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Abstract. The transport processes in edge (collisional) plasmas of tokamaks with smooth
profiles of macroscopic plasma parameters and induced poloidal and toroidal plasma flows are
considered. The toroidal and poloidal velocities of particles, the radial electric field and the
ion heat flux are derived. It is shown that forces, induced by radio frequency waves, plasma
turbulence or neutral beam injection, can be used to control the poloidal and toroidal plasma
velocities, as well as ion heat conductivity, in a wide range of these values.

1. Introduction

The possibility of controlling plasma poloidal flows is very attractive, as the low-to-high
confinement transition (L–H transition) in tokamaks depends on sheared plasma poloidal
flows [1]. External radio frequency waves [2, 3] plasma turbulence [4–6] or biased electrodes
[7] are usually considered to control the plasma poloidal flows. Neutral beam injection can
also strongly affect poloidal plasma velocities and transport processes in tokamaks, as has
been shown both for collisional plasmas, as well as for the weakly collisional tokamak
plasma [8–21].

Since we are interested in generalizing the results in [8–21] to the case in which
external forces affect the tokamak plasma, we shall briefly review them. Hazeltine’s
expression [22] for poloidal velocityUiθ = kUT i (residual rotation, wherek = −2.1,
UT i = 1/(Miωci)∂Ti/∂r, Mi is the ion mass,ωci is the ion cyclotron frequency,Ti is
the ion temperature,r is the torus minor radius) was generalized in [8] for the case of
large Mach numbersM = Uiζ /cs > 1, whereUiζ is the plasma velocity along the torus,
cs = (Te + Ti)/Mi is the sound velocity, andTe is the electron temperature. In [8], the
viscosity obtained in [23] and [24] was used for calculations. This viscosity is of the Burnett
kind [25], which contains the spatial derivatives of ion heat fluxes, except for derivatives
of ion velocities, in contrast with the Braginskii expression [26] for ion viscosity (which is
of the Navier–Stokes type). A dependence of the coefficientk on the square of the Mach
numberα = M2, k = k(α), was obtained [8].
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It was also shown both for collisional plasma [27] and for weakly collisional plasma
[10] with sonic toroidal rotation velocities that, in the absence of external forces affecting
the plasma, the inequalityUiθ � cs is fulfilled. We consider in this paper the case in which
the external forces are small enough. Thus, the plasma poloidal velocity is also under the
conditionUiθ � cs.

Analogous calculations for a weakly collisional plasma in the plateau regime of
tokamaks were made in [9], and for all collisional regimes in [10]. The radial particle
and heat fluxes were also analysed in this paper, and then these analyses were extended for
the case of the collisional plasma [11]. However, the viscosity tensor dependence on the ion
heat fluxes was omitted in [11]. Results of special interest for collisional tokamak plasmas
were obtained in [8] and [11]. It was found that, already under the conditionα � 1,
the poloidal velocity changes sign and achieves values that are much greater than the drift
velocities [8], and the ion heat conductivity diminishes to the classical level [11]. In [8] and
[11], the importance of the collisional parameterb = ν∗2i for the investigation of plasma
dynamics in edge (collisional) plasmas of tokamaks was underlined. Hereν∗i = qR/λi ,
q is the safety factor,R is the torus major radius,λi = vTi/νi is the ion mean free path,
vTi =

√
2Ti/Mi is the ion thermal velocity, andνi is the ion–ion collisional frequency.

However, in [8] and [11], the parameterb was practically supposed to satisfy the
condition 1� b � √Mi/Me. In [15], it was noted that this range ofb is very narrow,
and it is necessary to take into account the ion–electron heat exchange, which gives the
possibility of widening this interval to 1� b � Mi/Me (see also [20]). On the other
hand, whenb > Mi/Me, it is necessary to take into account the toroidal perturbations
of the electron temperature [15, 20]. The poloidal plasma velocities and ion radial heat
fluxes were found in [15] for such a case. We point out that the collisional regime is
relevant for the conditions at the edge of the confined region in modern tokamaks, and the
parameterb can achieve large values,b 6 Mi/Me. These data can be found from analyses
of experimental results in some tokamaks. For the Phaedrus-T edge plasma parameters
[28]: Ti < 20 eV, n0 > 1012 cm−3, zeff ≈ 2, q > 3, R = 92 cm, r = 26 cm, we find the
inequalityb > 15. The ratio of the ion poloidal Larmour radiusρiθ to the inverse gradientr
of plasma macroscopic parameters is small in experiments [28],ρiθ /r ≈ 0.04. For DIII-D
[29] and Tokamak Experiment for Technology Oriented Research (TEXTOR) [30], profiles
of ν∗i (and, consequently, ofb) were analysed, for example, in [20], where it was shown that
ν∗i can be much greater than one in these tokamaks taking into account the enhancement of
ν∗i by a factor one to four in the presence of an axisymmetric magnetic separatrix.

In [8–11] and [15], only the parallel viscosity was taken into account. Then,
a number of papers, considering additionally the gyro- and perpendicular viscosities
[12–14, 16, 17, 19, 20], impurity dynamics [18] and turbulent processes [21], were also
published to explain the anomalous relaxation times of the toroidal velocities and to improve
the neoclassical theory of transport processes in tokamaks. In [14] and [16] it was confirmed
that there is no Pfirsch–Schlüter enhancement in the perpendicular viscosity in axially-
symmetric tokamaks with sonic toroidal plasma flows. In [16] it was also shown that
gyro-viscosity effects are negligibly small, at least for circular cross section tokamaks with
up–down symmetry and smooth radial profiles of macroscopic parameters (see, also, [4]).
Again, the temperature gradient dependence of viscosities was omitted in [14] and [16], and
finite values of the Mach numberM were neglected in [18].

The poloidal angle asymmetry of plasma macroscopic parameters, connected with taking
into account the plasma gyro-viscosity in plasma dynamics equations, was noted in [12, 13]
and [17]. The neoclassical theory of transport processes in tokamak edge plasmas with
gradient scale lengths of macroscopic plasma parameters comparable to the ion poloidal
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gyro-radius was developed in [19] and [20]. It has also been obtained that the poloidal
viscosity has a nonlinear dependence onUiθ for large flows [31].

It has been recently shown that the kinetic [32, 33] or slow [34] Alfvén waves (AWs)
can be used to create the localized sheared poloidal flows in the edge plasmas of tokamaks.
These wave techniques use well elaborated, long-lived and simple devices [28], which
allows AWs to be considered as a suitable method of plasma heating and current drive
in tokamaks [28, 35, 36]. Plasma rotation, induced by AWs, was found experimentally in
the Phaedrus-T tokamak [37]. Calculations, performed in [30] and [31], are in satisfactory
agreement with the experimental results [37]. We find the main agreement. (i) The upshift
1f in frequency (connected with induced plasma flows) of the tearing mode for current
drive antenna phasing was linear with rf power, and (ii) the experimental toroidal velocity
Vζ i ≈ (3± 1.2) × 105 cm s−1 is approximately the same as calculated in [30] and [31].
(iii) The variation of the poloidal and toroidal rotation velocities induced by rf fields linearly
depends on dissipated power and does not depend on toroidal magnetic field, as follows
from experiments [37]. This scaling can be found from figure 1 of [37]. The frequency
upshift 1f was flat for 0.65 6 B0 6 0.8 T, and the average1f = 0.92± 19 kHz and
1f = −0.79± 0.16 kHz for the phaseφ = ±π/2, respectively, between the currents in
the two antenna straps [1]. This indicates that the viscous force, balancing the rf force, can
be connected with the parallel viscosity.

The present work is intended to extend the results of [33] and [34], where only the
parallel viscosity was taken into account in the viscous forces. This is supported by the
agreement found with the experimental results of [37], where the macroscopic parameter
profiles were smooth (scale length is much greater than the ion poloidal gyro-radius).
Therefore, we take the viscous forces in the same approximation, and according to the results
of [16], not consider gyro-viscosity, assuming also an up–down symmetric configuration.
Any modification of the viscosity that might arise at very large rotation velocities is not
considered, either. We generalize the previous results to make them dependent on the
Mach number, for slightly rippled tokamaks, with external forces affecting the plasma,
where the collisional parameterb is large enough for the ion–electron heat exchange and
toroidal perturbations of the ion and electron temperatures to play an essential role in the
ambipolarity condition. We analyse the possibility of controlling the plasma poloidal and
toroidal velocities as well as ion heat fluxes by external forces.

2. Ambipolarity condition

Let us consider a slightly rippled tokamak, in which the angle dependence of the magnetic
field is given byB = B0(1+ε cosθ+δ cosNζ), whereθ andζ are the poloidal and toroidal
angles,ε is the inverse aspect ratio,δ is theζ -modulation depth of the magnetic field, and
N is the number of ripples.

To find the poloidal and toroidal plasma velocities, we use the ambipolarity condition,
in the well known form that follows from the current continuity equation∇ · j = 0,

〈j r〉 = 0 (1)

where

〈. . .〉 =
∫ 2π

0

∫ 2π

0
(. . .)
√
g dθ dζ

/∫ 2π

0

∫ 2π

0

√
g dθ dζ
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g is the metric tensor determinant. From the MHD equations [26] we find(
Min

dVi

dt
+∇p +∇ · π̂ − F an− F h

)
θ

= −
√
g

c
j rBζ (2)(

Min
dVi

dt
+∇p +∇ · π̂ − F an− F h

)
ζ

=
√
g

c
j rBθ (3)

whereF an is an anomalous viscosity which should be taken into account if magnetic field
ripples are very small, andF h is an external force being exerted on the plasma. In the
general case, this force can originate from any kind of rf wave, plasma turbulence or
neutral beam injection. In particular, this force has been calculated for the case of slow
Alfv én waves [32,34], where its poloidal and toroidal physical componentsFhθ andFhζ are
respectively [34]

Fhθ ≈
hζ kb

ω
Pw Fhζ ≈ −

hθkb

ω
Pw kb = kθhζ − kζ hθ . (4)

Hereh = B/B, kθ = m/r andkζ = n/R are the components of the propagation vectork,
m andn are the poloidal and toroidal wavenumbers,r is the torus minor radius, andPw is
the absorbed power

Pw = 1
4(E · j

∗ + CC). (5)

We assume that the magnetic field can be written in the form

B0 = {0;χ ′/2π√g;φ′/2π√g}.
Here,χ andφ are the poloidal and toroidal magnetic fluxes, respectively, and the prime
means the radial derivative. Thus, we can find the contravariant radial component of the
current from equations (2) and (3).

A very important problem in the investigation of the collisional plasma rotation in
tokamaks is which kind of the viscosity (parallel, gyro or perpendicular) [26] should be
taken in the magnetohydrodynamic equations. We consider the case when the radial profiles
of the plasma macroscopic parameters are smooth enough so that we can use, in the motion
equations, only the parallel viscosityπ‖. Thus, we take the plasma viscosity in the form
[23, 24, 26, 38]

π̂ = 3
2(h · h− 1

3ĝ)π‖ (6)

whereĝ is the metric tensor. From equation (6), we get the expression for∇ · π̂
∇ · π̂ = 3

2{[h∇ · h+ (h · ∇)h]π‖ + h(h · ∇)π‖ − 1
3∇π‖}. (7)

Then, the covariant components of this vector are given by

(∇ · π̂)θ = 3

2
π‖
∂

∂θ
lnB − 1

2

∂π‖
∂θ

(8)

(∇ · π̂)ζ = −3

2
π‖
∂

∂ζ
lnB + ∂π‖

∂ζ
. (9)

As was noted in the introduction to this paper, here we consider the plasma poloidal
velocity to be under the conditionUiθ � cs (we define the ‘physical’ components of particle
velocities asUjk, j = i, e, k = r, θ, ζ ; for example, we have the relation between ‘physical’
and contravariant componentsUjk ≈ V kj

√
gkk). We find from the ion momentum equation

[26]

Uiθ ≈ Uiζ hθ + Upi − c

B
Ēr Upi = c

ein0B

∂pi

∂r
(10)
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wherepi is the ion pressure. As we assume the toroidal velocity is under the condition
hθUiζ ∼ hθcs� Uiθ , we can further putcĒr/B ≈ Uiζ hθ , where it is applicable.

Using the momentum equation for ions [26], we obtain for the part oscillating with the
angleθ of the θ -covariant component of the momentum equation

Min0

(
dVi

dt

)
θ

= −Min0U
2
ζ ε sinθ. (11)

The quantities∂p/∂θ and∂p/∂ζ can be derived from the parallel component of the summed
electron and ion motion equations [26]

∂〈p〉ζ
∂θ
= −∂〈π‖〉ζ

∂θ
+Min0U

2
ζ ε sinθ (12)

∂〈p〉θ
∂ζ
= −∂〈π‖〉θ

∂ζ
(13)

where

〈. . .〉θ = 1

2π

∫ 2π

0
(. . .)dθ 〈. . .〉ζ = 1

2π

∫ 2π

0
(. . .)dζ.

The external forces are omitted in equations (11)–(13) as we suppose that they are taken
in the quasicylindrical approximation. Accounting for toroidal distortion of these forces in
equations (11)–(13) has given terms of orderε2 in angle-averaged equations.

Then, from equation (13) we get

ñ = −n0(〈T̃i + T̃e〉ζ )+ 〈π‖〉ζ
Ti + Te

− αεn0 cosθ (14)

where〈ñ〉ζ and〈T̃i,e〉ζ are the oscillating parts (in terms of angleθ ) of the density and ion
and electron temperatures.

Now the ambipolarity condition, equation (1), takes the form

1

2π

∫ 2π

0
dθ

{
3

2r
〈π‖〉ζ ∂

∂θ
lnB − αε

R
[n0(〈T̃e+ T̃i〉ζ )+ 〈π‖〉ζ ] sinθ

}
+ Fhθ = 0 (15)

1

2π

∫ 2π

0
dζ

(
3

2R
〈π‖〉θ ∂

∂ζ
lnB

)
+ F an

ζ + Fhζ = 0. (16)

3. Perturbed quantities and ion heat flux

As one can see from equations (15) and (16), we need to calculate the perturbed particle
temperatures and ion viscosity. To find the particle temperatures we proceed from equations
[26]

−Ti
Uiθ

r

∂ñ

∂θ
+ 1

qR

∂qi‖
∂θ
+∇ · qi⊥ − 3Men0νe

Mi
(T̃e− T̃i) = 0 (17)

−Te
Ueθ

r

∂ñ

∂θ
+ 1

qR

∂qe‖
∂θ
+∇ · qe⊥ + 3Men0νe

Mi
(T̃e− T̃i) = 0 (18)

where [26]

qi‖ = −3.91
n0Ti

MiνiqR

∂Ti

∂θ
qe‖ = −3.16

n0Te

MeνeqR

∂Te

∂θ
qk⊥ = 5

2

cn0Tk

ekB
[h×∇Tk].

The terms with the poloidal velocitiesUiθ andUeθ in equations (17) and (18) can be obtained
using the quasistationary continuity equations

nj∇ · Vj + Vj · ∇nj = 0.
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Using equation (14) and solving the system of equations (17) and (18), we find the perturbed
particle temperatures

T̃i = 0.51
bT0

Rνid(b)

{
αUiθ

(
1+ 7.6b

Me

Mi

)
− 5UT i − 3.8b

Me

Mi

(
ε

q

j‖
ein0
+ Up

)}
sinθ (19)

T̃i + T̃e = 0.51
bT0

Rνid(b)

{
αUiθ

(
1+ 15.2b

Me

Mi

)
− 5UT i − 7.6b

Me

Mi

(
ε

q

j‖
ein0
+ Up

)}
sinθ

(20)

whered(b) = 1+ 2.2b
√
Me/Mi , b = q2R2/λ2

i . We have used

Ueθ = Uiθ − ε

q

j‖
ein0
− Up Up = 1

Min0ωci

∂p

∂r
p = pi + pe νe = νi

√
2Mi

Me

with Zeff ≈ 1 andTe0≈ Ti0.
We take the parallel viscosity tensorπ‖ in the form derived in [8, 23, 24], since for

the problem under consideration it is important that the viscosity tensor depends on the
ion thermal fluxesqi (the Burnett type of the viscosity [25]). Using the usual Braginskii
viscosity expression [26] (the Navier–Stokes type of the viscosity), it would lead to the
conclusion that the equilibrium poloidal velocity of plasma rotation (residual rotation) is
zero, as has been discussed repeatedly [8, 22–24, 39]. Thus, we have [8, 23, 24]

π‖ = −2

3

pi

νi
(0.96β − 0.59γ ) (21)

where

β = 3

{
h(h · ∇)Vi + 2

5pi
h(h · ∇)qi − 1

3

(
∇ · Vi + 2

5pi
∇ · qi

)}
(22)

γ = −6

5

{
h(h · ∇)(qi + 0.27qi‖)+ 1

3
(∇ lnpi · qi −∇ · (qi + 0.27qi‖))

}
. (23)

The origin of the terms with the heat flux derivatives (with the temperature gradients)
in equations (22) and (23) can be understood analogously to the similar terms in the
electron momentum equation [26]. The electron–ion friction termRe in the electron
momentum equation, contains two contributions: the friction of the electron–ion particle
fluxesRu ∼ Mene(Ve− Vi), and the friction of the electron–ion heat fluxes (the thermal
force)RT ∼ Me(qe−qi)/Te. The last term can be expressed via the temperature gradients,
as has been demonstrated in [26]. The terms with the velocity derivatives in equations (22)
and (23), (i.e. the friction between the adjacent ion velocity fluxes) can be considered
analogous to the termRu. Finally, the terms with the ion heat flux derivatives are analogous
to the thermal forceRT .

In order to find the ion perturbed velocities in equations (22) and (23) as functions of
the anglesθ andζ , we proceed from the frozen-in condition

∇ × [Vi ×B] ≈ 0 (24)

and the continuity equation [26]. Thus, we have

Ṽ
ζ

i = qṼ θi
∂Ṽ θi

∂θ
= −Uθ i

r

∂

∂θ
ln(n
√
g) 〈Ṽ‖〉θ ≈ Uiζ

(〈B〉θ − Bs)
Bs

(25)

for the caseUiζ > Uiθ . Here,Bs is the magnetic field on the tokamak axis.
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Furthermore, using equations (21)-(25), we find

β = 3

r

{
εUζ i

∂

∂ζ
lnB − Uθ i

∂

∂θ
ln(
√
gn2/3B)+ UT i

∂

∂θ
ln
B

n

}
(26)

γ = −3

r

{
0.34Uθ i

∂

∂θ
ln n+ UT i

(
1.36

∂

∂θ
lnB − 0.84

∂

∂θ
ln n

)}
. (27)

Then, the ion heat flux0T i can be derived by integrating the temperature evolution equation
over the plasma volume [26]

0T i = 〈qri 〉 (28)

where the heat flux radial contravariant component is given by [26]

qri = −
2piνi

Miω
2
ci

∂Ti

∂r
− 5

2

pig33h
ζ

Miωci
√
g

∂Ti

∂θ
. (29)

The ion temperature poloidal dependence can thus be found from equation (19).
After the integration over the angleθ , we obtain from (28)

0T i = −2nTiνi

Miω
2
ci

∂Ti

∂r
− 5cBs

4πεeiR

∫ 2π

0
dθ
pi

B2

∂Ti

∂θ
. (30)

As can be seen from (29), it is necessary to calculate the ion poloidal velocitiesUiθ and
Ueθ .

4. Flux analysis

Now we can find the plasma rotation velocities using the ambipolarity conditions
equations (15) and (16), the expressions for perturbed temperatures (19) and (20), and
the ion viscosity (21), (26) and (27):

Uiζ = 1.39
νiR

2

Min0v
2
Ti(Nδ)

2
Fhζ (31)

Uiθ = Gu1(α, b)UT i +Gu2(α, b)

(
ε

q

j‖
ein0
+ Up

)
+ 1.39

νiR
2

Min0v
2
Ti

Gu3(α, b)F
h
θ (32)

where

Gu1(α, b) = −f2(α, b)

f1(α, b)
Gu2(α, b) = 1.35

Me

Mi

αb2

f1(α, b)
Gu3(α, b) = d(b)

f1(α, b)

f1(α, b) = d(b)
(

1+ 2

3
α

)
(1+ 0.19α)+ 0.18α2b

(
1+ 15.2b

Me

Mi

)
f2(α, b) = d(b)

(
1+ 2

3
α

)
(1.83+ 1.52α)− 0.9αb d(b) = 1+ 2.2b

√
Me/Mi .

FunctionsGu1(α, b), Gu2(α, b), Gu3(α, b) are plotted for the deuterium plasma case
in figure 1. To find the toroidal velocityUiζ , equation (31), we confined ourselves to the
rippled magnetic field case. If ripples are small it is necessary to take account of anomalous
viscosity.

It can be observed that functionGu1(α, b) (figure 1) changes sign atα0 ≈ 2d(b)/b,
which, if we omit the ion–electron heat exchange, coincides with the previously known
result [8]. When the collisional parameterb satisfies the inequalityb > (Mi/Me)

0.5, the
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Figure 1. The dependence of the functionsGu1(α, b), Gu2(α, b), andGu3(α, b) on α for
different magnitudes of the parameterb : b1 = 10, b2 = 50, b3 = 250,b4 = 1250.

quantity α is equal toα0 ≈ 0.1. The maximum of functionGu1(α, b) is achieved when
b1 ≈ 50, α1 ≈ 0.5, and isGu1(α, b1) ≈ 2.

The radial electric field can be found using the expression which is defined via the ion
velocity from the ion motion equation, equation (10),

Ēr ≈ B

c
(Uiζ hθ + Upi − Uiθ ) Upi = c

ein0B

∂pi

∂r
. (33)
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We should substitute (31) and (32) into (33). Thus we have

Ēr ≈ B

c

{
1.39

νiR
2

Min0v
2
Ti

[
hθ

(Nδ)2
Fhζ −Gu3(α, b)F

h
θ

]
+Upi −Gu1(α, b)UT i −Gu2(α, b)

(
ε

q

j‖
ein0
+ Up

)}
. (34)

Equation (34) can be simplified if we consider slow Alfvén waves as the source of external
forces. In this case, we have from (4)Fhζ ≈ −hθF hθ and from (34)

Ēr ≈ B

c

{
− 1.39

νiR
2Fhθ

Min0v
2
Ti

[
h2
θ

(Nδ)2
+Gu3(α, b)

]
+Upi −Gu1(α, b)UT i −Gu2(α, b)

(
ε

q

j‖
ein0
+ Up

)}
. (35)

FunctionGu2(α, b) grows withα andb, and can only contribute to the poloidal velocity
at very large values ofb, when toroidal perturbations of the electron temperature are
essential. The functionGu3(α, b), on the other hand, drops quickly withα andb (figure 1).
Thus, we can conclude that toroidal rotation does not allow strong variations of poloidal
rotation, when forces induced by radio frequency waves, plasma turbulence or neutral beam
injection are present. The relevant regime for L–H transition, when the poloidal rotation is
sufficient, occurs whenα � 1.

From (19), (20), (30) and (32) we find the radial ion heat flux. We write this equation
in the Shafranov form [40, 41]

0T i = −2nTiνi

Miω
2
ci

∂Ti

∂r

{
1+ 1.6q2

[
GT 1(α, b)+GT 2(α, b)

1

UT i

(
ε

q

j‖
ein0
+ Up

)
−1.39

νiR
2

UT iMin0v
2
Ti

GT 3(α, b)F
h
θ

]}
(36)

where

GT 1(α, b) = (1+ α/2)f3(α, b)

f1(α, b)

GT 2(α, b) = 0.76
Me

Mi

αb(1+ α/2)
f1(α, b)

[(
1+ 2

3
α

)
(1+ 0.19α)− 0.18α2b

d(b)

]
GT 3(α, b) = α(1+ 7.6bMe/Mi)(1+ α/2)

5f1(α, b)

f3(α, b) =
(

1+ 2

3
α

)[
1+ 0.19α + α

5
(1.83+ 1.52α)

(
1+ 7.6b

Me

Mi

)]
+ 1.4

Me

Mi

α2b2

d(b)
.

If we suppose thatb satisfies the inequality 1< b <
√
Mi/Me, we obtain the previously

known expression for the radial ion heat flux [9, 10].
As proper analysis shows, the quantityGT 2(α, b) is negligible under the condition

b 6 Mi/Me. The quantitiesGT 1(α, b) andGT 3(α, b) are plotted in figure 2. As can be
seen from figure 2, the neoclassical contribution in the radial ion heat flux, as a function of
α, is approximately of the same order forb >

√
Mi/Me, dropping with increasingb. The

influence of induced forces on the radial heat flux is usually small forb >
√
Mi/Me.
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Figure 2. The dependence of the functionsGT 1(α, b) and GT 3(α, b) on α for different
magnitudes of the parameterb : b1 = 10, b2 = 50, b3 = 250,b4 = 1250.

5. Conclusion

We have considered the transport process in edge (collisional) plasmas of slightly rippled
tokamaks, in the presence of external forces, and obtained the poloidal and toroidal plasma
flows, induced by radio frequency waves, plasma turbulence or neutral beam injection. The
dependence of the radial ion heat flux and the poloidal plasma velocity on the induced
toroidal plasma velocity has been studied. It has been shown that the coefficientGu1(α, b)

of the ion temperature gradient in the poloidal velocity, changes sign with growing toroidal
plasma velocity (or, of the parameterα), achieving its maximum, approximately equal to
2, atα < 1. The input of the plasma current and pressure gradient into the plasma poloidal
velocity can be essential at very large values of the collisional parameterb whenb > Mi/Me.
The influence of forces acting on the plasma drops quickly with the growth ofα and b.
The radial ion heat flux depends very weakly onα for b >

√
Mi/Me, and drops quickly

with the growth ofb. We can conclude that the relevant regime for the operation of L–H
transition in the edge plasmas of tokamaks, by means of inducing strongly sheared strong
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poloidal plasma flows, occurs forα � 1 regime. For example, the slow or kinetic Alfvén
waves satisfy this condition.
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