X-ray Flares During the Steep Decay Phase of GRB Afterglows Chris Irwin

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

with Ehud Nakar (TAU) and Tsvi Piran (HUJI)

- Light curves
- Why study flares?
- Timescale
- Average flare behavior

- Light curves
- Why study flares?
- Timescale
- Average flare behavior

- GRB prompt emission has long remained a mystery
- X-ray flares share several characteristics with the prompt emission, suggesting they may have a similar physical origin
 - Lag-luminosity relation: Emission peaks later in lower energy bands
 - X-ray flares have a similar shape as prompt pulses, with a fast rise and slower decay

Chincarini+ 10

- Light curves
- Why study flares?
- Timescale
- Average flare behavior

Bernardini+ 11

- Light curves
- Why study flares?
- Timescale
- Average flare behavior

- Light curves
- Why study flares?
- Timescale
- Average flare behavior

Margutti+ 11

Late Time Flares

Bernardini+ 11

Late Time Flares

Bernardini+ 11

Late Time Flares

Bursts with a steep decay blue: Bernardini+ 11
do not have flares after ~ 1000 s red/gray: Chincarini+ 10

- Similarly, bursts showing flares after ~1000 s do not have canonical light CURVES
- However, there are a few exceptions where a flare is seen at the end of the plateau phase

GRB Prompt Emission: Subjets

Lazar Nakar & Piran 09

Model: Timescales

$$\Delta t = \frac{\Delta R}{c} (1 - B\cos\theta)$$
$$\Delta t \approx \frac{\Delta R}{2\Gamma^2 c} (1 + (\theta\Gamma)^2)$$

$$\Delta t \propto t^0, \theta < \Gamma^{-1}$$
$$\Delta t \propto t, \theta > \Gamma^{-1}$$

What do we see?

- In the subjet model, we expect to see an order of magnitude fewer flares for every dex in time
- We find:
 - 115 flares with $t < 10^3$ s
 - 19 flares with $10^3 \text{ s} < t < 10^4 \text{ s}$
 - 10 flares with $10^4 \text{ s} < t < 10^5 \text{ s}$
 - 5 flares with $t > 10^5$ s
- Consistent with subjet flares up to about 10³ s, and another process responsible for ~5-10 flares in each bin, and dominating at late times

Model: Flare Flux $\Lambda_{fl,\max} / \Lambda_{ag} = \gamma(1+\beta)$ $t^{-lpha_{fl}}$ 0 ag θ $\alpha_{ag} \simeq -(2 + \beta_{ag})$ $\alpha_{fl} \simeq -(3 + \beta_{fl})$ $\alpha_{ag} \approx \alpha_{fl} \Longrightarrow \beta_{fl} \approx \beta_{ag} - 1$

- The difference in HR is typically ~ 1 , for frequency ranges 0.3-1.5 keV and 1.5-10 keV
- However, for $\beta_{ag} = 0.7 1.0$, we find $\Delta \beta = 0.2 0.3$ There is tension! lacksquare

Conclusions

- We find clear evidence for (at least) two different mechanisms powering X-ray flares
 - One mechanism creates flares before ~1000 s. The flares track the steep decay of the afterglow light curve and have a typical width of dT/T ~ 0.2
 - The other process dominates at late times, although it may also produce flares at early times. These flares have a typical width dT/T ~ 1, and are only seen in GRBs that do NOT have a steep decay phase
- We explore a subjet model to link the flares during the early steep decay phase to the prompt emission
 - The model can explain the timescale and frequency of these early flares
 - However, there is tension between the temporal decay index and the flare spectral index