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I. Abstract
A neo-neutron star is the next step after the proto-neutron star phase. It begins

30–60 seconds after the birth of the neutron star when neutrinos are free to escape
and the crust of the neutron star is forming. Super-Eddington luminosities are still
present for some time. A neo-neutron star produced in a core collapse supernova is
not observable but the one produced by a binary merger, likely associated with a short
gamma-ray burst, may be observable for some time while the super-massive neutron
star is supported by fast rotation. A neutron star envelope can also reach Eddington
luminosity during an X-ray burst. We present preliminary results of study of this
neo-neutron star phase obtained with a modified version of a “standard” neutron stars’
thermal evolution code, which was adapted to handle this regime. We investigated
how long the star can have near-Eddington luminosity and demonstrate that this
depends greatly on the initial conditions unlike “standard” cooling scenarios in which
the initial conditions are quickly forgotten. We also show the importance of positrons
and contraction energy during neo-neutron star phase.

III. Physical ingredients of thermal evolution
We consider a spherically symmetric problem and ne-

glect the effects of rotation and magnetic fields. The
equations governing the thermal evolution can be divided
into two categories: structure equations, which are al-
most temperature independent and thermal evolution
equations.

Let us start with defining a space-time metric suitable
for spherically symmetric non-rotating neutron stars:

d𝑠2 = 𝑐2d𝑡2e2Φ − e2𝜆d𝑟2 − 𝑟2
(︀
d𝜃2 + sin2 𝜃 d𝜙

)︀
(1)

Here Φ and 𝜆 are metric functions,

e−2𝜆 = 1 − 2𝐺𝑚

𝑟𝑐2
(2)

(𝑚 being the gravitational mass enclosed within the ra-
dius 𝑟).
In 1-dimensional spherically symmetric problem the

convenient independent variable is the enclosed baryon
number, 𝑎. This is a Lagrange variable, which allows one
to easily handle the situation where the star’s structure
changes in time.

𝑎 =

∫︁ 𝑟

0

4𝜋𝑟′
2
𝑛 (𝑟′) e𝜆(𝑟′)d𝑟′, (3)

𝑛 is the baryon number density.
The structure equations are:

𝜕𝑟
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1
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, (4)
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(5)
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=
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𝑛e𝜆
. (7)

𝑃 is the pressure, 𝑈 is the internal energy, 𝜌 is the mass
density (not the energy-mass density).
Thermal evolution equations are:

̃︀𝐿 = −𝜅
(︀
4𝜋𝑟2

)︀2
𝑛eΦ
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, (8)
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Here ̃︀𝐿 = 𝐿e2Φ and ̃︀𝑇 = 𝑇 eΦ are red-shifted luminosity
and temperature, respectively. 𝐶V is the heat capacity, 𝜅
is the thermal conductivity and 𝑄𝜈 is the energy loss due
to neutrinos minus heat source (if any). The last term
in Eq. (9) is the contraction energy. It describes the ad-

ditional energy release due to the contraction of the star.
These six equations combined with the expressions for

the thermal conductivity, heat capacity, neutrino energy
losses and EOS constitute the full set of equations to cal-
culate the thermal evolution of the neutron star. These
equations are basically just the evolutionary equations
for normal stars, but they fully take into account the
general relativity (GR) effects.
Boundary conditions at the center are obvious:̃︀𝐿(0) = 0, 𝑟(0) = 0 (10)

Boundary conditions at the surface are more complicated:

𝐿𝑠 = 4𝜋𝜎𝑅2𝑇 4
𝑠 , 𝑃𝑠 =

2

3

𝑔𝑠
K𝑠

, 𝑚𝑠 = 𝑀,

Φ(𝑟 > 𝑅) = −𝜆(𝑟 > 𝑅).

(11)

Subscript “𝑠” refers to the quantities at the surface; 𝑔𝑠 is
the free-fall acceleration at the surface, 𝜎 is the Stephan-
Boltzmann constant and K is the opacity. The pressure
boundary condition is actually approximate. It assumes
that free-fall acceleration in the layers above the sur-
face is constant. In some cases this is not true (when
expansion or contraction of the star is significant). It is
important to notice that for the calculations of neutron
stars’ thermal evolution the “surface” might be actually
at rather high density, which makes luminosity boundary
condition more complicated (see next section).

II. Introduction
Neutron stars are by far the most intriguing objects in the Universe. They are

superdense, superfast rotators, have superstrong magnetic fields, etc. (see, e.g., [1]).
They are interesting objects to study on their own. But there is another important
reason to study them.

Investigation of the properties of the matter at nuclear (𝜌0 = 2.8× 1014 g cm−3 [1])
and supranuclear densities is a fundamental problem not only for astrophysics but
for nuclear and particle physics and condensed matter physics as well. This is a very
difficult task for a number of reasons among which are:

• The superdence matter is difficult to study in the laboratories;
• Its properties are problematic to compute due to the absence of a reliable
description of the strong baryonic interactions taking into account many-body
effects.

Some properties of superdense matter can be inferred from heavy ion collision
experiments (e.g., [2]) or measurements of the neutron skin thickness of heavy nuclei
(e.g., [3]). At densities 𝜌 > 104𝜌0 one can employ methods of asymptotic QCD to
calculate properties of such matter [1]. But the matter at the densities 𝜌 ∼ 10𝜌0 is
the most mysterious. It cannot be studied reliable neither in experiments, nor by pure
theoretical computations. One of the “most wanted” characteristics in such studies is
the equation of state (EOS).
And here neutron stars come to the rescue. Neutron stars are unique natural

laboratories of superdense matter. Their average density is ∼ 2.5𝜌0 and the central
density of massive neutron stars can reach up to ∼ 10𝜌0. Exactly the range which
is most needed. Of course, this is also not a simple task. To study the properties
of the superdense matter one needs to study the interiors of the neutron stars. And
from observations we can only infer the information about the surface. The neutrino
emission from the core would have given us the information about the interiors directly,
but it is far beyond the sensitivity of the current generation of neutrino detectors.
The gravitational waves (GWs) so far cannot provide much of an insight about the
EOS because the GW waveform depends on it only in the very last moments of binary
neutron star merger. Thus, for the time being we have to deal with the electromagnetic
observations of the surface.
The question is how. One of the possibilities is to study the thermal evolution of

neutron stars (e.g., [1, 4]). This we will discuss further. Among other possibilities are
independent measurement of masses and radiuses of neutron stars. Only four relatively
precise measurements are enough to reconstruct 𝑀(𝑅) (mass–radius) dependence and
then the EOS.

IV. “Standard” cooling
Let us quickly review the “standard” cooling of neutron

stars. The cooling can be divided into three stages [4]:
• Initial relaxation, 0 ≤ 𝑡 . 100 yr. The core is
thermally decoupled from the crust. Surface tem-
perature reflects crust physics.

• Neutrino cooling stage, 100 . 𝑡 . (1 − 3) × 105

yr. The core and the crust are thermally coupled.
Near isothermal interior. The cooling is regulated
by the neutrino emission from the core.

• Photon cooling stage, 𝑡 & (1 − 3) × 105 yr. The
core and the crust are thermally coupled. Near
isothermal interior. The cooling is regulated by
the photon emission from the surface.

During the thermal evolution the neutron star tends
to “forget” the initial conditions. Thus, if we are inter-
ested in what is happening during the neutrino and/or
photon cooling stage, we can have rather approximate
treatment of what is happening in the initial relaxation
phase and still get accurate solutions for the later phases.
This greatly simplifies things. Most of the neutron star
interior (except for a thin surface layer which is called
the heat blanketing envelope) contains highly degener-

ate matter. This matter from the point of view of the
structure equations can be considered as being at zero
temperature. Thus, one can solve structure equations
ones and then the cooling calculation will deal only with
thermal equations.
So, the “standard” procedure is as following:
• Choose the heat blanketing envelope bottom den-
sity. Usually 𝜌𝑏 ∼ 1010 g cm−3 (the thickness is
∼ 100 m). Subscript “𝑏” stands for ‘bottom’.

• Compute the heat blanketing envelope profiles to
find the relation between the surface temperature
𝑇𝑠 and the bottom temperature 𝑇𝑏.

• Calculate the structure of a star starting from the
center till 𝜌𝑏 at zero temperature.

• Compute the cooling of a star by solving only the
thermal evolution equations with the fixed struc-
ture and using 𝑇𝑠 − 𝑇𝑏 relation as the boundary
condition, i.e.: 𝐿𝑠 = 4𝜋𝜎𝑅2𝑇 4

𝑠 (𝑇𝑏) = 𝐿𝑏 (assum-
ing there are no heat sinks or sources in the heat
blanketing envelope).

This scheme works well if we are interested in neutrino
or photon cooling stages.

Here a couple of questions may arise. First, why not
set 𝜌𝑏 to surface density?

• The scheme with artificial separation of the heat
blanketing envelope is much more computationally
efficient.

• The very outer parts are not degenerate enough
and their structure cannot be computed reasonably
at zero temperature.

Second, what governs the choice of 𝜌𝑏?
• The balance between the computational efficiency

and the heat diffusion timescale through the enve-
lope.

• Presence of strong magnetic fields and some other
considerations.

The question about heat diffusion timescale deserves
special comment. For a pure iron envelope and 𝑇𝑠 =
1 MK the heat diffusion time is:

𝜌𝑏 = 108 g cm−3: 𝑡𝑑 ∼ 1 day

𝜌𝑏 = 1010 g cm−3: 𝑡𝑑 ∼ 1 yr.

𝜌𝑏 = 4 × 1011 g cm−3: 𝑡𝑑 ∼ 10 yrs.

V. Preliminary results for neo-neutron stars
Now we want to focus on what is happening at the

initial relaxation stage.
• Proto-neutron star, 0 ≤ 𝑡 . 30 − 60 s. The star is

opaque to neutrinos, 𝑇 ∼ 1011 K.
• Neo-neutron star, 30 − 60 . 𝑡 .??? s. The star
becomes transparent to neutrinos, 𝑇 < 1011 K.
The crust is being formed.

The neo-neutron stage is important as it may occur not
only in the newly born neutron stars (they are obscured
from view), but also after a merger of two neutron stars.
Unlike newly born stars, the latter situation might be
observable. This is one of the main motivations to focus
on this evolutionary phase. The other motivation is to
study the formation of the crust.
“Standard” approach is inapplicable to neo-neutron

stars due to several reasons. Consider one of them: we
are now studying much shorter timescales and much
faster processes. Thus, we need much lower values of 𝜌𝑏.
In particular, for 𝜌𝑏 = 105 g cm−3 𝑡𝑑 is about 1 s. This
is fast enough for our purposes. So, we have to start
from 105 g cm−3 and temperatures about 1010 K. This
leads to the following issues:

• Region with these densities and temperatures is
not degenerate enough to calculate its structure at
zero temperature.

• Presence of positrons modifies thermal conductiv-
ity, heat capacity and equation of state.

• Radiative pressure cannot be neglected.
So, the main issue now (apart from more complicated

physics due to the presence of positrons and photons) is
that the structure and the thermal evolution equations
cannot be separated and have to be solved together at
each timestep (in other words the structure now is not
constant and evolves in time). However, deeper inside
(𝜌 & 1011 g cm−3) the structure is again temperature
independent. Thus, one can separate the star into three
regions:

• heat blanketing envelope (𝜌 < 105 g cm−3)
• variable structure part (105 < 𝜌 < 1011 g cm−3)
• fixed zero temperature structure part (𝜌 >

1011 g cm−3)
Note that the density at the boundary between the heat
blanketing envelope and the variable structure part will
evolve with time (see Figs. 2 and 4).
The most considerable difficulty now lies in the fact

that the outer parts of the variable structure region
are completely dominated by photons. Thus, the adi-
abatic index is close to 4/3 and the system is close to
being unstable. From numerical point of view this re-
sults in substantial problems with convergence of the
Newton-Raphson iterations (evolutionary equations for
stars usually require fully implicit solver).

The second numerical complication is the necessity to
match initial and boundary conditions. For the “stan-

dard” cooling it is possible to start with constant (red-
shifted) temperature profile (thus, zero luminosity inside,
which is inconsistent with non-zero surface luminosity,
i.e. 𝐿𝑠 ̸= 𝐿𝑏) and the matching will occur automat-
ically at the first time step. For neo-neutron stars it
is not the case. If one starts with inconsistent lumi-
nosity, the first time step will diverge. So, we have
developed a special matching procedure for the lumi-
nosity to start with the consistent initial and boundary
conditions: 𝑇𝑡=0(𝜌) = 𝐹

(︀
𝜌, {𝑝1, 𝑝2, . . .}, 𝑝match

)︀
, where

𝑝1, 𝑝2, . . . , 𝑝match are free parameters of the parametriza-
tion of an arbitrary initial temperature profile. The
procedure is as follows: we fix the values of 𝑝1, 𝑝2, . . .
and use Newton-Raphson method to search for the value
of 𝑝match until the initial profile satisfies the boundary
condition to the desired precision. Typically, this takes
5-6 Newton-Raphson iterations.

Preliminary results are presented on the figures below.
On all figures “(N)P” stands for “(no)positrons”, “(N)C”
– “(no)contraction energy”, “HT” – “high temperature”,
“LD”– “low density”. All curves correspond to the ini-
tial value 𝜌𝑏,0 = 105 g cm−3 except for the “low density”
curves on Fig. 3 and 4 for which the initial value is
𝜌𝑏,0 = 3×104 g cm−3. See some discussion of the results
in Section VI.
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Figure 1: The dependence of the redshifted surface temperature 𝑇∞
𝑠 (left) and the radius

of the star 𝑅 (right) on the star age 𝑡. The difference between no-positron (black, NP) and
positron (green, P) cases can be clearly seen as well as the impact of the contraction energy
term in Eq. (9).
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Figure 2: Left: same as Fig. 1, but for the density at the boundary between the heat
blanketing envelope and the variable structure part (𝜌𝑏). Right: comparison of the thermal
conductivities ignoring positrons (black, NP) and taking into account pair production (red,
P). The temperature is constant 𝑇 = 1010 K.
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Figure 3: Same as Fig. 1, but here we demonstrate the impact of the initial conditions.
Pair production is taken into account. Contraction energy is taken into account except for
the dashed green curve. Red curve have different parametrization of the initial temperature
profile. Orange curve have lower 𝜌𝑏 value: 𝜌𝑏 = 3× 104 g cm−3 instead of 105 g cm−3.
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Figure 4: Same as Fig. 3 but for the density at the boundary between the heat blanketing
envelope and the variable structure part (𝜌𝑏).

VI. Discussion
From Fig. 1 we can see the impact of positrons and contraction energy. The energy

input due to the contraction of the star allows it to maintain maximum temperature
for considerably longer time. Positrons effect is also interesting. As it can be seen
from right-hand side of Fig. 2, presence of the positrons considerably reduces thermal
conductivity. It means that to match the initial profile with the boundary condition
one needs higher temperature gradient (to increase 𝐿𝑏) and lower surface luminosity
(𝐿𝑠). Both goals can be achieved by lowering the value of 𝑇𝑏 and, thus, 𝑇𝑠 (the
temperature at 𝜌 = 1011 g cm−3 is the same). This happens automatically as a
result of our matching procedure (see Section V). As the variable structure part with
positrons turns out to be overall colder than without them, the star is less “expanded”,
i.e. its radius is lower. It is important to emphasis that the model without positrons
is unphysical and we present it only for comparison. Also, it is interesting to note
that even not very large amount of positrons ( 𝑛positrons/𝑛protons ∼ 0.5) is enough to
considerably change the thermal conductivity (up to ∼ 3 orders of magnitude, see
Fig. 2).
Figs. 3 and 4 demonstrate the importance of the initial configuration. The red

curve corresponds to the different initial temperature profile but with almost the
same initial value of 𝑇𝑏. This profile makes the star more “expanded” (see right-hand
side of Fig. 3) from “inside” (i.e. the very outer layers of the variable structure parts
are the same because 𝑇𝑏 is the same, but inner parts are hotter and, thus, are more
“expanded”). As a result, during the contraction of the star more energy is released
and this energy keeps the star surface at maximum temperature for about 2000 s.
From Fig. 4 we can also see that the star is contracting non-uniformly and in the case
of such “expanded from inside” configuration it contracts also mainly from “inside”
(because the density at the envelope-variable structure part boundary stays close to
its initial value for almost 2000 s). The orange curve corresponds to lower initial
value of 𝜌𝑏: 𝜌𝑏,0 = 3 × 104 g cm−3 (see Fig. 4). From Fig. 3 one can see that lower
value of 𝜌𝑏,0 produces a star with slightly larger radius which can stay at maximum
temperature a bit longer than “reference” configuration (solid green curve). But the 3
times change in 𝜌𝑏,0 is not that significant as slight change in temperature profile (red
curve).

Figs. 1 and 3 clearly prove what was stated in Sections IV and V: after the initial
relaxation stage neutron star “forgets” its initial conditions. We can see that at
𝑡 ∼ 10−3 yr all curves converge (except, maybe, for 𝜌𝑏, which is somewhat artificial
quantity).

VII. Conclusions
We have modified “standard” cooling calculation to handle the thermal evolution

of neo-neutron stars. Positrons’ and photons’ contributions to the EOS, thermal
conductivity and heat capacity were taken into account.

The results clearly demonstrate that the initial configuration is very important for
the neo-neutron stars’ thermal evolution (unlike “standard” cooling). Thus, a question
of finding the proper initial conditions arises. With certain initial conditions the star
can stay at near-Eddington luminosity for ∼ 2000 s. This implies possibility of some
noticeable mass loss.

Variable structure region of a neo-neutron star is dominated by photons. As a result
the system is close to being unstable. This causes considerable numerical difficulties.
So far solutions are possible only within rather limited range of the initial conditions.
Solver is currently being improved to handle wider range of the initial conditions.
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