Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

#### ElisaBete de Gouveia Dal Pino IAG – Universidade de São Paulo

Collaborators: M. V. del Valle, L. Kadowaki, G. Kowal, A. Lazarian, T. Medina-Torrejon, Y. Mizuno, C. Singh

Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017





Accretion disk coronae

> Stellar Xray Flares

Star Formation and ISM

Reconnection beyond Solar System

Pulsars

AGN & GRB Jets

Accreting NS and SGRs





## This talk

### **MAGNETIC RECONNECTION an alternative:**

- Powerful relativistic particle acceleration
- Efficient conversion of magnetic energy -> into kinetic energy
- May explain very-high energy emission specially in BH sources and relativistic jets in magnetically dominated regions solving current puzzles

# How particles are accelerated in reconnection sites?

#### **Shock Acceleration**



1<sup>st</sup>-order Fermi (e.g.Bell+1978; Begelman & Eichler 1997)

 $<\Delta E/E > ~ v_{sh}/c$ 

#### **Reconnection Acceleration**



As in shocks: 1<sup>st</sup>-order Fermi (de Gouveia Dal Pino & Lazarian, A&A 2005):

particles bounce back and forth between 2 converging magnetic flows

 $<\Delta E/E > ~ v_{rec}/c$ 

# Particles are accelerated in reconnection sites in 1<sup>st</sup>-order Fermi

Kowal's talk



(Kowal, de Gouveia Dal Pino & Lazarian, ApJ 2011)

#### **Reconnection Acceleration**



#### 1<sup>st</sup>-order Fermi (de Gouveia Dal Pino & Lazarian, A&A 2005):

particles bounce back and forth between 2 converging magnetic flows

 $<\Delta E/E > ~ v_{rec}/C$ 

### 1<sup>st</sup> order Fermi Reconnection Acceleration: successful numerical testing in 3D MHD



del Valle, de Gouveia Dal Pino, Kowal MNRAS 2016

### 1<sup>st</sup> order Fermi Reconnection Acceleration: successful numerical testing in 3D MHD



del Valle, de Gouveia Dal Pino, Kowal MNRAS 2016

## Implication to BHs and relativistic jets

## Reconnection Acceleration *along* Relativistic Jets



### Very-rapid TeV Flares in *Blazar Jets* hard to explain with standard acceleration

Variation timescale:

 $t_v \sim 200 s < r_s/c \sim 3M_9$  hour

- For TeV emission to avoid pair creation  $\gamma_{em} > 50$  (Begelman, Fabian & Rees 2008)
- But bulk jet  $\gamma \sim 5-10$
- Emitter: compact and/or extremely fast

A proposed Model:
 Reconnection
 inside the jet

PKS2155-304 (Aharonian et al. 2007) See also Mrk501, PKS1222+21, PKS1830-211



# GRB jet prompt gamma-ray emission may require reconnection acceleration too

Internal collision-induced magnetic reconnection turbulent model (ICMART) (Zhang & Yan 2011):

 GRB prompt emission: turbulence, magnetic reconnection, and particle acceleration via internal collisions of multiple launched parcels

(See also Giannios 2008; McKinney & Uzdensky 2012)

## Inner Regions of AGN & GRB Jets: Magnetically dominated

#### Modified from D. Meier & Y. Mizuno (courtesy)

 $\sim 10 - 10^{2.5 \pm 0.5} r_{s}$ 



## **CD** Kink Instability drives reconnection



Schematic picture of CD kink instability

- Well-known instability in laboratory plasma (TOKAMAK) and astrophysical plasmas (Sun, jets, pulsars)
- In configurations with strong toroidal magnetic fields, current-driven (CD) kink mode (m=1) is unstable

$$t_{\rm kink} \simeq \frac{2\pi R_{\rm j}}{c} \frac{B_p}{B_\phi}$$

- This instability excites large-scale helical motions that can strongly distort or even disrupt the system
- Distorted magnetic field structure may trigger magnetic reconnection

### MHD Simulations of Reconnection driven by Kink in Magnetically Dominated Relativistic Jets (GRBs & AGNs)





#### Singh, Mizuno, de Gouveia Dal Pino, ApJ 2016 Torrejon, de Gouveia Dal Pino, Mizuno, Kadowaki, Singh in prep.

### MHD Simulations of Reconnection driven by Kink in Magnetically Dominated Relativistic Jets (GRBs & AGNs)

• Precession perturbation allows growth of CD kink instability with helical density distortion.

• Helical kink advected with the flow with continuous growth of kink amplitude in nonlinear phase.

• Helical structure is disrupted

• Magnetic energy converted into kinetic



#### Singh, Mizuno, de Gouveia Dal Pino, ApJ 2016

### Reconnection driven by Kink in Magnetically Dominated Relativistic Jets (GRBs & AGNs)



Singh, Mizuno, de Gouveia Dal Pino, ApJ 2016

# *In situ* Particle Acceleration by Reconnection in Relativistic Jets



Medina-Torrejon, de Gouveia Dal Pino, Kowal, Mizuno, Kadowaki, Singh, in prep.

## Reconnection Acceleration *in the core region*



#### Few Low Luminous AGNs: gamma-ray emitters

Ex. CenA

✓ Is emission from core or jet ?



-> compact *emission: core*?

✓ If core: magnetically dominated

-> Reconnection acceleration?



## Radio and Gamma-Ray Power versus Mass



### Gamma-Ray Power versus Mass Correlations



#### Reconnection acceleration in the surrounds of BHs?

#### Accretion disk/jet systems (AGNs & galactic BHs)



**de Gouveia Dal Pino & Lazarian 2005**; de Gouveia Dal Pino+2010 Kadowaki, de Gouveia Dal Pino, Singh, ApJ 2015

#### Reconnection acceleration in the surrounds of BHs?

#### Accretion disk/jet systems (AGNs & galactic BHs)



de Gouveia Dal Pino & Lazarian 2005; de Gouveia Dal Pino+2010 Singh, de Gouveia Dal Pino, Singh, ApJ Lett. 2015



Kadowaki, Master thesis 2011 (also Zani & Ferreira 2013; Romanova+)

37



Kadowaki's Master thesis 2011 (also Zani & Ferreira 2013; Romanova+)



Kadowaki, Master thesis 2011 (also Zani & Ferreira 2013; Romanova+)



#### Parker-Rayleigh-Taylor inst.

Kadowaki 2011 (also Zani & Ferreira 2013; Romanova+)



(3D MHD simulations with ATHENA - Kadowaki, de Gouveia Dal Pino, Stone, in prep.)



Reconnection seen in GRMHD simulations (Parfrey, Giannios, Beloborodov 2015; also Dexter, McKinney, Tcheckovskoy2014: Koide & Arai 2008; Pohl et al. 2016) <sup>95</sup>

#### Reconnection acceleration in the surrounds of BHs

Magnetic Power released by fast reconnection

$$\dot{W}_B \simeq 1.66 \times 10^{35} \Gamma^{-\frac{1}{2}} r_X^{-\frac{5}{8}} I^{-\frac{1}{4}} I_X q^{-2} \dot{m}^{\frac{3}{4}} m \ erg/s$$



## Magnetic Reconnection and Gamma-Ray emission around BHs



### Magnetic Reconnection and Gamma-Ray emission around BHs



### Reconnection Acceleration & Radiative Losses

✓ Cooling of the accelerated particles -> emission:

t<sub>acc</sub> ~ t<sub>loss</sub>(Synchrotron, SSC, pp, pγ)

#### **Ex.: Galactic Black Hole Cyg X3**



t<sub>pγ</sub>--1

t<sub>Synch</sub><sup>-1</sup>

17

16



**Spectral Energy Distribution (SED)** 

-6

#### Khiali, de Gouveia Dal Pino, del Valle, MNRAS 2015

t<sub>pp</sub> -1

14

Log(Ep /eV)

15

## Summary

 ✓ Particles inserted in MHD current sheets with fast reconnection (e.g. driven by turbulence): exponential increase of energy in a 1<sup>st</sup> order Fermi acceleration: N(E) ~ E<sup>-1</sup> (similar to collisionless results)

✓ Acceleration by magnetic reconnection (numerically tested): may explain gamma-ray as coming from near *core* of BH binaries and low luminous AGNs

Reconnection power matches well with the observed correlation of gammaray luminosity versus BH mass of microquasars and low-luminous (nonblazar) AGNs over 10 orders of magnitude in mass

 Reconnection acceleration also important along AGNs and GRBs jets to explain bursty gamma-ray emission

 Reconnection can be important in accretion/jet systems for particle acceleration, dissipation of magnetic energy and conversion into -> kinetic energy

## **Extra bonus: neutrino emission** from *cores* of low luminous AGNs ( $z \sim 0 - 5.2$ ) due to reconnection acceleration



Khiali & de Gouveia Dal Pino, MNRAS 2016