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Which central engine?
Both long and short GRBs may involve either a BH or NS central engine (CE)

Traditionally, energetics considered as clearest imprint of CE
Coupling the CE with dissipation models is crucial for going further
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Gradual magnetic dissipation

*  MHD outflow arranged in a striped wind configuration

| 2 == ~ 108cm for magnetars

N
o(‘
§ 5
0\ downstream N,
%)
fluid O

* Magnetic energy dissipated by reconnection and is converted to

bulk kinetic energy and acceleration of relativistic particles

1/3
o

Drenkhahn 02 F = O-() Zi

§ \Is . . ;
Saturation radius=Aa /6¢€
Energy per baryon




2

Particle acceleration in high
magnetization

Particle spectrum becomes harder with increasing magnetization

Sironi & Spitkovski 14
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Gradual magnetic dissipation

. Dissipated'energy converted to radiation

-~ Sub-Photospheric dissipation re- |
processed to quasi thermal emission|

Super-Photospheric dissipation
. = dominated by synchrotron
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Four model parameters:

; f . A : ; .
1L (jet luminosity), T (scale of striped wind over reconnection outflow
\velocity), o, (energy per baryon), ¢ fraction of accelerated electrons
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Predictions /| Observables
Efficiency of 0.1-0.2 consistent with afterglow observations (pB, Nava, Barniol

Duran, Piran 15)

Natural preferred range of Lorentz factors
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For lower values _— SN For larger values
Tpn > Ts electrons are slow
emission completely cooling and inefficiency
thermalized + adiabatic losses is large

Bursts with softer & have weaker thermal bump and observable to
higher frequencies

Emission in X-ray and optical self absorbed and consistent with upper
limits from observations (ps & piran 14)

Material ejected with lower L, oy, would produce X-ray flares that are
self-absorbed in the optical band (ps & kumar 16)




Sensitivity to initial magnetization
The observed luminosity and peak energy strongly depend on the energy

per baryon, g, and its evolution
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conditions and resulting GRB is very faint
Remains true for general models with I' o< ™

Furthermore when n<1/4 or n>2/3 £, and
the luminosity evolve strongly with o,
(and therefore also with time),

contrary to observations
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3. Energy per baryon - related to
neutrino driven mass loss (vetzger et al.

' Magnétaf models a}'e more strongly
constrained (for better or worse)

For BHs A = 10 — 1O3rg ~ 107 — 10°cm

A

Length scale - Evolution of spin

TTC
= — =~ 108cm for magnetars
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1. Energy - Strong engrgy limits
~10%Lerg fron%ional

energy reservoir

2. Length scale - Evolution of spin
frequency due to dipole

radiation — natural scale A for
flipping of magnetic field

3. Energy per baryon - related to

neutrino driven mass loss (vetzger et al.
10)

frequency due to dipole

radiation — natural scale A for

flipping of magnetic field

10)

2. Length scale - Evolution of 4
unknown (could be chaotic
and likely determined by the

3. Energy per baryon - No robust
prediction for the energy per

1. Energy - basically limitless.
105'erg requires accreting
only 0.01M o at 10%
efficiency of Mc?2

2. Length scale - Evolution of A

unknown (could be chaotic

and likely determined by the
disc)

3. Energy per baryon - No robust

prediction for the energy per
baryon (yet)

disc)

baryon (yet)




Metzger et al. 2010 |

Magnetar Wind Model
Energy loss dictated by dipole spin-down
Mass loss driven by neutrinos from cooling NS atmosphere ~ 1 min
At later times NS transparent to v and mass loss given by pair
creation from the vacuum electric fields

Wind characterized by magnetization o, = oz =T

Before SN Shock Launch After Shock Launch

Burrows, Hayes, & Fryxell 1995



Magnetar Wind Model
Transition to vacuum pairs —
Energy per electrons decreases by ~1000!

7, (8=210'°G)
- - = (dE/dt),, (B=2 10'°G)
74 (€5 1o=0-01) <
(dE/dt),, (eg ,=0-01)

o, (convection equipartition)

. - (dE/dt)50 (convection equipartition)

7, (8=10"°G)

- = = (dE/dt), (B=10"°G)
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Magnetar Wind Model
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 For B =~ 101G most of the energy released when 20 < g, < 3000

* Available energy for GRB S 0.25E ¢, with a maximum at 3 - 10°erg




Coupling to prompt emission models

I|* Dissipation models required to constrain prompt emission

|* Consider three generic possibilities:

Pure fireball — Dissipation close to central engine
Internal shocks — Dissipation at large.distances }
Gradual Magnetic dissipation — Dissipation across wide range of radii|

(PB & Giannios 2017)
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Pure Fireball
Strong temporal evolution, hard spectrum, shallow late time decay
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Internal Shocks
Strong temporal evolution, soft spectrum, inefficient

L. Internal Shocks s . Internal Shocks
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Gradual magnetic dissipation
Stable Ep, Lp, reasonable spectrum, very steep late time decay
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Duration distribution

Unless dissipation completed below the photosphere, t;rg = Min(tsp, t5,) < 100sec .
Short GRB if t¢pi1apse < tsp - similar luminosity, smaller energy — remnant is BH
Ultra long GRBs implausible from this engine (Fallback accretion? Work in progress)
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Energy distribution

Limited by energy released from max[t,, t(c = 100)] and ¢, as wellf

as efficiency of prompt GRB mechanism
Typical energies easy to produce, but some GRBs have 30 times larger
than obtainable from magnetars
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Summary

Magnetar model provides robust predictions
Magnetization = g is a crucial parameter
GRB available energy < 0.25E, 4, With a maximum at 3 - 10°erg

Fireball and Internal shocks coupled with magnetar engines in
contention with observations

Gradual dissipation model provides realistic energies, time-scales,
spectra, temporal evolution, etc. with no fine tuning but still cannot
easily account for very long or very energetic GRBs










