. Unsurprisingly, !PT
fails in regions where pions cease to be the essential low
energy degrees of freedom. While in the hadronic phase
low energy models qualitatively reproduce the B depen-
dence of the lattice data, they miss an important feature
which becomes dominant for light quark masses and for
temperatures around Tc (see Fig. 2). Clearly, the coupling
between the magnetic field and the gauge background is

FIG. 5 (color online). Continuum extrapolated results for the
difference of the up and the down quark condensates.

FIG. 4 (color online). Comparison of the continuum extrapo-
lated lattice results (points) to !PT [14,15,54] (dashed lines) and
the PNJL model [18,55] (dotted lines) at different magnetic
fields.

TABLE I. Continuum extrapolated lattice results for the light
condensates, as functions of T and eB. Columns labeled ‘‘þ=2’’
contain the average ð"u þ"dÞ=2, while those with ‘‘#’’ contain
the difference "u #"d. Note that the uncertainty of the lattice
scale gives rise to errors of about 2% in the temperatures.

T
ðMeVÞ

eB ¼ 0 eB ¼ 0:2 GeV2 eB ¼ 0:4 GeV2

þ=2 # þ=2 # þ=2 #
0 1 0 1.14(2) 0.09(2) 1.37(2) 0.28(2)
113 0.90(4) 0 1.01(6) 0.08(2) 1.21(5) 0.25(2)
122 0.84(4) 0 0.96(5) 0.08(2) 1.17(5) 0.24(3)
130 0.80(4) 0 0.93(5) 0.08(3) 1.09(5) 0.22(2)
142 0.68(2) 0 0.78(3) 0.07(2) 0.89(4) 0.19(3)
148 0.57(1) 0 0.65(3) 0.06(2) 0.76(6) 0.17(3)
153 0.49(1) 0 0.56(3) 0.06(2) 0.53(3) 0.14(3)
163 0.26(1) 0 0.25(3) 0.04(2) 0.22(3) 0.07(3)
176 0.08(1) 0 0.07(3) 0.01(2) 0.06(3) 0.03(2)
189 0.00(1) 0 0.01(3) 0.01(2) 0.00(3) 0.02(2)
T
ðMeVÞ

eB ¼ 0:6 GeV2 eB ¼ 0:8 GeV2 eB ¼ 1:0 GeV2

þ=2 # þ=2 # þ=2 #
0 1.63(3) 0.47(3) 1.90(3) 0.67(3) 2.16(3) 0.87(3)
113 1.48(6) 0.41(3) 1.73(6) 0.58(3) 1.95(4) 0.81(3)
122 1.40(5) 0.38(3) 1.63(5) 0.53(3) 1.86(6) 0.70(3)
130 1.23(5) 0.36(3) 1.36(5) 0.49(3) 1.46(5) 0.61(3)
142 0.94(4) 0.30(3) 0.85(4) 0.35(3) 0.68(4) 0.32(3)
148 0.66(5) 0.22(3) 0.50(4) 0.20(3) 0.38(4) 0.18(3)
153 0.43(3) 0.17(3) 0.34(3) 0.15(3) 0.26(3) 0.14(3)
163 0.17(3) 0.09(3) 0.12(3) 0.10(3) 0.09(3) 0.11(3)
176 0.05(3) 0.05(2) 0.04(3) 0.06(2) 0.03(3) 0.06(2)
189 #0:00ð3Þ 0.03(2)#0:01ð3Þ 0.03(2)#0:01ð3Þ 0.04(2)
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142 0.94(4) 0.30(3) 0.85(4) 0.35(3) 0.68(4) 0.32(3)
148 0.66(5) 0.22(3) 0.50(4) 0.20(3) 0.38(4) 0.18(3)
153 0.43(3) 0.17(3) 0.34(3) 0.15(3) 0.26(3) 0.14(3)
163 0.17(3) 0.09(3) 0.12(3) 0.10(3) 0.09(3) 0.11(3)
176 0.05(3) 0.05(2) 0.04(3) 0.06(2) 0.03(3) 0.06(2)
189 #0:00ð3Þ 0.03(2)#0:01ð3Þ 0.03(2)#0:01ð3Þ 0.04(2)
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Figure 9. The phase diagram of QCD in the B−T plane, determined from the renormalized chiral
condensate ūur+ d̄dr (upper left panel), the renormalized chiral susceptibility χr
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and the strange quark number susceptibility cs2 (lower panel).

9 The phase diagram

Finally, using the fitted two-dimensional surfaces of section 6, we study the observables as

functions of the temperature, along the lines of constant magnetic field. In particular we

analyze the renormalized chiral susceptibility χr
u + χr

d, the renormalized chiral condensate

ūur + d̄dr and the strange quark number susceptibility cs2. For the latter two observables

we determine the pseudocritical temperature Tc(B) as the inflection points of the curves,

while for the former we calculate the position of the maximum value of the observable.

The results are shown in figure 9.

To carry out the continuum extrapolation, we fit the results for Tc(B) for all three

lattice spacings (Nt = 6, 8 and 10) together with an Nt-dependent polynomial function of

order four of the form Tc(B,Nt) =
∑4

i=0(ai + biN
−2
t )Bi. This ensures the scaling of the

final results with N−2
t ∼ a2. We obtain χ2/dof. ≈ 0.5 . . . 1.2 indicating good fit qualities.

In order not to make the plots overcrowded, we only show error bars for the continuum

curves. The error coming from the continuum extrapolation is estimated to be 2MeV and is

added to the statistical error in quadrature. The error in the lattice scale determination [54]

propagates in the Tc(B) function and amounts to an additional 2−3MeV systematic error,
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Figure 2. Condensate average and di↵erence as functions of temperature for di↵erent values of the magnetic field for G (left)
and G(B, T ) (right). Data from Ref. [11].

Figures 1 and 2 display the results for combinations
of the quark condensates: the u and d condensates, their
sum and di↵erence. In the left panels of the figures, the
condensates are evaluated with a T� and B�independent
coupling G that fits the lattice results for the average
(⌃u+⌃d)/2 in vacuum, G = 4.50373 GeV�2; in the right
panels, the condensates are calculated with the coupling
G(B, T ) of Eq. (21), with the fitting parameters given in
Table 1.

The figures clearly show that the NJL model is able to
capture the sharp decrease around the crossover tempera-
ture of the lattice results for the average and di↵erence of
the condensates only when the coupling G(B, T ) is used;
when using the T� and B�independent coupling G, a
rather smooth behavior for these quantities is obtained.
We have not attempted to obtain a G(B, T ) that gives
a best fit for both (⌃u + ⌃d)/2 and ⌃u � ⌃d, but one
sees that the model nevertheless gives a very reasonable
description of the latter. Although here we are not partic-

ularly concerned with the results at T = 0, for the sake
of completeness we mention that an extrapolation of the
fit to T = B = 0 gives G(0, 0) = 4.6311 GeV�2. Such a

coupling leads to h ̄f f i1/300 = �236.374 MeV, which dif-
fers only by a few percent from the value calculated with
G. This small discrepancy is due to the fact that we have
attempted to obtain a good fit with a limited number of
parameters of the lattice data at high temperatures only,
where more data are available.

3 Thermodynamical quantities

In the present section we examine the predictions of the
NJL model for the thermodynamical quantities of mag-
netized quark matter when the fitted coupling G(B, T ) is
used. We start by considering the quantities that charac-
terize the equation of state (EoS), such as the normalized
pressure PN = P (T,B) � P (0, B), the entropy density s,

G
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natural units where 1 GeV2 = 1.44 × 1019 G. Note also that
here we have taken the chemical equilibrium condition by
setting µu = µd = µ. Details of the manipulations leading to
this equation can be found in the appendix of Ref. [23]. Note
that the condensates for the flavors u and d are different due to
their different electric charges. Remark also that, in principle,
one should have two coupled gap equations for the two distinct
flavors: Mu = mu − 2G(⟨ψ̄uψu⟩ + ⟨ψ̄dψd⟩) and Md = md −
2G(⟨ψ̄uψu⟩ + ⟨ψ̄dψd⟩). However, in the two-flavor case, the
different condensates contribute to Mu and Md in a symmetric
way and, since mu = md = m, one can write Mu = Md = M .

Reference [13] presents results for ("u + "d )/2 and "u −
"d , where "f = "f (B,T ) is defined as

"f (B,T ) = 2mf

m2
πf 2

π

[⟨ψ̄f ψf ⟩ − ⟨ψ̄f ψf ⟩0] + 1, (2.4)

with ⟨ψ̄f ψf ⟩0 being the quark condensate at T = 0 and B = 0.
Let us recall the important result by Miransky and

Shovkovy [35] that, for sufficiently strong magnetic fields,
eB ≫ $2

QCD, the leading-order running of the QCD coupling
constant αs is given by

1
αs

∼ b ln
eB

$2
QCD

, (2.5)

where b = (11Nc − 2Nf )/(12π ), and the energy scale
√

eB
is fixed up to a factor of order 1. Motivated by this result,
we propose for the NJL coupling, at T = 0, the interpolating
formula

G(B) = G0

1 + α ln
(
1 + β eB

$2
QCD

) , (2.6)

with G0 = 5.022 GeV−2, which is the value of the coupling
at B = 0. The free parameters α and β are fixed to obtain a
reasonable description of the lattice average ("u + "d )/2 for
T = 0. In principle, for the values of B presently considered
in lattice simulations, there is no reason for G(B) to have
a logarithm-running like the large-B running of αs(B). The
proposed parametrization for the running of G with B is mo-
tivated, primarily, by the assumption that similar physics that
drives asymptotic freedom is also responsible for the decrease
of the effective coupling with the magnetic field; namely, the
back reaction of gluons via the coupling of the magnetic
field on the sea quarks. In addition, although the precise B
dependence of the effective coupling for values of eB not much
larger that $2

QCD is not known, the proposed parametrization
involves a minimum number of fitting parameters, extrapolates
smoothly to the large-B running of the quark-gluon running in
QCD, and can be tested when larger values of B will be used
in lattice simulations. As we will show in the following, only
a decrease (not necessarily in a logarithmic way) of G with B
can account for the recent lattice results at T = 0.

At high temperatures, αs also runs as the inverse of
ln(T/$QCD). However, the values of T used in the lattice
simulations of Refs. [12,13], T ! $QCD, are not high enough
to justify the use of such a running for G. Since the explicit
form in which αs runs with B and T is presently not known,
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FIG. 1. (Color online) The condensate average as a function of
the temperature. Data points are from the lattice simulations of
Ref. [13].

we consider a T dependence for G as

G (B,T ) = G (B)

(

1 − γ
|eB|
$2

QCD

T

$QCD

)

, (2.7)

where γ is fixed to obtain a reasonable description of the
temperature dependence of the lattice average ("u + "d )/2 at
the highest temperatures. Notice that terms proportional to T ,
T 2, (BT )2, . . . could be considered; however, it turned out
that they are not needed to obtain a reasonable fit to the lattice
data for ("u + "d )/2. It should be clear that, for the values of
B used in the lattice simulations, any function G(B) that gives
an effective coupling that decreases with B can fit the lattice
data for ("u + "d )/2 for the magnetic-field values used in the
simulations if a sufficient number of free parameters are used.

III. NUMERICAL RESULTS

Before presenting our results, we note that Refs. [12,13]
used mu = md = 5.5 MeV, mπ = 135 MeV, and fπ =
86 MeV in the multiplicative factor mf /(m2

πf 2
π ) in Eq. (2.4) to

make "f (B,T ) dimensionless. The fact that these values differ
from the ones we use is of no significance for comparison
purposes since they only set a general scale. We also consider
$QCD = 200 MeV.

Figure 1 displays the condensate average ("u + "d )/2.
We obtain a good fit of the data at T = 0 with α = 2 and
β = 0.000 327 in Eq. (2.6). Figure 1 reveals that the magnetic
catalysis is naturally reproduced at T = 0. In addition, the
T dependence is also reasonably well reproduced—here we
used γ = 0.0175 in Eq. (2.7). Having fixed our parameters,
we proceed in the analyses of other quantities.

The difference "u − "d is displayed in Fig. 2. Although
there is a small deviation from the lattice results for the highest
values of B, the overall agreement is quite impressive, given
the simplicity of the model.

In this work we consider the physical point with nonzero
current quark masses so that, at high temperatures, the
model displays a crossover where chiral symmetry is partially
restored. In this case, one can only establish a pseudocritical
temperature which depends on the observable used to define
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natural units where 1 GeV2 = 1.44 × 1019 G. Note also that
here we have taken the chemical equilibrium condition by
setting µu = µd = µ. Details of the manipulations leading to
this equation can be found in the appendix of Ref. [23]. Note
that the condensates for the flavors u and d are different due to
their different electric charges. Remark also that, in principle,
one should have two coupled gap equations for the two distinct
flavors: Mu = mu − 2G(⟨ψ̄uψu⟩ + ⟨ψ̄dψd⟩) and Md = md −
2G(⟨ψ̄uψu⟩ + ⟨ψ̄dψd⟩). However, in the two-flavor case, the
different condensates contribute to Mu and Md in a symmetric
way and, since mu = md = m, one can write Mu = Md = M .

Reference [13] presents results for ("u + "d )/2 and "u −
"d , where "f = "f (B,T ) is defined as

"f (B,T ) = 2mf

m2
πf 2

π

[⟨ψ̄f ψf ⟩ − ⟨ψ̄f ψf ⟩0] + 1, (2.4)

with ⟨ψ̄f ψf ⟩0 being the quark condensate at T = 0 and B = 0.
Let us recall the important result by Miransky and

Shovkovy [35] that, for sufficiently strong magnetic fields,
eB ≫ $2

QCD, the leading-order running of the QCD coupling
constant αs is given by

1
αs

∼ b ln
eB

$2
QCD

, (2.5)

where b = (11Nc − 2Nf )/(12π ), and the energy scale
√

eB
is fixed up to a factor of order 1. Motivated by this result,
we propose for the NJL coupling, at T = 0, the interpolating
formula

G(B) = G0

1 + α ln
(
1 + β eB

$2
QCD

) , (2.6)

with G0 = 5.022 GeV−2, which is the value of the coupling
at B = 0. The free parameters α and β are fixed to obtain a
reasonable description of the lattice average ("u + "d )/2 for
T = 0. In principle, for the values of B presently considered
in lattice simulations, there is no reason for G(B) to have
a logarithm-running like the large-B running of αs(B). The
proposed parametrization for the running of G with B is mo-
tivated, primarily, by the assumption that similar physics that
drives asymptotic freedom is also responsible for the decrease
of the effective coupling with the magnetic field; namely, the
back reaction of gluons via the coupling of the magnetic
field on the sea quarks. In addition, although the precise B
dependence of the effective coupling for values of eB not much
larger that $2

QCD is not known, the proposed parametrization
involves a minimum number of fitting parameters, extrapolates
smoothly to the large-B running of the quark-gluon running in
QCD, and can be tested when larger values of B will be used
in lattice simulations. As we will show in the following, only
a decrease (not necessarily in a logarithmic way) of G with B
can account for the recent lattice results at T = 0.

At high temperatures, αs also runs as the inverse of
ln(T/$QCD). However, the values of T used in the lattice
simulations of Refs. [12,13], T ! $QCD, are not high enough
to justify the use of such a running for G. Since the explicit
form in which αs runs with B and T is presently not known,
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FIG. 1. (Color online) The condensate average as a function of
the temperature. Data points are from the lattice simulations of
Ref. [13].

we consider a T dependence for G as

G (B,T ) = G (B)

(

1 − γ
|eB|
$2

QCD

T

$QCD

)

, (2.7)

where γ is fixed to obtain a reasonable description of the
temperature dependence of the lattice average ("u + "d )/2 at
the highest temperatures. Notice that terms proportional to T ,
T 2, (BT )2, . . . could be considered; however, it turned out
that they are not needed to obtain a reasonable fit to the lattice
data for ("u + "d )/2. It should be clear that, for the values of
B used in the lattice simulations, any function G(B) that gives
an effective coupling that decreases with B can fit the lattice
data for ("u + "d )/2 for the magnetic-field values used in the
simulations if a sufficient number of free parameters are used.

III. NUMERICAL RESULTS

Before presenting our results, we note that Refs. [12,13]
used mu = md = 5.5 MeV, mπ = 135 MeV, and fπ =
86 MeV in the multiplicative factor mf /(m2

πf 2
π ) in Eq. (2.4) to

make "f (B,T ) dimensionless. The fact that these values differ
from the ones we use is of no significance for comparison
purposes since they only set a general scale. We also consider
$QCD = 200 MeV.

Figure 1 displays the condensate average ("u + "d )/2.
We obtain a good fit of the data at T = 0 with α = 2 and
β = 0.000 327 in Eq. (2.6). Figure 1 reveals that the magnetic
catalysis is naturally reproduced at T = 0. In addition, the
T dependence is also reasonably well reproduced—here we
used γ = 0.0175 in Eq. (2.7). Having fixed our parameters,
we proceed in the analyses of other quantities.

The difference "u − "d is displayed in Fig. 2. Although
there is a small deviation from the lattice results for the highest
values of B, the overall agreement is quite impressive, given
the simplicity of the model.

In this work we consider the physical point with nonzero
current quark masses so that, at high temperatures, the
model displays a crossover where chiral symmetry is partially
restored. In this case, one can only establish a pseudocritical
temperature which depends on the observable used to define
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natural units where 1 GeV2 = 1.44 × 1019 G. Note also that
here we have taken the chemical equilibrium condition by
setting µu = µd = µ. Details of the manipulations leading to
this equation can be found in the appendix of Ref. [23]. Note
that the condensates for the flavors u and d are different due to
their different electric charges. Remark also that, in principle,
one should have two coupled gap equations for the two distinct
flavors: Mu = mu − 2G(⟨ψ̄uψu⟩ + ⟨ψ̄dψd⟩) and Md = md −
2G(⟨ψ̄uψu⟩ + ⟨ψ̄dψd⟩). However, in the two-flavor case, the
different condensates contribute to Mu and Md in a symmetric
way and, since mu = md = m, one can write Mu = Md = M .

Reference [13] presents results for ("u + "d )/2 and "u −
"d , where "f = "f (B,T ) is defined as

"f (B,T ) = 2mf

m2
πf 2

π

[⟨ψ̄f ψf ⟩ − ⟨ψ̄f ψf ⟩0] + 1, (2.4)

with ⟨ψ̄f ψf ⟩0 being the quark condensate at T = 0 and B = 0.
Let us recall the important result by Miransky and

Shovkovy [35] that, for sufficiently strong magnetic fields,
eB ≫ $2

QCD, the leading-order running of the QCD coupling
constant αs is given by

1
αs

∼ b ln
eB

$2
QCD

, (2.5)

where b = (11Nc − 2Nf )/(12π ), and the energy scale
√

eB
is fixed up to a factor of order 1. Motivated by this result,
we propose for the NJL coupling, at T = 0, the interpolating
formula

G(B) = G0

1 + α ln
(
1 + β eB

$2
QCD

) , (2.6)

with G0 = 5.022 GeV−2, which is the value of the coupling
at B = 0. The free parameters α and β are fixed to obtain a
reasonable description of the lattice average ("u + "d )/2 for
T = 0. In principle, for the values of B presently considered
in lattice simulations, there is no reason for G(B) to have
a logarithm-running like the large-B running of αs(B). The
proposed parametrization for the running of G with B is mo-
tivated, primarily, by the assumption that similar physics that
drives asymptotic freedom is also responsible for the decrease
of the effective coupling with the magnetic field; namely, the
back reaction of gluons via the coupling of the magnetic
field on the sea quarks. In addition, although the precise B
dependence of the effective coupling for values of eB not much
larger that $2

QCD is not known, the proposed parametrization
involves a minimum number of fitting parameters, extrapolates
smoothly to the large-B running of the quark-gluon running in
QCD, and can be tested when larger values of B will be used
in lattice simulations. As we will show in the following, only
a decrease (not necessarily in a logarithmic way) of G with B
can account for the recent lattice results at T = 0.

At high temperatures, αs also runs as the inverse of
ln(T/$QCD). However, the values of T used in the lattice
simulations of Refs. [12,13], T ! $QCD, are not high enough
to justify the use of such a running for G. Since the explicit
form in which αs runs with B and T is presently not known,
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FIG. 1. (Color online) The condensate average as a function of
the temperature. Data points are from the lattice simulations of
Ref. [13].

we consider a T dependence for G as

G (B,T ) = G (B)

(

1 − γ
|eB|
$2

QCD

T

$QCD

)

, (2.7)

where γ is fixed to obtain a reasonable description of the
temperature dependence of the lattice average ("u + "d )/2 at
the highest temperatures. Notice that terms proportional to T ,
T 2, (BT )2, . . . could be considered; however, it turned out
that they are not needed to obtain a reasonable fit to the lattice
data for ("u + "d )/2. It should be clear that, for the values of
B used in the lattice simulations, any function G(B) that gives
an effective coupling that decreases with B can fit the lattice
data for ("u + "d )/2 for the magnetic-field values used in the
simulations if a sufficient number of free parameters are used.

III. NUMERICAL RESULTS

Before presenting our results, we note that Refs. [12,13]
used mu = md = 5.5 MeV, mπ = 135 MeV, and fπ =
86 MeV in the multiplicative factor mf /(m2

πf 2
π ) in Eq. (2.4) to

make "f (B,T ) dimensionless. The fact that these values differ
from the ones we use is of no significance for comparison
purposes since they only set a general scale. We also consider
$QCD = 200 MeV.

Figure 1 displays the condensate average ("u + "d )/2.
We obtain a good fit of the data at T = 0 with α = 2 and
β = 0.000 327 in Eq. (2.6). Figure 1 reveals that the magnetic
catalysis is naturally reproduced at T = 0. In addition, the
T dependence is also reasonably well reproduced—here we
used γ = 0.0175 in Eq. (2.7). Having fixed our parameters,
we proceed in the analyses of other quantities.

The difference "u − "d is displayed in Fig. 2. Although
there is a small deviation from the lattice results for the highest
values of B, the overall agreement is quite impressive, given
the simplicity of the model.

In this work we consider the physical point with nonzero
current quark masses so that, at high temperatures, the
model displays a crossover where chiral symmetry is partially
restored. In this case, one can only establish a pseudocritical
temperature which depends on the observable used to define
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FIG. 2. (Color online) The condensate difference as a function of
temperature. Data points are from the lattice simulations of Ref. [13].

it. Here, we use the location of the peaks for the vacuum nor-
malized quark condensates, where the thermal susceptibilities
are given by

χT = −mπ

∂σ

∂T
, (3.1)

with σ being defined by

σ = ⟨ψ̄uψu⟩(B,T ) + ⟨ψ̄dψd⟩(B,T )
⟨ψ̄uψu⟩(B,0) + ⟨ψ̄dψd⟩(B,0)

. (3.2)

In Fig. 3 we plot the thermal susceptibility defined by
Eq. (3.1) as a function of the temperature for different values
of the magnetic field. The figure clearly indicates the decrease
of Tpc for increasing values of the magnetic field. Again, the
effects of asymptotic freedom seem to be a rather important
feature to conciliate results obtained with the NJL model and
lattice simulations.

Finally, in Fig. 4 we present the results for the pseudocritical
Tpc temperature as a function of the magnetic field. It is
clearly seen in this figure that the pseudocritical temperature
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FIG. 3. (Color online) The normalized thermal susceptibility as
a function of the temperature for different values of the magnetic
field B.
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FIG. 4. The pseudocritical temperature for the chiral transition of
magnetized quark matter as a function of magnetic field.

decreases as B increases, in (qualitative) agreement with the
lattice results of Refs. [12,13].

The phase diagram shown in Fig. 4 reproduces qualitatively
the lattice results. The figure shows a Tpc dependence with B
that starts linearly at small B, with almost no curvature, while
the lattice results have an almost-vanishing linear term and
a noticeable curvature. One may view this as a consequence
of the rather simple form used for the running of G(B,T ).
However, it is important to note that our ansatz avoids the
undesired “turnover” effect seen in NJL models with a B-
independent coupling, in which at intermediate values of B,
after an initial decrease, Tpc starts to increase with B—see,
e.g., Refs. [33,34]. A better quantitative agreement with the
lattice phase diagram can certainly be obtained by using a
G(B,T ) with more fitting parameters.

IV. CONCLUSIONS AND PERSPECTIVES

In this work we have considered the two-flavor NJL model
for hot and magnetized quark matter within the MFA. With the
aim of understanding discrepancies between effective model
predictions and recent lattice results regarding the behavior of
the chiral-transition pseudocritical temperature as a function
of B, we examined the effect of introducing a running
coupling G motivated by asymptotic freedom. Effective quark
theories such as the NJL model can be motivated by QCD
by integrating-out gluonic degrees of freedom. Although
some features of confinement can be enforced by means of
extending the model with the Polyakov loop, the running with
energy scales of the effective coupling, such as, e.g., due
to asymptotic freedom, is lost. In general, a decrease of G
with the temperature does not modify the qualitative features
regarding the chiral phase transition [36]. However, as we have
discussed, the same does not seem to be the case in the presence
of a strong magnetic field when the formation of a quark
condensate ⟨ψ̄f ψf ⟩ is enhanced by the magnetic catalysis
effect. Generically, the quark mass gap at zero temperature
sets the pseudocritical temperature at which chiral symmetry
is (partially) restored. Since the effective quark mass M in
the NJL model, given by the gap equation M ∼ −G⟨ψ̄f ψf ⟩,
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Matching the NJL model to lattice QCD

For given values of T and eB:

 - start with an initial attempt for G(T, eB)

 - for this G, make an initial guess for M

 - solve the gap equation

 - with M, compute the condensate averages 

 - compare to lattice QCD result for that T and eB

 - repeat until the best G(T, eB) is found

Build a thermo-magnetic coupling for the NJL model from lattice QCD results
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Fig. 2. Condensate average and difference as functions of temperature for different values of the magnetic field for G (left) and
G(B, T ) (right). Data from ref. [13].

The dependence of the pseudocritical temperature on
the magnetic field strength is displayed in fig. 7, which
shows that when G(B, T ) is used, the phenomenon of IMC
is observed to occur in a manner consistent with LQCD
predictions. In this figure we define Tpc using the thermal
susceptibility χT and the specific heat cv; we also include
the temperatures of the maxima of interaction measure
∆ to investigate its displacement with increasing B. It is
interesting to remark that although this peak appears at
a temperature which is a little higher than Tpc, it approx-
imately follows the behavior of magnetic thermal suscep-
tibility.

Finally, let us consider the magnetization which, in our
case, can be written as

M =
dP

dB
=

∂P

∂B
+

∂P

∂M

∂M

∂B
+

∂P

∂G

∂G

∂B
, (24)

but, the quark masses are obtained by the gap equation
∂P/∂M = 0, so that the second term vanishes. Notice
that a linear term, arising from the B2/2 contribution to
the pressure, has been neglected so as to normalize M to
vanish at zero temperature. Therefore,

M =
∂

∂B
(Pu + Pd) +

(M − m)2

4G2

∂G

∂B
. (25)

Since the vacuum part of the pressure does not depend
on B, it does not contribute to the magnetization. The
derivatives of the pressure are

∂Pmag
f

∂B
=

2Pmag
f

B
− Nc|qf |

4π2
M2

[
ln Γ (xf ) − 1

2
ln(2π)

+xf −
(

xf − 1
2

)
ln(xf )

]
, (26)

∂PTmag
f

∂B
=

PTmag
f

B

− Nc|qf |2B
2π2

∞∑

k=0

kαk

∫ +∞

−∞
dp

n(Ef )
Ef

. (27)

The magnetization, eq. (25), is readily obtained from the
expressions given in sect. 2 for the pressure. The remaining
derivatives are easily calculated.

In fig. 8 we show the normalized magnetization M/e
as a function of temperature for different magnetic field
strengths. Again, one observes that a fixed coupling G
does not predict a monotonic increase of the magnetiza-
tion with eB for a given temperature. This can be ob-
served more clearly in fig. 9 where we show how the pres-
sure and magnetization depend on eB at a fixed tempera-
ture, T = 70MeV. While the traditional fixed coupling

G G(eB, T )



Thermal Susceptibilities and Specific Heat

Eur. Phys. J. A 53 (2017) 101

Eur. Phys. J. A (2017) 53: 101 Page 9 of 12

50 100 150 200 250

T [MeV]

0

1

2

3

4

5

6

χ T

eB=0.0 GeV2

eB=0.2 GeV2

eB=0.4 GeV2

eB=0.6 GeV2

eB=0.8 GeV2

50 75 100 125 150 175 200 225 250

T [MeV]

0

1

2

3

4

5

6

χ T

eB=0.0 GeV2

eB=0.2 GeV2

eB=0.4 GeV2

eB=0.6 GeV2

eB=0.8 GeV2

0 50 100 150 200 250 300

T [MeV]

0

10

20

30

40

50

60

70

80

c v / 
T3

eB=0.0 GeV2

eB=0.2 GeV2

eB=0.4 GeV2

eB=0.6 GeV2

eB=0.8 GeV2

0 50 100 150 200 250 300

T [MeV]

0

20

40

60

80

c v / 
T3

eB=0.0 GeV2

eB=0.2 GeV2

eB=0.4 GeV2

eB=0.6 GeV2

eB=0.8 GeV2

(b)

Fig. 5. The thermal susceptibility and specific heat as functions of temperature for different values of the magnetic field obtained
with G (left) and G(B, T ) (right).
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Fig. 3. Normalized pressure and entropy density as functions of temperature for different values of the magnetic field calculated
with G (left) and G(B, T ) (right).

predicts a magnetization that becomes negative as the
magnetic field strength is increased, the thermo-magnetic
coupling yields to positive magnetizations and is in agree-
ment to the paramagnetic nature of thermal QCD medium
observed in Nf = 2 + 1 LQCD simulations of ref. [72].

We close this section by remarking that, to the best
of our knowledge, LQCD predictions for the Nf = 2 case
analyzed here are not available in the literature. Although
one could argue that the use of a three-flavor version of
the NJL model would be more appropriate to compare
with lattice results, we recall that our ansatz for the four-
fermion interaction strength, G, was obtained by fitting
the LQCD results for the light quark sector, which repre-
sents the relevant degrees of freedom regarding the chiral
transition. Using this fit, one retrieves, at least qualita-
tively, most of the lattice predictions for different ther-
modynamical quantities for the Nf = 2 + 1 case, improv-
ing over predictions made with a fixed coupling. Remark
that a more sophisticated SU(3) NJL model possesses a
six-fermion vertex characterized by another coupling, K,
tailored to account for strangeness, and has been adopted
for realistic astrophysical applications, where strangeness
is important, or comparisons aiming at quantitative agree-
ment with Nf = 2 + 1 LQCD predictions for thermody-
namical observables. In principle, K can also be consid-
ered to have a thermo-magnetic dependence and then with

this extra degree of freedom one could attempt to obtain
a numerically more accurate description of the LQCD re-
sults for Nf = 2 + 1 as a (more appropriate) alternative
to the simple approach considering solely the G coupling,
with a magnetic dependence only [59]. In a forthcoming
work, we will show the thermo-magnetic dependent cou-
plings G and K obtained by fitting the mean and dif-
ference of u and d quark condensates computed in the
framework of LQCD. While finishing our paper we have
learned of a similar implementation of G(B, T ) in ref. [74]

4 Conclusions

We have investigated the thermodynamics of magnetized
quark matter within the NJL model using a coupling G
that decreases with both the temperature T and the mag-
netic field B. The T and B dependence of G was obtained
by an accurate fit of lattice QCD results for the light-
quark condensates. Using the fitted G(B, T ), we computed
different thermodynamical quantities and analyzed the
qualitative changes implied by the fitted coupling. The
main conclusion of our work is that a coupling G(B, T )
that fits lattice result for Tpc as determined by the quark
condensates, gives results for the pressure, entropy and
energy densities that are in qualitative agreement with

G G(eB, T)
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Fig. 5. The thermal susceptibility and specific heat as functions of temperature for different values of the magnetic field obtained
with G (left) and G(B, T ) (right).
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Figure 7. The pseudocritical temperature for the chiral transition of magnetized quark matter as a function of the magnetic
field strength obtained with G (top) and with G(B, T ) (bottom).
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9 The phase diagram

Finally, using the fitted two-dimensional surfaces of section 6, we study the observables as

functions of the temperature, along the lines of constant magnetic field. In particular we

analyze the renormalized chiral susceptibility χr
u + χr

d, the renormalized chiral condensate

ūur + d̄dr and the strange quark number susceptibility cs2. For the latter two observables

we determine the pseudocritical temperature Tc(B) as the inflection points of the curves,

while for the former we calculate the position of the maximum value of the observable.

The results are shown in figure 9.

To carry out the continuum extrapolation, we fit the results for Tc(B) for all three

lattice spacings (Nt = 6, 8 and 10) together with an Nt-dependent polynomial function of

order four of the form Tc(B,Nt) =
∑4

i=0(ai + biN
−2
t )Bi. This ensures the scaling of the

final results with N−2
t ∼ a2. We obtain χ2/dof. ≈ 0.5 . . . 1.2 indicating good fit qualities.

In order not to make the plots overcrowded, we only show error bars for the continuum

curves. The error coming from the continuum extrapolation is estimated to be 2MeV and is

added to the statistical error in quadrature. The error in the lattice scale determination [54]

propagates in the Tc(B) function and amounts to an additional 2−3MeV systematic error,

– 15 –

Bali et al.

G G(eB, T)
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quarks !(T ,{µf },B; {φf },ρ) can be rewritten using Eq. (2.22):

! =
∑

f =u,d,s

!f + 2G
(
φ2

u + φ2
d + φ2

s

)
− 4Kφuφdφs + GV ρ2,

(3.2)

with each flavor contribution !f (T ,Mf ,µ̃f ,B) given by

!f = −
[
θvac
f + θmed

f + θ
mag
f

]
. (3.3)

The thermodynamically consistent solutions (discussed in
Ref. [36]) correspond to the stationary solutions of ! as a
function of φf and ρ and are the key for the correct calculation
of the magnetization, as shown in the following. It is easy to
verify that one of the stationary solutions of the grand potential,
Eq. (3.2), is

∂!

∂φf

= 0, (3.4)

where the condensate is given by

φf = ∂!

∂mf

= ∂!

∂Mf

, (3.5)

with the corresponding gap equation, Eq. (2.10). Due to
presence of the vector interaction, the grand potential becomes
an explicit function of the total quark density and, once more,
in order to assure thermodynamical consistency [36,50], we
have to impose a second stationary condition:

∂!

∂ρ
= 0 =

∑

f =u,d,s

∂!

∂µ̃f

∂µ̃f

∂ρ
+ 2GV ρ, (3.6)

where we have used Eq. (3.2) and

ρf = − ∂!

∂µf

= − ∂!

∂µ̃f

. (3.7)

The constraint in the latter equation simply means that the total
quark density has to satisfy the condition ρ = ρu + ρd + ρs in
equilibrium. Both the gap equation and the latter constraint
have to be simultaneously and self-consistently solved.

From Eq. (3.1), one may write

M = − ∂!

∂B

∣∣∣∣
{φf },ρ

− ∂!

∂φf

∂φf

∂B
− ∂!

∂ρ

∂ρ

∂B
, (3.8)

which can be simplified using Eq. (3.3) and the constraints
given by Eqs. (3.4) and (3.7), yielding the following expres-
sion:

M =
∑

f

[
∂θmed

f

∂B
+

∂θ
mag
f

∂B

]

. (3.9)

This expression shows that only two terms contribute to the
magnetization. Note that in Refs. [31,32] the derivatives of
the φ’s were incorrectly taken as being nonzero. Hence, a
spurious increase of orders of magnitude was found in the
magnetization in these references, which generated incorrect
results for the perpendicular pressure, leading the authors to
erroneously conclude that strong anisotropy effects could exist
for magnetic fields as small as 1017 Gauss.

The (nonzero) derivatives θ ′ at T = 0 are as in Ref. [31]:

θ ′med
f =

θmed
f

B
− NcB|qf |2

2π2

νmax∑

ν=0

αν

× ln

⎛

⎝
µ̃f +

√
µ̃2

f − s2
f

sf

⎞

⎠ν, (3.10)

θ
′mag
f = 2

θ
mag
f

B
−

Nc|qf |M2
f

4π2

[
ln )(xf ) − 1

2
ln(2π )

+ xf −
(

xf − 1
2

)
ln(xf )

]
. (3.11)

Note that, for the calculation within the SU(2) NJL model, we
have only to take the summation over the flavors u and d in the
magnetization expression, Eq. (3.9).

For charge neutral β-equilibrated matter, the presence of
the free gas of leptons gives an additional contribution to the
magnetization, θ ′

l :

θ ′med
l = θmed

l

B
− B

2π2

νmax∑

ν=0

ανν ln

⎛

⎝
µl +

√
µ2

l − s2
l

sl

⎞

⎠,

(3.12)

where only the medium term appears.

IV. RESULTS AND DISCUSSION

To exemplify the differences that appear when taking the
derivatives of the φ’s as (correctly) being zero, we remake
some of the figures from Refs. [31,32] and point out the
differences we find. In each figure we show different quantities
as a function of baryon number density ρB =

∑
f ρf /3.

In different figures we show results for zero-strangeness
isospin-symmetric matter and charge neutral β-equilibrated
neutron-star matter with leptons. In the first case,
zero-strangeness is enforced at zero temperature simply
by not including the strange quark. Isospin-symmetric matter
is enforced by using the same chemical potential for up and
down quarks, µu = µd = µB/3, where µB is the baryon
chemical potential. In the second case, charge neutral matter
is enforced by

∑

i

qiρi = 0, (4.1)

where the index i runs over quarks and leptons.
Beta-equilibrium allows us to rewrite the fermion chemical
potentials as a function of the chemical potentials related to
the conserved quantities in the system, baryon and charge
chemical potentials:

µu = 1
3µB + 2

3µq, (4.2)

µd = 1
3µB − 1

3µq, (4.3)

µs = 1
3µB − 1

3µq, (4.4)

µe = µµ = −µq, (4.5)
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The thermodynamically consistent solutions (discussed in
Ref. [36]) correspond to the stationary solutions of ! as a
function of φf and ρ and are the key for the correct calculation
of the magnetization, as shown in the following. It is easy to
verify that one of the stationary solutions of the grand potential,
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where the condensate is given by
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, (3.5)

with the corresponding gap equation, Eq. (2.10). Due to
presence of the vector interaction, the grand potential becomes
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have to impose a second stationary condition:
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equilibrium. Both the gap equation and the latter constraint
have to be simultaneously and self-consistently solved.

From Eq. (3.1), one may write

M = − ∂!

∂B

∣∣∣∣
{φf },ρ

− ∂!

∂φf

∂φf

∂B
− ∂!

∂ρ

∂ρ

∂B
, (3.8)

which can be simplified using Eq. (3.3) and the constraints
given by Eqs. (3.4) and (3.7), yielding the following expres-
sion:

M =
∑

f

[
∂θmed

f

∂B
+

∂θ
mag
f

∂B

]

. (3.9)

This expression shows that only two terms contribute to the
magnetization. Note that in Refs. [31,32] the derivatives of
the φ’s were incorrectly taken as being nonzero. Hence, a
spurious increase of orders of magnitude was found in the
magnetization in these references, which generated incorrect
results for the perpendicular pressure, leading the authors to
erroneously conclude that strong anisotropy effects could exist
for magnetic fields as small as 1017 Gauss.

The (nonzero) derivatives θ ′ at T = 0 are as in Ref. [31]:

θ ′med
f =

θmed
f

B
− NcB|qf |2

2π2

νmax∑

ν=0

αν

× ln

⎛

⎝
µ̃f +

√
µ̃2

f − s2
f

sf

⎞

⎠ν, (3.10)

θ
′mag
f = 2

θ
mag
f

B
−

Nc|qf |M2
f

4π2

[
ln )(xf ) − 1

2
ln(2π )

+ xf −
(

xf − 1
2

)
ln(xf )

]
. (3.11)

Note that, for the calculation within the SU(2) NJL model, we
have only to take the summation over the flavors u and d in the
magnetization expression, Eq. (3.9).

For charge neutral β-equilibrated matter, the presence of
the free gas of leptons gives an additional contribution to the
magnetization, θ ′

l :

θ ′med
l = θmed

l

B
− B

2π2

νmax∑

ν=0

ανν ln

⎛

⎝
µl +

√
µ2

l − s2
l

sl

⎞

⎠,

(3.12)

where only the medium term appears.

IV. RESULTS AND DISCUSSION

To exemplify the differences that appear when taking the
derivatives of the φ’s as (correctly) being zero, we remake
some of the figures from Refs. [31,32] and point out the
differences we find. In each figure we show different quantities
as a function of baryon number density ρB =

∑
f ρf /3.

In different figures we show results for zero-strangeness
isospin-symmetric matter and charge neutral β-equilibrated
neutron-star matter with leptons. In the first case,
zero-strangeness is enforced at zero temperature simply
by not including the strange quark. Isospin-symmetric matter
is enforced by using the same chemical potential for up and
down quarks, µu = µd = µB/3, where µB is the baryon
chemical potential. In the second case, charge neutral matter
is enforced by

∑

i

qiρi = 0, (4.1)

where the index i runs over quarks and leptons.
Beta-equilibrium allows us to rewrite the fermion chemical
potentials as a function of the chemical potentials related to
the conserved quantities in the system, baryon and charge
chemical potentials:

µu = 1
3µB + 2

3µq, (4.2)

µd = 1
3µB − 1

3µq, (4.3)

µs = 1
3µB − 1

3µq, (4.4)

µe = µµ = −µq, (4.5)
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Figure 7. The pseudocritical temperature for the chiral transition of magnetized quark matter as a function of the magnetic
field strength obtained with G (top) and with G(B, T ) (bottom).
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with lattice predictions, something which is impossible to obtain 
in the traditional calculations with constant coupling.

In the present letter we improve the application of Ref. [1]
by determining an accurate running coupling, G(eB), at vanish-
ing temperatures, following the procedure introduced recently in 
Ref. [25] where the thermo-magnetic running (in the high-T limit) 
was determined. We show that in this case the neutral pion mass, 
which represents the soft mode, is in excellent numerical agree-
ment with lattice QCD simulations [26,27]. At the same time we 
find that the scalar meson mass remains almost constant for a 
wide range of eB values. This interesting result, which is a byprod-
uct of the stability of the effective quark mass within our approach, 
should be contrasted to the linear increase found when a fixed 
coupling is used, causing the scalar mode to decouple at strong 
magnetic fields.

We also investigate the neutral pion decay constant and predict 
that this quantity increases with B in a way compatible with the 
Gell–Mann–Oakes–Renner relation. Finally, we also predict that the 
meson-quark couplings decrease with increasing magnetic fields. 
The Letter is organized as follows. In the next section we present 
the model and the formalism. The numerical results are discussed 
in Sec. 3 and our concluding remarks are presented in Sec. 4.

2. General formalism

Let us start by reviewing the main steps related to the evalua-
tion of the mesonic properties using the RPA formalism within the 
MFIR framework as done in Ref. [1]. We also present the ansatz for 
the magnetic coupling at vanishing temperatures.

2.1. Meson properties under strong magnetic field

In the presence of a magnetic field the standard two-flavor NJL 
model is described by

L = ψ̄ f
(
i/D − m̃

)
ψ f + G

[
(ψ̄ f ψ f )

2 + (ψ̄ f iγ5τ⃗ψ f )
2
]

− 1
4

F µν Fµν , (1)

where a sum over repeated f is implied. The electromagnetic 
gauge field is represented by Aµ , F µν = ∂µ Aν − ∂ν Aµ , τ⃗ is the 
isospin matrix, the coupling constant by G while Q = diag(qu =
2e/3, qd = −e/3) represents the charge matrix, Dµ = (i∂µ − Q Aµ)
is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
and m̃ = diag(mu, md) represents the bare quark mass matrix.

Here, we adopt the Landau gauge, i.e., Aµ = δµ2x1 B , thus B⃗ =
Bê3. Then, in the mean field approximation the NJL lagrangian is 
given by [6]

L = ψ̄ f
(
i/D − M f

)
ψ f + G

〈
ψ̄ f ψ f

〉2 − 1
4

F µν Fµν , (2)

where ⟨ψ̄ f ψ f ⟩ represents the quark condensates. The effective 
quark mass for a given flavor is

Mi = mi − 2G[
〈
ψ̄iψi

〉
+ ⟨ψ̄ jψ j⟩] , (3)

with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
sates enter in a symmetric manner. It has been shown in Ref. [1]
that in the RPA approximation the π0 meson mass in a magne-
tized medium can be calculated selecting the quantum numbers 
associated to the neutral pion. From the Bethe–Salpeter equation 
one obtains:

(igπ0qq)
2 iDπ0(k

2) = 2iG
1 − 2G(PS(k2)

, (4)

As usual in the last equation the left hand side of the equality 
is calculated by representing the quark-pion interaction with the 
following Lagrangian density [4]:

Lπqq = igπqqψ̄γ5τ⃗ · π⃗ψ , (5)

where π⃗ stands for the pion field while gπqq represents the cou-
pling strength between pions and quarks. Both sides of eq. (4) can 
be calculated using the standard meson propagator [28],

Dπ0(k
2) = 1

k2 − m2
π0

, (6)

as well as the quark (dressed) propagator in a magnetic medium 
[7,8],

Sq(x, x′) = ei)q(x,x′)
∞∑

n=0

Sq,n(x − x′) , q = u,d . (7)

The quark propagator in a strong magnetic field is given by the 
product of a gauge dependent factor, )q(x, x′), called Schwinger 
phase, times a translational invariant term and its explicit expres-
sion can be found in Ref. [8]. In the present calculation, which 
involves only neutral particles, the Schwinger phase cancels out. 
Through the use of standard Feynman rules the pseudo-scalar po-
larization loop reads (see Ref. [1] for further technical details):

1
i
(PS(k2) = −

∑

q=u,d

∫
d4 p

(2π)4 T r
[

iγ5i Sq

(
p + k

2

)
iγ5

× i Sq

(
p − k

2

)]
. (8)

As shown in Ref. [1] an analogous expression can be obtained for 
the scalar channel. Then, from Eq. (4), one can obtain the π0 mass 
pole as:

1 − 2G (PS(k2)|k2=m2
π0

= 0 . (9)

The explicit expression for the pseudoscalar polarization loop, 
Eq. (8), is given by [1]:

1
i
(PS(k2

∥) = −i
(

M − m
2MG

)

−
∑

q=u,d

βq Nc
k2
∥

(2π)3

∞∑

n=0

gn Iq,n(k2
∥) , (10)

where

Iq,n(k2
∥) =

∫
d2 p∥

1

[p2
∥ − M2 − 2βqn][(p + k)2

∥ − M2 − 2βqn] .

(11)

where βq = |qq|B , q = (u, d), Nc = 3, gn = 2 − δn0, p∥ = p0 − p3, 
and k∥ = k0 − k3. Therefore, from Eq. (9), the π0 mass can be writ-
ten as:

m2
π0

(B) = − m
M(B)

1
4iGNc N f I(m2

π0
, B)

, (12)

where

I(m2
π0

, B) = 1
4(2π)3

∑

q=u,d

βq

∞∑

n=0

gn Iq,n(k2
∥ = m2

π0
) . (13)

The σ -meson mass, mσ , is readily evaluated in a completely anal-
ogous fashion by calculating the scalar polarization loop. This pro-
cedure yields [1]:
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with lattice predictions, something which is impossible to obtain 
in the traditional calculations with constant coupling.

In the present letter we improve the application of Ref. [1]
by determining an accurate running coupling, G(eB), at vanish-
ing temperatures, following the procedure introduced recently in 
Ref. [25] where the thermo-magnetic running (in the high-T limit) 
was determined. We show that in this case the neutral pion mass, 
which represents the soft mode, is in excellent numerical agree-
ment with lattice QCD simulations [26,27]. At the same time we 
find that the scalar meson mass remains almost constant for a 
wide range of eB values. This interesting result, which is a byprod-
uct of the stability of the effective quark mass within our approach, 
should be contrasted to the linear increase found when a fixed 
coupling is used, causing the scalar mode to decouple at strong 
magnetic fields.

We also investigate the neutral pion decay constant and predict 
that this quantity increases with B in a way compatible with the 
Gell–Mann–Oakes–Renner relation. Finally, we also predict that the 
meson-quark couplings decrease with increasing magnetic fields. 
The Letter is organized as follows. In the next section we present 
the model and the formalism. The numerical results are discussed 
in Sec. 3 and our concluding remarks are presented in Sec. 4.

2. General formalism

Let us start by reviewing the main steps related to the evalua-
tion of the mesonic properties using the RPA formalism within the 
MFIR framework as done in Ref. [1]. We also present the ansatz for 
the magnetic coupling at vanishing temperatures.

2.1. Meson properties under strong magnetic field

In the presence of a magnetic field the standard two-flavor NJL 
model is described by
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gauge field is represented by Aµ , F µν = ∂µ Aν − ∂ν Aµ , τ⃗ is the 
isospin matrix, the coupling constant by G while Q = diag(qu =
2e/3, qd = −e/3) represents the charge matrix, Dµ = (i∂µ − Q Aµ)
is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
and m̃ = diag(mu, md) represents the bare quark mass matrix.

Here, we adopt the Landau gauge, i.e., Aµ = δµ2x1 B , thus B⃗ =
Bê3. Then, in the mean field approximation the NJL lagrangian is 
given by [6]
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quark mass for a given flavor is
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+ ⟨ψ̄ jψ j⟩] , (3)

with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
sates enter in a symmetric manner. It has been shown in Ref. [1]
that in the RPA approximation the π0 meson mass in a magne-
tized medium can be calculated selecting the quantum numbers 
associated to the neutral pion. From the Bethe–Salpeter equation 
one obtains:
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Bê3. Then, in the mean field approximation the NJL lagrangian is 
given by [6]

L = ψ̄ f
(
i/D − M f

)
ψ f + G

〈
ψ̄ f ψ f

〉2 − 1
4

F µν Fµν , (2)

where ⟨ψ̄ f ψ f ⟩ represents the quark condensates. The effective 
quark mass for a given flavor is

Mi = mi − 2G[
〈
ψ̄iψi

〉
+ ⟨ψ̄ jψ j⟩] , (3)

with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
sates enter in a symmetric manner. It has been shown in Ref. [1]
that in the RPA approximation the π0 meson mass in a magne-
tized medium can be calculated selecting the quantum numbers 
associated to the neutral pion. From the Bethe–Salpeter equation 
one obtains:

(igπ0qq)
2 iDπ0(k

2) = 2iG
1 − 2G(PS(k2)

, (4)

As usual in the last equation the left hand side of the equality 
is calculated by representing the quark-pion interaction with the 
following Lagrangian density [4]:

Lπqq = igπqqψ̄γ5τ⃗ · π⃗ψ , (5)

where π⃗ stands for the pion field while gπqq represents the cou-
pling strength between pions and quarks. Both sides of eq. (4) can 
be calculated using the standard meson propagator [28],

Dπ0(k
2) = 1

k2 − m2
π0

, (6)

as well as the quark (dressed) propagator in a magnetic medium 
[7,8],

Sq(x, x′) = ei)q(x,x′)
∞∑

n=0

Sq,n(x − x′) , q = u,d . (7)

The quark propagator in a strong magnetic field is given by the 
product of a gauge dependent factor, )q(x, x′), called Schwinger 
phase, times a translational invariant term and its explicit expres-
sion can be found in Ref. [8]. In the present calculation, which 
involves only neutral particles, the Schwinger phase cancels out. 
Through the use of standard Feynman rules the pseudo-scalar po-
larization loop reads (see Ref. [1] for further technical details):

1
i
(PS(k2) = −

∑

q=u,d

∫
d4 p

(2π)4 T r
[

iγ5i Sq

(
p + k

2

)
iγ5

× i Sq

(
p − k

2

)]
. (8)

As shown in Ref. [1] an analogous expression can be obtained for 
the scalar channel. Then, from Eq. (4), one can obtain the π0 mass 
pole as:

1 − 2G (PS(k2)|k2=m2
π0

= 0 . (9)

The explicit expression for the pseudoscalar polarization loop, 
Eq. (8), is given by [1]:

1
i
(PS(k2

∥) = −i
(

M − m
2MG

)

−
∑

q=u,d

βq Nc
k2
∥

(2π)3

∞∑

n=0

gn Iq,n(k2
∥) , (10)

where

Iq,n(k2
∥) =

∫
d2 p∥

1

[p2
∥ − M2 − 2βqn][(p + k)2

∥ − M2 − 2βqn] .

(11)

where βq = |qq|B , q = (u, d), Nc = 3, gn = 2 − δn0, p∥ = p0 − p3, 
and k∥ = k0 − k3. Therefore, from Eq. (9), the π0 mass can be writ-
ten as:

m2
π0

(B) = − m
M(B)

1
4iGNc N f I(m2

π0
, B)

, (12)

where

I(m2
π0

, B) = 1
4(2π)3

∑

q=u,d

βq

∞∑

n=0

gn Iq,n(k2
∥ = m2

π0
) . (13)

The σ -meson mass, mσ , is readily evaluated in a completely anal-
ogous fashion by calculating the scalar polarization loop. This pro-
cedure yields [1]:

248 S.S. Avancini et al. / Physics Letters B 767 (2017) 247–252

with lattice predictions, something which is impossible to obtain 
in the traditional calculations with constant coupling.

In the present letter we improve the application of Ref. [1]
by determining an accurate running coupling, G(eB), at vanish-
ing temperatures, following the procedure introduced recently in 
Ref. [25] where the thermo-magnetic running (in the high-T limit) 
was determined. We show that in this case the neutral pion mass, 
which represents the soft mode, is in excellent numerical agree-
ment with lattice QCD simulations [26,27]. At the same time we 
find that the scalar meson mass remains almost constant for a 
wide range of eB values. This interesting result, which is a byprod-
uct of the stability of the effective quark mass within our approach, 
should be contrasted to the linear increase found when a fixed 
coupling is used, causing the scalar mode to decouple at strong 
magnetic fields.

We also investigate the neutral pion decay constant and predict 
that this quantity increases with B in a way compatible with the 
Gell–Mann–Oakes–Renner relation. Finally, we also predict that the 
meson-quark couplings decrease with increasing magnetic fields. 
The Letter is organized as follows. In the next section we present 
the model and the formalism. The numerical results are discussed 
in Sec. 3 and our concluding remarks are presented in Sec. 4.

2. General formalism

Let us start by reviewing the main steps related to the evalua-
tion of the mesonic properties using the RPA formalism within the 
MFIR framework as done in Ref. [1]. We also present the ansatz for 
the magnetic coupling at vanishing temperatures.

2.1. Meson properties under strong magnetic field

In the presence of a magnetic field the standard two-flavor NJL 
model is described by

L = ψ̄ f
(
i/D − m̃

)
ψ f + G

[
(ψ̄ f ψ f )

2 + (ψ̄ f iγ5τ⃗ψ f )
2
]

− 1
4

F µν Fµν , (1)

where a sum over repeated f is implied. The electromagnetic 
gauge field is represented by Aµ , F µν = ∂µ Aν − ∂ν Aµ , τ⃗ is the 
isospin matrix, the coupling constant by G while Q = diag(qu =
2e/3, qd = −e/3) represents the charge matrix, Dµ = (i∂µ − Q Aµ)
is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
and m̃ = diag(mu, md) represents the bare quark mass matrix.

Here, we adopt the Landau gauge, i.e., Aµ = δµ2x1 B , thus B⃗ =
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with lattice predictions, something which is impossible to obtain 
in the traditional calculations with constant coupling.

In the present letter we improve the application of Ref. [1]
by determining an accurate running coupling, G(eB), at vanish-
ing temperatures, following the procedure introduced recently in 
Ref. [25] where the thermo-magnetic running (in the high-T limit) 
was determined. We show that in this case the neutral pion mass, 
which represents the soft mode, is in excellent numerical agree-
ment with lattice QCD simulations [26,27]. At the same time we 
find that the scalar meson mass remains almost constant for a 
wide range of eB values. This interesting result, which is a byprod-
uct of the stability of the effective quark mass within our approach, 
should be contrasted to the linear increase found when a fixed 
coupling is used, causing the scalar mode to decouple at strong 
magnetic fields.

We also investigate the neutral pion decay constant and predict 
that this quantity increases with B in a way compatible with the 
Gell–Mann–Oakes–Renner relation. Finally, we also predict that the 
meson-quark couplings decrease with increasing magnetic fields. 
The Letter is organized as follows. In the next section we present 
the model and the formalism. The numerical results are discussed 
in Sec. 3 and our concluding remarks are presented in Sec. 4.

2. General formalism

Let us start by reviewing the main steps related to the evalua-
tion of the mesonic properties using the RPA formalism within the 
MFIR framework as done in Ref. [1]. We also present the ansatz for 
the magnetic coupling at vanishing temperatures.

2.1. Meson properties under strong magnetic field

In the presence of a magnetic field the standard two-flavor NJL 
model is described by
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isospin matrix, the coupling constant by G while Q = diag(qu =
2e/3, qd = −e/3) represents the charge matrix, Dµ = (i∂µ − Q Aµ)
is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
and m̃ = diag(mu, md) represents the bare quark mass matrix.

Here, we adopt the Landau gauge, i.e., Aµ = δµ2x1 B , thus B⃗ =
Bê3. Then, in the mean field approximation the NJL lagrangian is 
given by [6]
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with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
sates enter in a symmetric manner. It has been shown in Ref. [1]
that in the RPA approximation the π0 meson mass in a magne-
tized medium can be calculated selecting the quantum numbers 
associated to the neutral pion. From the Bethe–Salpeter equation 
one obtains:
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Through the use of standard Feynman rules the pseudo-scalar po-
larization loop reads (see Ref. [1] for further technical details):

1
i
(PS(k2) = −

∑

q=u,d

∫
d4 p

(2π)4 T r
[

iγ5i Sq

(
p + k

2

)
iγ5

× i Sq

(
p − k

2

)]
. (8)
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was determined. We show that in this case the neutral pion mass, 
which represents the soft mode, is in excellent numerical agree-
ment with lattice QCD simulations [26,27]. At the same time we 
find that the scalar meson mass remains almost constant for a 
wide range of eB values. This interesting result, which is a byprod-
uct of the stability of the effective quark mass within our approach, 
should be contrasted to the linear increase found when a fixed 
coupling is used, causing the scalar mode to decouple at strong 
magnetic fields.

We also investigate the neutral pion decay constant and predict 
that this quantity increases with B in a way compatible with the 
Gell–Mann–Oakes–Renner relation. Finally, we also predict that the 
meson-quark couplings decrease with increasing magnetic fields. 
The Letter is organized as follows. In the next section we present 
the model and the formalism. The numerical results are discussed 
in Sec. 3 and our concluding remarks are presented in Sec. 4.

2. General formalism

Let us start by reviewing the main steps related to the evalua-
tion of the mesonic properties using the RPA formalism within the 
MFIR framework as done in Ref. [1]. We also present the ansatz for 
the magnetic coupling at vanishing temperatures.

2.1. Meson properties under strong magnetic field

In the presence of a magnetic field the standard two-flavor NJL 
model is described by

L = ψ̄ f
(
i/D − m̃

)
ψ f + G

[
(ψ̄ f ψ f )

2 + (ψ̄ f iγ5τ⃗ψ f )
2
]

− 1
4

F µν Fµν , (1)

where a sum over repeated f is implied. The electromagnetic 
gauge field is represented by Aµ , F µν = ∂µ Aν − ∂ν Aµ , τ⃗ is the 
isospin matrix, the coupling constant by G while Q = diag(qu =
2e/3, qd = −e/3) represents the charge matrix, Dµ = (i∂µ − Q Aµ)
is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
and m̃ = diag(mu, md) represents the bare quark mass matrix.

Here, we adopt the Landau gauge, i.e., Aµ = δµ2x1 B , thus B⃗ =
Bê3. Then, in the mean field approximation the NJL lagrangian is 
given by [6]

L = ψ̄ f
(
i/D − M f

)
ψ f + G

〈
ψ̄ f ψ f

〉2 − 1
4

F µν Fµν , (2)

where ⟨ψ̄ f ψ f ⟩ represents the quark condensates. The effective 
quark mass for a given flavor is

Mi = mi − 2G[
〈
ψ̄iψi

〉
+ ⟨ψ̄ jψ j⟩] , (3)

with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
sates enter in a symmetric manner. It has been shown in Ref. [1]
that in the RPA approximation the π0 meson mass in a magne-
tized medium can be calculated selecting the quantum numbers 
associated to the neutral pion. From the Bethe–Salpeter equation 
one obtains:

(igπ0qq)
2 iDπ0(k

2) = 2iG
1 − 2G(PS(k2)

, (4)

As usual in the last equation the left hand side of the equality 
is calculated by representing the quark-pion interaction with the 
following Lagrangian density [4]:

Lπqq = igπqqψ̄γ5τ⃗ · π⃗ψ , (5)

where π⃗ stands for the pion field while gπqq represents the cou-
pling strength between pions and quarks. Both sides of eq. (4) can 
be calculated using the standard meson propagator [28],

Dπ0(k
2) = 1

k2 − m2
π0

, (6)

as well as the quark (dressed) propagator in a magnetic medium 
[7,8],

Sq(x, x′) = ei)q(x,x′)
∞∑

n=0

Sq,n(x − x′) , q = u,d . (7)

The quark propagator in a strong magnetic field is given by the 
product of a gauge dependent factor, )q(x, x′), called Schwinger 
phase, times a translational invariant term and its explicit expres-
sion can be found in Ref. [8]. In the present calculation, which 
involves only neutral particles, the Schwinger phase cancels out. 
Through the use of standard Feynman rules the pseudo-scalar po-
larization loop reads (see Ref. [1] for further technical details):

1
i
(PS(k2) = −

∑

q=u,d

∫
d4 p

(2π)4 T r
[

iγ5i Sq

(
p + k

2

)
iγ5

× i Sq

(
p − k

2

)]
. (8)

As shown in Ref. [1] an analogous expression can be obtained for 
the scalar channel. Then, from Eq. (4), one can obtain the π0 mass 
pole as:

1 − 2G (PS(k2)|k2=m2
π0

= 0 . (9)

The explicit expression for the pseudoscalar polarization loop, 
Eq. (8), is given by [1]:

1
i
(PS(k2

∥) = −i
(

M − m
2MG

)

−
∑

q=u,d

βq Nc
k2
∥

(2π)3

∞∑

n=0

gn Iq,n(k2
∥) , (10)

where

Iq,n(k2
∥) =

∫
d2 p∥

1

[p2
∥ − M2 − 2βqn][(p + k)2

∥ − M2 − 2βqn] .

(11)

where βq = |qq|B , q = (u, d), Nc = 3, gn = 2 − δn0, p∥ = p0 − p3, 
and k∥ = k0 − k3. Therefore, from Eq. (9), the π0 mass can be writ-
ten as:

m2
π0

(B) = − m
M(B)

1
4iGNc N f I(m2

π0
, B)

, (12)

where

I(m2
π0

, B) = 1
4(2π)3

∑

q=u,d

βq

∞∑

n=0

gn Iq,n(k2
∥ = m2

π0
) . (13)

The σ -meson mass, mσ , is readily evaluated in a completely anal-
ogous fashion by calculating the scalar polarization loop. This pro-
cedure yields [1]:
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m2
σ (B) = 4M2(B) + m2

π0
(B) . (14)

Next, the pion decay constant is given by the expression:

f 2
π0

(B) = −i
∑

u,d

βq

(2π)3 Nc M2
∞∑

n=0

gn Iq,n(0) , (15)

where Iq,n(0) ≈ Iq,n(mπ 0
2). The following identity can be obtained 

from Eqs. (12), (15)

m2
π0

(B) f 2
π0

(B) = m M(B)

2G
. (16)

In the next section we perform an explicit numerical analysis con-
cluding that the approximation Iq,n(0) ≈ Iq,n(mπ0

2) provides re-
sults that differ from the exact one only by about 1% or less.

The gap equation, Eq. (3), can be used in order to eliminate the 
coupling constant G so that the Gell–Mann–Oakes–Renner (GOR) 
relation in a magnetic medium is recovered.

m2
π0

(B) f 2
π0

(B) = −m
〈
ψ f ψ f

〉
(B). (17)

In Ref. [1] the loop integral Eq. (11) was obtained as

I(k∥2, B) = I vac(k2
∥) + I(k2

∥, B) , (18)

where

I vac(k∥2) = i
8π2

1∫

0

dx

⎡

⎢⎣sinh−1
(

%

M

)
− %

√
%2 + M

2

⎤

⎥⎦ ,

and

I(k2
∥, B) = iπ

4(2π)3

∑

q=u,d

1∫

0

dx
[
−ψ

(
xq + 1

)
+ 1

2xq
+ ln xq

]
, (19)

with

xq =
M

2
(k2

∥)

2βq
, M

2
(k2

∥) = M2 − x(1 − x)(k2
∥). (20)

Following the MFIR prescription [10], we have disentangled over-
lapping divergences by dividing the polarization integral, Eq. (18), 
into two terms: the first takes into account divergent vacuum 
fluctuations and can be regularized through a non-covariant three-
momentum cutoff, while the second, Eq. (19), represents the finite 
contribution due to magnetized medium. Note that using the MFIR 
scheme one recovers the usual vacuum term.

2.2. Field dependent coupling

Let us now obtain the magnetic dependence of the NJL model 
coupling by reproducing the lattice results of Ref. [29] for the 
quark condensate average at zero temperature, (&u + &d)/2. We 
remark that these precise LQCD results have been obtained for 
N f = 2 + 1 whereas here we are considering the two flavor case. 
However, in general, translating LQCD predictions for the N f =
2 + 1 case to N f = 2 effective models can be quite safely done be-
cause the lattice results are often divided into results for the light 
(u and d) and strange sectors. This is particularly true in the case 
of the condensates since only the ones related to light quarks (or 
rather, their average) represent the order parameter for the chiral 
transition.

In LQCD simulations, the condensates are normalized in a way 
which is reminiscent of Gell–Mann–Oakes–Renner relation (GOR), 
−2m⟨ψ̄iψi⟩ = m2

π f 2
π + . . . , so that for a given flavor one has

Table 1
Parameter sets for the NJL model at T = B = 0. The correct eB → 0
limit of our ansatz requires that GII = G(eB = 0).

mπ0 (MeV) m0 (MeV) G (GeV−2) % (MeV)

Set I 135.62 5.0 G I = 4.67 664.3
Set II 143.31 5.5 GII = 4.50 650.0
Set III 417 48.41 GIII = G I 664.3
Set IV 417 50.16 GIV = GII 650.0

&i(B) = 2m
m2

π f 2
π

[
⟨ψ̄iψi⟩B − ⟨ψ̄iψi⟩00

]
+ 1, (21)

with ⟨ψ̄iψi⟩00 representing the quark condensate at T = 0 and 
B = 0. In order to fit the lattice results, the other physical quan-
tities appearing in Eq. (21) should be those of Ref. [29]; namely, 
mπ = 135 MeV, fπ = 86 MeV, and m = 5.5 MeV so that, by in-
voking the GOR relation, one can use the LQCD value ⟨ψ̄iψi⟩1/3

00 =
−230.55 MeV.

For selected values of eB from zero to 1 GeV2 and T = 0, we 
can fit the NJL coupling to the corresponding values resulting from 
lattice QCD calculations. Then we make an interpolation to gener-
ate a larger set, which, in turn, is fitted to a simple shifted gaussian 
for the magnetic field dependence of the coupling constant. This 
means a good fit to lattice simulations for the average (&u +&d)/2
can be obtained by using

G(eB) = α + β e−γ (eB)2
, (22)

where α = 1.44373 GeV−2, β = 3.06 GeV−2 and γ = 1.31 GeV−4. 
Note that when there is no magnetic field, G(0) = α + β = GII =
4.50373 GeV−2 which is the coupling value that gives the same 
results as lattice QCD calculations for the condensate average at 
T = B = 0. We remark that the present ansatz is different from the 
one obtained in Ref. [25], where the fit was performed at the high 
temperatures T > 110 MeV. However, the interpolation procedure 
carried out to improve precision when finding the parameters for 
the ansatz is the same.

3. Numerical results

In principle, our results are rigorously valid for eB ≤ 0.4 GeV2, 
which is the upper limit the cutoff scheme can account for. Hence, 
our results for large magnetic field strengths need to be taken as 
extrapolations as they give only a qualitative behavior in this limit.

To carry out numerical evaluations we need the four different 
sets of parameters displayed in Table 1. Notice that sets I and II
are used when comparing with LQCD employing physical quark 
masses, as in Ref. [29], while sets III and IV are more appropri-
ate for comparisons with simulations using heavy quarks masses 
such as the ones performed in Refs. [26,27]. Therefore, although 
the running of G(eB) has been determined from a simulation with 
physical quark masses [29] we can still compare with simulations 
which employ heavier quarks [26,27] provided that we tune the 
NJL current quark masses in an appropriate way as our numerical 
results will demonstrate.

Note that the parameters of set I used in our calculations were 
determined by fitting the pion mass and its decay constant to their 
empirical values mπ = 138 MeV and fπ = 92.4 MeV, respectively, 
and they are the same used in the literature (see, e.g., Ref. [6]). Our 
set II was obtained fixing the NJL coupling constant that gives the 
same results as lattice QCD calculations for the condensate average 
at T = B = 0. The sets III and IV were obtained just increasing the 
current quark masses in set I and II to obtain a heavy pion mass 
to be possible compare ours results with predictions from recent 
lattice simulations.
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is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
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with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
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that in the RPA approximation the π0 meson mass in a magne-
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uct of the stability of the effective quark mass within our approach, 
should be contrasted to the linear increase found when a fixed 
coupling is used, causing the scalar mode to decouple at strong 
magnetic fields.

We also investigate the neutral pion decay constant and predict 
that this quantity increases with B in a way compatible with the 
Gell–Mann–Oakes–Renner relation. Finally, we also predict that the 
meson-quark couplings decrease with increasing magnetic fields. 
The Letter is organized as follows. In the next section we present 
the model and the formalism. The numerical results are discussed 
in Sec. 3 and our concluding remarks are presented in Sec. 4.

2. General formalism

Let us start by reviewing the main steps related to the evalua-
tion of the mesonic properties using the RPA formalism within the 
MFIR framework as done in Ref. [1]. We also present the ansatz for 
the magnetic coupling at vanishing temperatures.

2.1. Meson properties under strong magnetic field

In the presence of a magnetic field the standard two-flavor NJL 
model is described by

L = ψ̄ f
(
i/D − m̃

)
ψ f + G

[
(ψ̄ f ψ f )

2 + (ψ̄ f iγ5τ⃗ψ f )
2
]

− 1
4

F µν Fµν , (1)

where a sum over repeated f is implied. The electromagnetic 
gauge field is represented by Aµ , F µν = ∂µ Aν − ∂ν Aµ , τ⃗ is the 
isospin matrix, the coupling constant by G while Q = diag(qu =
2e/3, qd = −e/3) represents the charge matrix, Dµ = (i∂µ − Q Aµ)
is the covariant derivative, ψT = (ψu, ψd) is the quark fermion field 
and m̃ = diag(mu, md) represents the bare quark mass matrix.

Here, we adopt the Landau gauge, i.e., Aµ = δµ2x1 B , thus B⃗ =
Bê3. Then, in the mean field approximation the NJL lagrangian is 
given by [6]

L = ψ̄ f
(
i/D − M f

)
ψ f + G

〈
ψ̄ f ψ f

〉2 − 1
4

F µν Fµν , (2)

where ⟨ψ̄ f ψ f ⟩ represents the quark condensates. The effective 
quark mass for a given flavor is

Mi = mi − 2G[
〈
ψ̄iψi

〉
+ ⟨ψ̄ jψ j⟩] , (3)

with i, j = u, d and i ̸= j. Note that by taking m = mu = md , as we 
do here, one may set Mu = Md = M since the different conden-
sates enter in a symmetric manner. It has been shown in Ref. [1]
that in the RPA approximation the π0 meson mass in a magne-
tized medium can be calculated selecting the quantum numbers 
associated to the neutral pion. From the Bethe–Salpeter equation 
one obtains:

(igπ0qq)
2 iDπ0(k

2) = 2iG
1 − 2G(PS(k2)

, (4)

As usual in the last equation the left hand side of the equality 
is calculated by representing the quark-pion interaction with the 
following Lagrangian density [4]:

Lπqq = igπqqψ̄γ5τ⃗ · π⃗ψ , (5)

where π⃗ stands for the pion field while gπqq represents the cou-
pling strength between pions and quarks. Both sides of eq. (4) can 
be calculated using the standard meson propagator [28],

Dπ0(k
2) = 1

k2 − m2
π0

, (6)

as well as the quark (dressed) propagator in a magnetic medium 
[7,8],

Sq(x, x′) = ei)q(x,x′)
∞∑

n=0

Sq,n(x − x′) , q = u,d . (7)

The quark propagator in a strong magnetic field is given by the 
product of a gauge dependent factor, )q(x, x′), called Schwinger 
phase, times a translational invariant term and its explicit expres-
sion can be found in Ref. [8]. In the present calculation, which 
involves only neutral particles, the Schwinger phase cancels out. 
Through the use of standard Feynman rules the pseudo-scalar po-
larization loop reads (see Ref. [1] for further technical details):

1
i
(PS(k2) = −

∑

q=u,d

∫
d4 p

(2π)4 T r
[

iγ5i Sq

(
p + k

2

)
iγ5

× i Sq

(
p − k

2

)]
. (8)

As shown in Ref. [1] an analogous expression can be obtained for 
the scalar channel. Then, from Eq. (4), one can obtain the π0 mass 
pole as:

1 − 2G (PS(k2)|k2=m2
π0

= 0 . (9)

The explicit expression for the pseudoscalar polarization loop, 
Eq. (8), is given by [1]:

1
i
(PS(k2

∥) = −i
(

M − m
2MG

)

−
∑

q=u,d

βq Nc
k2
∥

(2π)3

∞∑

n=0

gn Iq,n(k2
∥) , (10)

where

Iq,n(k2
∥) =

∫
d2 p∥

1

[p2
∥ − M2 − 2βqn][(p + k)2

∥ − M2 − 2βqn] .

(11)

where βq = |qq|B , q = (u, d), Nc = 3, gn = 2 − δn0, p∥ = p0 − p3, 
and k∥ = k0 − k3. Therefore, from Eq. (9), the π0 mass can be writ-
ten as:

m2
π0

(B) = − m
M(B)

1
4iGNc N f I(m2

π0
, B)

, (12)

where

I(m2
π0

, B) = 1
4(2π)3

∑

q=u,d

βq

∞∑

n=0

gn Iq,n(k2
∥ = m2

π0
) . (13)

The σ -meson mass, mσ , is readily evaluated in a completely anal-
ogous fashion by calculating the scalar polarization loop. This pro-
cedure yields [1]:
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m2
σ (B) = 4M2(B) + m2

π0
(B) . (14)

Next, the pion decay constant is given by the expression:

f 2
π0

(B) = −i
∑

u,d

βq

(2π)3 Nc M2
∞∑

n=0

gn Iq,n(0) , (15)

where Iq,n(0) ≈ Iq,n(mπ 0
2). The following identity can be obtained 

from Eqs. (12), (15)

m2
π0

(B) f 2
π0

(B) = m M(B)

2G
. (16)

In the next section we perform an explicit numerical analysis con-
cluding that the approximation Iq,n(0) ≈ Iq,n(mπ0

2) provides re-
sults that differ from the exact one only by about 1% or less.

The gap equation, Eq. (3), can be used in order to eliminate the 
coupling constant G so that the Gell–Mann–Oakes–Renner (GOR) 
relation in a magnetic medium is recovered.

m2
π0

(B) f 2
π0

(B) = −m
〈
ψ f ψ f

〉
(B). (17)

In Ref. [1] the loop integral Eq. (11) was obtained as

I(k∥2, B) = I vac(k2
∥) + I(k2

∥, B) , (18)

where

I vac(k∥2) = i
8π2

1∫

0

dx

⎡

⎢⎣sinh−1
(

%

M

)
− %

√
%2 + M

2

⎤

⎥⎦ ,

and

I(k2
∥, B) = iπ

4(2π)3

∑

q=u,d

1∫

0

dx
[
−ψ

(
xq + 1

)
+ 1

2xq
+ ln xq

]
, (19)

with

xq =
M

2
(k2

∥)

2βq
, M

2
(k2

∥) = M2 − x(1 − x)(k2
∥). (20)

Following the MFIR prescription [10], we have disentangled over-
lapping divergences by dividing the polarization integral, Eq. (18), 
into two terms: the first takes into account divergent vacuum 
fluctuations and can be regularized through a non-covariant three-
momentum cutoff, while the second, Eq. (19), represents the finite 
contribution due to magnetized medium. Note that using the MFIR 
scheme one recovers the usual vacuum term.

2.2. Field dependent coupling

Let us now obtain the magnetic dependence of the NJL model 
coupling by reproducing the lattice results of Ref. [29] for the 
quark condensate average at zero temperature, (&u + &d)/2. We 
remark that these precise LQCD results have been obtained for 
N f = 2 + 1 whereas here we are considering the two flavor case. 
However, in general, translating LQCD predictions for the N f =
2 + 1 case to N f = 2 effective models can be quite safely done be-
cause the lattice results are often divided into results for the light 
(u and d) and strange sectors. This is particularly true in the case 
of the condensates since only the ones related to light quarks (or 
rather, their average) represent the order parameter for the chiral 
transition.

In LQCD simulations, the condensates are normalized in a way 
which is reminiscent of Gell–Mann–Oakes–Renner relation (GOR), 
−2m⟨ψ̄iψi⟩ = m2

π f 2
π + . . . , so that for a given flavor one has

Table 1
Parameter sets for the NJL model at T = B = 0. The correct eB → 0
limit of our ansatz requires that GII = G(eB = 0).

mπ0 (MeV) m0 (MeV) G (GeV−2) % (MeV)

Set I 135.62 5.0 G I = 4.67 664.3
Set II 143.31 5.5 GII = 4.50 650.0
Set III 417 48.41 GIII = G I 664.3
Set IV 417 50.16 GIV = GII 650.0

&i(B) = 2m
m2

π f 2
π

[
⟨ψ̄iψi⟩B − ⟨ψ̄iψi⟩00

]
+ 1, (21)

with ⟨ψ̄iψi⟩00 representing the quark condensate at T = 0 and 
B = 0. In order to fit the lattice results, the other physical quan-
tities appearing in Eq. (21) should be those of Ref. [29]; namely, 
mπ = 135 MeV, fπ = 86 MeV, and m = 5.5 MeV so that, by in-
voking the GOR relation, one can use the LQCD value ⟨ψ̄iψi⟩1/3

00 =
−230.55 MeV.

For selected values of eB from zero to 1 GeV2 and T = 0, we 
can fit the NJL coupling to the corresponding values resulting from 
lattice QCD calculations. Then we make an interpolation to gener-
ate a larger set, which, in turn, is fitted to a simple shifted gaussian 
for the magnetic field dependence of the coupling constant. This 
means a good fit to lattice simulations for the average (&u +&d)/2
can be obtained by using

G(eB) = α + β e−γ (eB)2
, (22)

where α = 1.44373 GeV−2, β = 3.06 GeV−2 and γ = 1.31 GeV−4. 
Note that when there is no magnetic field, G(0) = α + β = GII =
4.50373 GeV−2 which is the coupling value that gives the same 
results as lattice QCD calculations for the condensate average at 
T = B = 0. We remark that the present ansatz is different from the 
one obtained in Ref. [25], where the fit was performed at the high 
temperatures T > 110 MeV. However, the interpolation procedure 
carried out to improve precision when finding the parameters for 
the ansatz is the same.

3. Numerical results

In principle, our results are rigorously valid for eB ≤ 0.4 GeV2, 
which is the upper limit the cutoff scheme can account for. Hence, 
our results for large magnetic field strengths need to be taken as 
extrapolations as they give only a qualitative behavior in this limit.

To carry out numerical evaluations we need the four different 
sets of parameters displayed in Table 1. Notice that sets I and II
are used when comparing with LQCD employing physical quark 
masses, as in Ref. [29], while sets III and IV are more appropri-
ate for comparisons with simulations using heavy quarks masses 
such as the ones performed in Refs. [26,27]. Therefore, although 
the running of G(eB) has been determined from a simulation with 
physical quark masses [29] we can still compare with simulations 
which employ heavier quarks [26,27] provided that we tune the 
NJL current quark masses in an appropriate way as our numerical 
results will demonstrate.

Note that the parameters of set I used in our calculations were 
determined by fitting the pion mass and its decay constant to their 
empirical values mπ = 138 MeV and fπ = 92.4 MeV, respectively, 
and they are the same used in the literature (see, e.g., Ref. [6]). Our 
set II was obtained fixing the NJL coupling constant that gives the 
same results as lattice QCD calculations for the condensate average 
at T = B = 0. The sets III and IV were obtained just increasing the 
current quark masses in set I and II to obtain a heavy pion mass 
to be possible compare ours results with predictions from recent 
lattice simulations.
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- fit to lattice QCD condensates (few values of eB)

- interpolation to generate a larger set

- fit of the larger set to a shifted gaussian
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(2π)3 Nc M2
∞∑

n=0

gn Iq,n(0) , (15)

where Iq,n(0) ≈ Iq,n(mπ 0
2). The following identity can be obtained 

from Eqs. (12), (15)

m2
π0

(B) f 2
π0

(B) = m M(B)

2G
. (16)

In the next section we perform an explicit numerical analysis con-
cluding that the approximation Iq,n(0) ≈ Iq,n(mπ0

2) provides re-
sults that differ from the exact one only by about 1% or less.

The gap equation, Eq. (3), can be used in order to eliminate the 
coupling constant G so that the Gell–Mann–Oakes–Renner (GOR) 
relation in a magnetic medium is recovered.

m2
π0

(B) f 2
π0

(B) = −m
〈
ψ f ψ f

〉
(B). (17)

In Ref. [1] the loop integral Eq. (11) was obtained as

I(k∥2, B) = I vac(k2
∥) + I(k2

∥, B) , (18)

where

I vac(k∥2) = i
8π2

1∫

0

dx

⎡

⎢⎣sinh−1
(

%

M

)
− %

√
%2 + M

2

⎤

⎥⎦ ,

and

I(k2
∥, B) = iπ

4(2π)3

∑

q=u,d

1∫

0

dx
[
−ψ

(
xq + 1

)
+ 1

2xq
+ ln xq

]
, (19)

with

xq =
M

2
(k2

∥)

2βq
, M

2
(k2

∥) = M2 − x(1 − x)(k2
∥). (20)

Following the MFIR prescription [10], we have disentangled over-
lapping divergences by dividing the polarization integral, Eq. (18), 
into two terms: the first takes into account divergent vacuum 
fluctuations and can be regularized through a non-covariant three-
momentum cutoff, while the second, Eq. (19), represents the finite 
contribution due to magnetized medium. Note that using the MFIR 
scheme one recovers the usual vacuum term.

2.2. Field dependent coupling

Let us now obtain the magnetic dependence of the NJL model 
coupling by reproducing the lattice results of Ref. [29] for the 
quark condensate average at zero temperature, (&u + &d)/2. We 
remark that these precise LQCD results have been obtained for 
N f = 2 + 1 whereas here we are considering the two flavor case. 
However, in general, translating LQCD predictions for the N f =
2 + 1 case to N f = 2 effective models can be quite safely done be-
cause the lattice results are often divided into results for the light 
(u and d) and strange sectors. This is particularly true in the case 
of the condensates since only the ones related to light quarks (or 
rather, their average) represent the order parameter for the chiral 
transition.

In LQCD simulations, the condensates are normalized in a way 
which is reminiscent of Gell–Mann–Oakes–Renner relation (GOR), 
−2m⟨ψ̄iψi⟩ = m2

π f 2
π + . . . , so that for a given flavor one has

Table 1
Parameter sets for the NJL model at T = B = 0. The correct eB → 0
limit of our ansatz requires that GII = G(eB = 0).

mπ0 (MeV) m0 (MeV) G (GeV−2) % (MeV)

Set I 135.62 5.0 G I = 4.67 664.3
Set II 143.31 5.5 GII = 4.50 650.0
Set III 417 48.41 GIII = G I 664.3
Set IV 417 50.16 GIV = GII 650.0

&i(B) = 2m
m2

π f 2
π

[
⟨ψ̄iψi⟩B − ⟨ψ̄iψi⟩00

]
+ 1, (21)

with ⟨ψ̄iψi⟩00 representing the quark condensate at T = 0 and 
B = 0. In order to fit the lattice results, the other physical quan-
tities appearing in Eq. (21) should be those of Ref. [29]; namely, 
mπ = 135 MeV, fπ = 86 MeV, and m = 5.5 MeV so that, by in-
voking the GOR relation, one can use the LQCD value ⟨ψ̄iψi⟩1/3

00 =
−230.55 MeV.

For selected values of eB from zero to 1 GeV2 and T = 0, we 
can fit the NJL coupling to the corresponding values resulting from 
lattice QCD calculations. Then we make an interpolation to gener-
ate a larger set, which, in turn, is fitted to a simple shifted gaussian 
for the magnetic field dependence of the coupling constant. This 
means a good fit to lattice simulations for the average (&u +&d)/2
can be obtained by using

G(eB) = α + β e−γ (eB)2
, (22)

where α = 1.44373 GeV−2, β = 3.06 GeV−2 and γ = 1.31 GeV−4. 
Note that when there is no magnetic field, G(0) = α + β = GII =
4.50373 GeV−2 which is the coupling value that gives the same 
results as lattice QCD calculations for the condensate average at 
T = B = 0. We remark that the present ansatz is different from the 
one obtained in Ref. [25], where the fit was performed at the high 
temperatures T > 110 MeV. However, the interpolation procedure 
carried out to improve precision when finding the parameters for 
the ansatz is the same.

3. Numerical results

In principle, our results are rigorously valid for eB ≤ 0.4 GeV2, 
which is the upper limit the cutoff scheme can account for. Hence, 
our results for large magnetic field strengths need to be taken as 
extrapolations as they give only a qualitative behavior in this limit.

To carry out numerical evaluations we need the four different 
sets of parameters displayed in Table 1. Notice that sets I and II
are used when comparing with LQCD employing physical quark 
masses, as in Ref. [29], while sets III and IV are more appropri-
ate for comparisons with simulations using heavy quarks masses 
such as the ones performed in Refs. [26,27]. Therefore, although 
the running of G(eB) has been determined from a simulation with 
physical quark masses [29] we can still compare with simulations 
which employ heavier quarks [26,27] provided that we tune the 
NJL current quark masses in an appropriate way as our numerical 
results will demonstrate.

Note that the parameters of set I used in our calculations were 
determined by fitting the pion mass and its decay constant to their 
empirical values mπ = 138 MeV and fπ = 92.4 MeV, respectively, 
and they are the same used in the literature (see, e.g., Ref. [6]). Our 
set II was obtained fixing the NJL coupling constant that gives the 
same results as lattice QCD calculations for the condensate average 
at T = B = 0. The sets III and IV were obtained just increasing the 
current quark masses in set I and II to obtain a heavy pion mass 
to be possible compare ours results with predictions from recent 
lattice simulations.



Condensates at T = 0

250 S.S. Avancini et al. / Physics Letters B 767 (2017) 247–252

Fig. 1. Condensates average and difference as functions of eB for the NJL model with 
GII , G(eB) compared to lattice QCD calculations from Ref. [29].

Fig. 2. Normalized constituent quark mass as a function of eB for the NJL model 
with different coupling schemes.

In Fig. 1 we show our numerical results for the average (!u +
!d)/2 (upper panel) and the difference (!u − !d) (lower panel) 
using the coupling constant GII and the fitted coupling G(eB) of 
eq. (22) in accord with the recent LQCD data [29]. The top panel 
displays how the order parameter for the chiral transition rep-
resented by the scalar condensates increases with B in a clear 
manifestation of the magnetic catalysis phenomenon. Fig. 2 shows 
the magnetized effective quark mass behavior changes drastically 
when one uses the running coupling. However, such a behavior 
could be anticipated by recalling that the initial motivation to 
adopt such coupling was to counterbalance the increase of the or-
der parameter with B so that the (non observable) effective quark 

Fig. 3. Normalized meson masses as functions of eB in the NJL model with different 
coupling schemes. We also include the mπ0 (B) results of [18].

mass M ∼ G⟨ψ f ψ f ⟩ behaves differently from the case where G is 
fixed. This was particularly important at finite temperatures since 
in general the (pseudo)temperature is proportional to the value of 
the effective mass value at zero temperature (see, e.g., Ref. [30]) 
and therefore IMC could be achieved by using G(eB, T ) in the eval-
uation of M .

In the upper panel of Fig. 3 we compare our results of the nor-
malized neutral pion mass in the MFIR scheme for different cou-
pling constants G I , GII and G(eB) for eB up to 1.0 GeV2. Although 
the curves qualitatively agree at very weak fields, the behavior of 
the neutral pion mass with G I and GII are opposite to the G(eB)
case at fields higher than ≈ 0.4 GeV2, when the decrease of the π0
mass is stronger in the G(eB) case when compared to the G I and 
GII cases which have a slight increase. We also compare our pre-
dictions for mπ 0(B) with those presented in Ref. [18]. We predict 
values which are about 10% lower than those predicted in Ref. [18]
when the eB ! 0.6 GeV2 while beyond this value our results indi-
cate that mπ 0(B) decreases in less dramatic way.

The lower panel of Fig. 3 shows the scalar meson mass where 
again the differences can be traced back to the fact that mσ ∼ M as 
the figure again reveals. The results obtained with G(eB) indicate 
that, just like M , the sigma meson mass is quite stable (varying 
less than 10% at intermediate field values) so that the correlation 
length, ξ ∼ 1/mσ also remains almost constant. On the other hand 
the results obtained by using a fixed G lead to the conclusion that 
the scalar mass increases so that this mode decouples while ξ → 0.

In the upper panel of Fig. 4, our results for the neutral pion de-
cay constant are shown. The same three sets of coupling constants 
of Fig. 3 have been considered. A systematic increase of fπ0 as 
a function of eB occurs for all three parameterizations and qual-
itatively both G I and GII constant coupling cases show a similar 
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Fig. 4. Normalized π0 decay constant and meson-quark coupling in the NJL model 
with different coupling schemes. For the π0 decay constant, we also show the com-
paration between the RPA calculation using the complete polarization integral as 
well as the approximation.

behavior, although a less dramatic increase takes place at fields 
greater than 0.5 GeV2. Our prediction for fπ0 , mπ0 and the quark 
condensates are compatible with the GOR relation. Notice that 
the validity of the approximation Iq,n(0) ≈ Iq,n(mπ0

2) is confirmed 
since one can hardly see the difference between the calculations 
using Iq,n(mπ0) or Iq,n(mπ0 = 0).

We have also checked the results for the neutral pion-quark 
coupling in the lower panel of Fig. 4, predicting a initial decrease 
of its values up to 0.25 GeV2, and then a steadily increase with 
higher fields for both G I and GII cases, while for G(eB) case we 
obtain a prediction of a continuous decrease which again could be 
anticipated by recalling that gπ0qq ∼ M/ fπ0 and that fπ0 increases 
with B . Note also that the curve has the same shape as the one 
showed in Fig. 2 for M . Finally, in Fig. 5 we show once again our 
results for the neutral pion mass but now, having in mind a quan-
titative comparison with lattice QCD results, we use the parameter 
set IV of Table 1. In this parametrization the current quark mass is 
set equal to 50.16 MeV in order to obtain for B = 0 the π0 mass 
of 417 MeV, which is the value used in the lattice calculation [26,
27]. Thus, we can compare the results using different coupling con-
stants with the recent lattice results showing that the behavior of 
the masses as a function of eB is qualitatively the same as found 
in the top panel of Fig. 3. That is, in accordance with LQCD pre-
dictions, our results indicate that the neutral pion remains a soft 
mode over a rather wide range of B values. Note that Fig. 5 indi-
cates that only when G(eB) is used in conjunction with a heavy 
current quark mass a very good quantitative agreement with re-
cent LQCD results within the Wilson Fermions Formulation [26,27]
is obtained. In those investigations, the authors discuss how the 

Fig. 5. Normalized neutral pion mass mπ0 (eB)/mπ0 (0) in the NJL model with dif-
ferent coupling schemes and a large current quark mass compared to recent lattice 
results [26,27].

LQCD results for the pion mass in external magnetic fields depend 
on the critical hopping parameters, in particular, they show that 
the impact of their results within the Wilson Fermions Formula-
tion has been ignored in previous works. The use of constant bare 
quark masses in the LQCD calculations implies that the neutral 
pion mass consistently decreases when eB grows. The agreement 
between our calculations and the LQCD results is also a good ev-
idence that more sophisticated results can be achieved when one 
assumes that the NJL SU(2) coupling constant has a dependence 
on eB as proposed in Refs. [24,25].

4. Conclusions

The properties of magnetized neutral mesons have been in-
vestigated using a fixed and a B-dependent coupling constant so 
that model predictions and LQCD results related to inverse mag-
netic catalysis agree. The evaluations have been performed using 
the two flavor NJL model following the RPA-MFIR framework pre-
sented in Ref. [1]. One of our main results shows that the π0 re-
mains a soft mode even at rather high field strengths (≈ 1.5 GeV2) 
since its mass decreases by about 30%. The quantitative agreement 
between our results and recent LQCD predictions is remarkable. 
Another physically interesting result refers to the behavior of the 
scalar meson mass which is predicted to steadily increase when a 
fixed coupling is used reaching (at eB ≈ 1.0 GeV2) a value which 
is two and half times higher than its value at B = 0, also indicat-
ing a decrease of the correlation length, while our results predict 
that mσ remains quite stable. The different predictions can be eas-
ily understood by recalling mσ ∝ M ∝ G⟨ψ f ψ f ⟩ and that, owing 
to the MC effect, the order parameter ⟨ψ f ψ f ⟩ increases within 
both approaches. On the other hand, the effective quark mass natu-
rally increases when one uses a constant G I (and GII) and remains 
practically stable when G(eB) is considered yielding the observed 
different type of behavior.

Although the quark mass does not necessarily represent a phys-
ical observable this is still an interesting result since the behavior 
of M gets directly reflected in mσ ∝ 1/ξ . When the different model 
prescriptions are used to evaluate the π0 decay the one which em-
ploys G(eB) predicts an increase which is sharper than the one 
predicted by using a constant coupling value and, together with 
our predictions for mπ0 and quark condensates, observes the GOR 
relation. Finally, when comparing model predictions for the me-
son coupling constant gπ0qq we found that the use of G(eB) and 
G I (and GII) indicate an opposite behavior since the former pre-
dicts this quantity to decrease with B while the latter predicts it 
to increase. Once again the differences are easily understood from 
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M > 0 is only observed at rather low B values. The VMR
scheme shows M < 0 for a fixed coupling at both tem-
peratures considered (although the magnetization at these
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panel) in the MFIR and VMR schemes. Results obtained with G(eB, T )
and the vacuum coupling G (denoted HK) [57] (in both cases, the cou-
pling K is the same)

two temperature values increases when T ! 0.3GeV2). The
VMR scheme, with G(eB, T ), predicts a more dramatic (and
completely monotonic) decrease of M as the magnetic field
increases. Highlighting, once again, the crucial role played by
contributions which are subtracted within the MFIR method.

5 Conclusions

In this work we extended the recently [54] proposed VMR
scheme to describe magnetized strange quark matter within
a three flavor NJL model framework. The thermomagnetic
running of the four fermion coupling, G(eB, T ), was deter-
mined by fitting lattice QCD data for the quark condensate,
reproducing in this way the inverse magnetic catalysis effect
predicted by most lattice evaluations. When regulated with
the VMR the thermodynamical potential presents mass inde-
pendent terms which are usually subtracted in other schemes
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three sets of temperatures: T = 0 (top panel), T = 113 MeV (center
panel) and T = 176 MeV (bottom panel). The blue bands represent the
error bands of the LQCD results and black dotted line represents the fit
for the LQCD results Ref. [40])

M > 0 is only observed at rather low B values. The VMR
scheme shows M < 0 for a fixed coupling at both tem-
peratures considered (although the magnetization at these
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Fig. 4 Pressure (P = −Ω(T, eB)) as function of the magnetic field
for the temperatures T = 0 (top panel) and T = 176 MeV (bottom
panel) in the MFIR and VMR schemes. Results obtained with G(eB, T )
and the vacuum coupling G (denoted HK) [57] (in both cases, the cou-
pling K is the same)

two temperature values increases when T ! 0.3GeV2). The
VMR scheme, with G(eB, T ), predicts a more dramatic (and
completely monotonic) decrease of M as the magnetic field
increases. Highlighting, once again, the crucial role played by
contributions which are subtracted within the MFIR method.

5 Conclusions

In this work we extended the recently [54] proposed VMR
scheme to describe magnetized strange quark matter within
a three flavor NJL model framework. The thermomagnetic
running of the four fermion coupling, G(eB, T ), was deter-
mined by fitting lattice QCD data for the quark condensate,
reproducing in this way the inverse magnetic catalysis effect
predicted by most lattice evaluations. When regulated with
the VMR the thermodynamical potential presents mass inde-
pendent terms which are usually subtracted in other schemes
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ω
f ield
f = − Nc(|q f |B)2

24π2 log

(
M2

f

Λ2

)

, (8)

ωmed
f = − T

∞∑

k=0

(2 − δ0k)
|q f |B
2π2

×
∫ ∞

−∞
dp ln

(
1 + e−E f /T

)
, (9)

where ζ ′(−1, x f ) = dζ(z,x f )

dz |z=−1.
The MFIR expressions differ from the above by the

absence of the last term in Eq. (7) and the ω
f ield
f contri-

bution in Eq. (8). As mentioned, those terms are essential
for describing the SU(2) lattice data. In the above expres-
sions, we defined ϵ f = (Λ2 + M2

f )
1/2 where Λ is a

three-dimensional cutoff, x f = M2
f /2|q f |B, ζ(s, x) is the

Riemann-Hurwitz zeta function, and E f = (p2 + M2
f +

2|q f |Bk)1/2. In the previous definitions, M f represents the
flavor f constituent quark mass, determined by the familiar
NJL gap equations:

Mu = mu − 4Gφu + 2Kφdφs, (10)

Md = md − 4Gφd + 2Kφuφs, (11)

Ms = ms − 4Gφs + 2Kφuφd . (12)

In this first study only the coupling G is enforced to be T and
B dependent. As mentioned above, the flavor f quark con-
densate can also be expressed as a sum of vacuum, magnetic
field and medium contributions, namely:

φ f = φvac
f + φ

mag
f + φmed

f , (13)

where

φvac
f = − Nc M f

2π2

[
ΛϵΛ − M2

f log
(

Λ + ϵΛ

M f

)]
, (14)

φ
mag
f = − M f Nc|q f |B

2π2

[
log Γ (x f ) − 1

2
log(2π)+ x f

− 1
2
(2x f − 1) log x f

]
, (15)

φmed
f =

∞∑

k=0

(2 − δ0k)
|q f |B Nc M f

2π2

×
∫ ∞

−∞
dp

1
E f

1

eE f /T + 1
, (16)

where Γ is the gamma function.

3 Running coupling and magnetization

We use the average quark condensate (Σu + Σd)/2 [17]
to adjust the running coupling G(eB, T ). To this end,
we adopt the following parametrization of the Gell-Mann-
Oakes-Renner (GOR) relation [17,25]

Table 1 Values of parameters in Eq. (18) in appropriate GeV units;
d(B) is dimensionless

eB α(eB) β(eB) Ta(eB) d(eB) s(eB)

0.0 2.1534 420.95 0.1678 0.3506 2.0793

0.2 1.7571 142.44 0.1844 1.4636 2.3358

0.4 0.8158 183.46 0.1712 2.0641 2.8016

0.6 0.7148 128.16 0.1720 3.2874 2.3080

Σ f = 2m
m2

π f 2
π

[〈
ψ̄ f ψ f

〉
B,T −

〈
ψ̄ f ψ f

〉
00

]
+ 1, (17)

where ⟨ψ̄ f ψ f ⟩1/3
00 = −230.55 MeV is the quark chiral con-

densate at B = T = 0, fπ = 86 MeV, mπ = 135 MeV, and
m = 5.5 MeV. Adopting this particular set of phenomeno-
logical values will allow us to perform direct comparisons
with the lattice results of Ref. [17].

The T and B dependent condensates ⟨ψ̄ f ψ f ⟩B,T = φ f
are evaluated within the NJL expressions given in the pre-
vious section, Eqs. (13)–(16). The constituent quark masses
Mu, Md , and Ms in the expressions for φ f are obtained by
solving the gap equations Eqs. (10)–(12). The T and B run-
ning of the coupling G = G(eB, T ) is dictated by an ansatz
similar to that used for the SU(2) model [25], namely:

G(eB, T ) = α(eB)
(

1 − d(eB)
1 + eβ(eB)(Ta(eB)−T )

)
+ s(eB).

(18)

This expression has been adopted for mere convenience since
it is well adapted for the adjustment of LQCD results. Of
course, other possibilities may be used with similar results.

Table 1 displays the numerical values for the parameters
appearing in Eq. (18). These selected values are those which
best fit the average quark condensate. Since Ref. [17] offers
no data points between T ∈ [0, 113MeV], we follow the
strategy of Ref. [25], in that we fit G using the available
lattice data to extrapolate the results to lower temperatures.

In the next section we present the fitting results of the lat-
tice data for (Σu +Σd)/2 [17] and compare the predictions
of the model for the pseudocritical temperature with the cor-
responding lattice results. We will also show results for the
renormalized magnetization, Mr [32,54]:

Mr · eB = M · eB − (eB)2 lim
eB→0

M · eB
(eB)2

∣∣∣∣
T=0

, (19)

where M = −∂Ω(T, eB)/∂(eB), with Ω(T, eB) repre-
senting the thermodynamical potential, Eq. (4). Although the
NJL model is a nonrenormalizable field theory, this prescrip-
tion, which motivated the VMR for the SU(2) NJL model,
gives us the possibility to compare our results directly with
the LQCD data–see Ref. [54] for more details.
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 NJL models with fixed coupling fails to describe lattice QCD calculations 


 Thermo-magnetic coupling seems to be adequate to improve NJL results


 Thermodynamic quantities are all affected by the variation of the coupling


 Sign of magnetization changes when 


 Pion mass at  matches lattice QCD calculations with 

G → G(eB, T )

T = 0 G(eB)

Final Remarks
The results with unphysical masses are close to the lattice QCD calculations


The results with physical masses are close to the experimental values


Our calculations with effective potentials support the lattice QCD results


Few-Body

Many-Body


