Toward a Near-Infrared SN Ia Cosmology

Arturo Avelino

(CfA, Harvard)

Andrew Friedman, Kaisey Mandel, Robert P. Kirshner and Peter Challis

Deciphering the Violent Universe, Playa del Carmen, Dec 2017

The problem

Optical samples of SN Ia for cosmology have reached their limit to constrain the nature of the dark energy (DE) because of the systematic uncertainties.

- More optical data *doesn't* mean better DE constraints.
- Optical light is dimmed and reddened by dust in the host galaxy, the Milky Way, and the extragalactic medium.

A solution: NIR observations!

 Near infrared (NIR) light is much less sensitive to dust than the optical wavelengths. Then the systematic uncertainty due to dust is reduced.

A solution: NIR observations!

- Near infrared (NIR) light is much less sensitive to dust than the optical wavelengths. Then the systematic uncertainty due to dust is reduced.
- SN Ia observed in NIR are much more standard candles than in optical wavelengths.
- NIR light curves have a second maximum that allow to have a brighter SN for longer compared with the optical bands and can help in photometric classification.

Low-z NIR sample

Compiled by **Andrew Friedman** (UCSD):

- CfA, CSP, Krisciunas
- 154 SN Ia with optical + NIR (YJHK) light curves

Gaussian-Process Method

Gaussian-Process Method

Gaussian-Process Method

Optical-only Hubble diagrams

Intrinsic dispersion and wRMS summary

Band	Method	$\sigma_{ m int}$	wRMS (mag)
Y	GP	0.103 ± 0.027	0.128
J	GP	0.087 ± 0.018	0.125
H	GP	0.019 ± 0.050	0.099
K	GP	0.077 ± 0.040	0.144
any $YJHK_s$	GP	0.055 ± 0.015	0.096
YJH	GP	0.013 ± 0.068	0.074
JHK_s	GP	0.073 ± 0.027	0.114
optical	SALT2	0.160 ± 0.026	0.220
optical	SNooPy	0.156 ± 0.021	0.170

RAISIN = SN IA in the IR

Tracing cosmic expansion with SN Ia in the Near Infrared

RAISIN-1

- 23 SN Ia with redshift ~ 0.3
- Spectroscopic classification and redshift from Magellan, MMT and Gemini.
- Optical (griz) photometry from PanSTARRS.
- Near-infrared photometry from HST (F125W, F160W)

RAISIN-2

- 24 SN Ia with redshift ~ 0.5
- Spectroscopic classification and redshift from Magellan, MMT and Gemini.
- Optical (griz) photometry from DES.
- Near-infrared photometry from HST (F125W, F160W)

Take away

 NIR SN Ia are very good standard candles compared with the optical-only observations.

 Very promising for cosmology when combining low-z & highz of optical+NIR observations: RAISIN program, WFIRST.

