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Abstract
In this work it is demonstrated that robust burn control in long-pulse operations
of subignited thermonuclear reactors can be achieved with radial basis neural
networks (RBNNs) composed of Gaussian nodes in the hidden layer and
sigmoidal units in the output layer. The results reported here correspond to
a volume-averaged zero-dimensional nonlinear model of a subignited fusion
reactor with design parameters corresponding to those of the ITER-EDA group.
The control actions are implemented through the concurrent modulation of
the D–T refuelling rate, a neutral 4He beam and an auxiliary heating power,
constrained to lie below maximum allowable levels.

It is shown that the resulting network provides feedback stabilization over
a wide range of energy confinement times for plasma density and temperature
excursions significantly far from their nominal operating values. The results
show that the RBNN feedback-controlled nonlinear system is stable regardless
of any particular scaling law, as long as the confinement time lies within the
scope of the training region. In addition, it also shows robustness with respect
to noise in the energy confinement time value fed into the controller during
simulated transients of a thermonuclear system using a particular ELMy scaling
law, as well as with respect to the thermalization time of the alpha particles
produced by fusion.

1. Introduction

In an earlier work [1] the authors demonstrated the feasibility of using feedforward artificial
neural networks to stabilize the burn conditions of a thermonuclear system represented by
a nonlinear zero-dimensional model, where the reactor parameters corresponded to those
of the ITER-CDA tokamak. The resulting neural network was capable of stabilizing the
nonlinear thermonuclear reactor model at nearly ignited conditions for density and temperature
excursions significantly far from the nominal operating point and, in addition, it showed
robustness with respect to the thermalization time of the alpha particles produced by the fusion
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reactions. In that paper, the energy and particle transport were taken into account through the
ITER90H-P scaling law.

In general, particle and energy transport losses are extremely difficult to model and predict
because they are driven by highly nonlinear turbulent processes. Thus, for design studies
of magnetic fusion machines these losses are modelled through scaling laws extrapolated
using a database gathered from past and current experimental devices. As a consequence the
confinement time predicted by these scaling laws may suffer from significant uncertainties.
The purpose of this work is to demonstrate that a thermonuclear reactor subject to scaling
law uncertainties can be stabilized using artificial neural networks. Furthermore, we do
not constrain the system to a specific scaling law embedded in the dynamical equations;
instead we generalize the previous work training the neural network to stabilize the system
at fixed plasma parameters independently of the scaling law of the device. In this work we
use radial basis neural networks (RBNNs) [2] instead of the standard feedforward neural
networks.

Several related works using traditional control design techniques were pointed out in [1].
More recently, some authors have proposed a set of diagnostics for burn control and studied
the effect of diagnostic failure in the ignited operation of tokamaks using standard constant
gain controllers [3]. In [3] the need to impose limits in the D–T refuelling rate was stressed in
order to avoid oscillations in the plasma parameters.

The reactor model we use here is an extension of the volume-averaged zero-dimensional
nonlinear model used previously [1, 4]. It is composed of a quasineutral plasma system
consisting of a 50:50 D:T fuel of density nDT, fully ionized 4He ions with density nα , a
small fraction of high-Z impurities (density nI) and free electrons with density ne, all having
Maxwellian distributions sharing the same temperature at all times. The energy and particle
transport losses are accounted for through the energy confinement time τE , as well as by
the D–T and the helium ash confinement times, τp and τα , respectively. Similarly to other
studies, this model assumes that the high-Z impurities density nI and its charge ZI remain
constant at all times [5]. Since it has been shown that synchrotron radiation is negligible at
the operating temperatures of the current device designs, bremsstrahlung is the only radiation
loss mechanism included [6].

The plasma heating is considered to take place mainly through the thermalization of
the alpha particles produced by the fusion reactions and an auxiliary heating power which
is provided, for instance, by the appropriate electromagnetic waves; for completeness ohmic
heating is also included. Although instantaneous thermalization of the alpha particles produced
by the D–T fusion reactions is assumed, the effect of finite thermalization times on the stability
properties of the joint neural network–thermonuclear system is also studied.

On the other hand, artificial intelligence techniques in the form of neural networks has
been an active field of pure and applied research since the early 1980s. In particular multilayer
feedforward neural networks with sigmoidal activation units found immediate applications in
pattern recognition tasks, and due to their exceptional nonlinear mapping capabilities these
networks also originated a great deal of interest in nonlinear dynamical system identification
and control [7, 8]. However, these networks show several drawbacks: a low speed of
convergence in their training procedures in spite of the different acceleration techniques
available; the burden of determining the topology of the hidden layers; and the presence of
multiple local minima, which affects the effectiveness of any neural network learning scheme.
Among alternative types of artificial neural networks is the radial basis network. In general the
convergence speed of this network is higher than the standard feedforward multilayered neural
network and under some conditions in the learning pattern’s environment, the cost function is
local minima free [9].
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Hence RBNNs will be considered here to provide feedback stabilization under sub-ignited
burn conditions of a thermonuclear reactor using the parameters of the EDA-ITER tokamak
design group [10]. Furthermore, as mentioned above, instead of restraining us to a specific
scaling law for the energy confinement time, we consider the energy confinement time as an
input parameter to the RBNN and train the neural network to provide feedback stabilization
for a wide range of energy confinement times. The control actions include the concurrent
modulation of an auxiliary heating power source, the D–T refuelling rate and the injection of
a 4He neutral beam, to which maximum and minimum levels have been imposed; similarly to
previous works it is assumed that no delay occurs in the refuelling and in the auxiliary heating
power action on the plasma.

Due to the high computing costs involved, the RBNN was trained using a parallel training
code developed using MPI, a portable standard message passing environment, whose structure
is similar to that reported in [11] but modified to work with RBNNs instead of the standard
feedforward multilayer neural networks.

The rest of the paper is organized as follows. In section 2 the mathematical model of the
thermonuclear reactor used in this work is established, the nominal operating conditions are
obtained and the behaviours of the control variables as functions of the energy confinement
time when the system is in a steady state are determined. In section 3 the RBNN used in this
work is discussed and the training strategy is sketched out. In section 4 the results from the
training process are shown. In section 5 results are shown concerning the robustness tests
when the thermonuclear system is assumed to follow an ELMy scaling law previously unseen
by the network, and where the effects of the thermalization time of the alpha particles as well
as the noise in the energy confinement time measurements are considered. Finally, section 6
contains some concluding remarks concerning this work. The appendix contains the parallel
training strategy as well as the dynamic backpropagation algorithm used to develop the RBNN
controller.

2. Thermonuclear reactor model

The tokamak fusion reactor model used here is a quasineutral zero-dimensional plasma system
composed of a 50:50 D–T mixture, fully ionized helium ions, a small fraction of high-Z
impurities and electrons. All particles in the system are taken to be at the same temperature,
and the alpha particles produced by the fusion reactions are assumed to be instantaneously
thermalized. As mentioned previously bremsstrahlung is the only radiation loss mechanism
considered and the transport losses are taken into account through the energy confinement time
τE , as well as by the D–T and the alpha particles confinement times, τp and τα respectively.
With these assumptions the following set of coupled nonlinear differential equations account
for the balance of the D–T fuel, helium ash and the thermal energy densities, respectively:
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Here it is assumed that the particle density, nI, as well as the charge,ZI, of the impurities remain
constant at all times. In the above equations Qα = 3.5 MeV is the energy carried by the fusion
alpha particles, 〈σv〉 is the D–T reactivity, AB is the coefficient of the bremsstrahlung radiation
losses [12] and η is the neoclassical parallel resistivity accounting for the ohmic heating by
the plasma current [13]. The control actions are represented by Sf the refuelling rate, Sα the
neutral 4He injection rate and Paux the injection rate of the auxiliary heating power density.

Using the quasineutrality condition ne = nDT + 2nα + ZInI, the above equations can be
transformed into the following coupled set of equations for the electron density ne, the relative
fraction of helium ash fα = nα/ne and the plasma temperature:
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In the above equations the parallel neoclassical resistivity was explicitly written in terms of a
coefficient Ah, the temperature and particle densities [13]. For the purpose of this work it will
be assumed that τp = 3τE and τα = 5.5τE , and the analytical expression used for the D–T
reactivity 〈σv〉 is due to Hively [14].

The nominal operating state was determined as the ignited steady-state condition, i.e.
Paux = 0 and Sα = 0, corresponding to the EDA-ITER design parameters assuming an ELM-
free energy confinement scaling law [15]:

τE = 0.031I 0.95B0.25P−0.67n0.35R1.92ε0.08κ0.63M0.42. (7)

Imposing the fact that the desired steady-state operating value of the electron density is
n0 = 1.0 × 1020 m−3, the ignited condition turns out to be obtained with T0 = 12 keV,
f0 = 0.09 and a D–T refuelling rate of S0 = 3.58 × 1018 m−3 s−1, where (7) yields an energy
confinement time value of τE = 7.65 s; in the above calculations it was assumed that the alpha
heating efficiency is 96% and the high-Z impurity density was taken as nI = 7.0 × 1017 m−3

with a charge ZI = 14.7. The above values of the plasma parameters, i.e. temperature,
electron density and fraction of helium ash will constitute the nominal operating point for the
sub-ignited tokamak reactors we are concerned with in this work. With these values we define
the following normalized state variables

z1 ≡ ne/n0 z2 ≡ fα/f0 and z3 ≡ T/T0 (8)
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and transform equations (4)–(6) into
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which are the coupled set of dynamical equations for the normalized state variables. In the
above set of equations we used

Ŝf ≡ Sf/n0 Ŝα ≡ Sα/f0n0 and P̂aux ≡ 2Paux/3n0T0 (12)

as the normalized D–T refuelling rate, normalized source of neutral helium atoms and auxiliary
heating power density, respectively. In addition we defined

k1 ≡ ZI(ZI − 1)nI/n0

k2 ≡ ZInI/n0

and

k3 ≡ (ZI − 1)nI/n0. (13)

Equations (1)–(3) can be solved for the control variables that yield the dynamical system in
a steady state at the above nominal operating values when a constant value of the energy
confinement time τE in seconds is given, to obtain

Sf = (0.428 + 23.89/τE) × 1018 m−3 s−1

Sα = (−0.214 + 1.636/τE) × 1018 m−3 s−1

and

Paux = (−0.427 + 3.264/τE) × 1021 keV m−3 s−1. (14)

In figure 1, the above expressions are plotted as functions of τE . It is observed that all
control variables decrease monotonically with τE . This is so because it is assumed that,
regardless of the particular confinement time value, the steady state must always be achieved
with the same plasma parameters, i.e. the same particle densities and plasma temperature;
hence, all non-transport processes such as the fusion reactions rate and the radiation losses
remain unchanged, while the different transport losses, which depend on the value of τE ,
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Figure 1. Values of the refuelling rate Sf × 10−18, the neutral 4He injection rate Sα × 10−16 and
the auxiliary heating power density Paux × 10−19 required for steady-state operation at the same
plasma parameters as functions of the energy confinement time of the device.

must then be compensated for externally if the steady state is to persist. Thus, if transport
losses increase (smaller confinement times) then the D–T refuelling rate, the auxiliary heating
power and the neutral 4He injection rate have all to be increased in order to maintain the same
steady-state operating conditions. It is observed in figure 1 that when τE increases the D–T
refuelling rate decreases at a slower pace than the auxiliary heating and the neutral 4He beam,
which vanish simultaneously when the energy confinement time reaches the ignition value, i.e.
around 7.65 s. Beyond this value Sα and Paux become negative, a non-feasible situation, since
for the plasma parameters required, no steady state can be achieved with values of τE larger
than that at which ignition is obtained. It should be pointed out that if we had chosen not to
keep the plasma parameters constant, but some other set of quantities instead, the behaviour
of the control variables for different values of τE would be different.

Since the actual control actions are always constrained between a maximum and a
minimum value, in the model described in equations (8)–(11) we shall impose

0 � Ŝf � Ŝmax
f 0 � Ŝα � Ŝmax

α 0 � P̂aux � P̂max
aux . (15)

These limits should contain the required values for steady-state operation given in equation (14).
On the other hand, a measure of how near a system is to the true ignition conditions is

given by the gain factor QG, defined as the ratio of the rate at which energy is deposited in the
plasma by the alpha particles produced by the fusion reactions to the total auxiliary heating
power, i.e.

QG = Pα/(Paux + Pohmic)

= Qα(nDT/2)2〈σv〉/(Paux + ηj 2). (16)

In order to be economically viable, a gain factor of QG > 25 is desired in a practical
thermonuclear reactor [16]. In figure 2 we show the behaviour of QG under steady-
state conditions as a function of the energy confinement time for the system described by
equations (8)–(14). As it can be concluded from this figure, for the cases we are considering,
having 5.0 s � τE � 6.5 s, the magnitude of QG is below this value of 25; although, as we
will show in section 6 the RBNN controller can handle some cases outside this range.

In order to test for the robustness of the controlled system with respect to the thermalization
time of the alpha particles, which is a measure of the average time an alpha particle produced
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Figure 2. Behaviour of QG, the gain value, under steady-state conditions as a function of the
energy confinement time.

by fusion requires to deposit all its energy in the plasma, an analytical expression for this
quantity is needed, which can be used during the simulated transients. In a previous work [1]
we approximated the thermalization time as the time it takes for an alpha particle produced
by the D–T fusion reactions to reach the critical energy (which was defined such that above it
the particle looses its energy mainly to the electrons of the plasma during the slowing-down
process) plus the time its takes for the electrons to share this energy with the plasma ions
through an energy equipartition process. In that approach we neglected the energy deposited
in the plasma by the alpha particles until the latter period of time elapsed. In this work we make
a more realistic assumption to this physical phenomena, although still a rough approximation,
by assuming that the time dependence of the energy deposition rate during the thermalization
of the alpha particles can be divided in two parts: the time interval, tdelay, needed by the
particles slowing down to reach the critical energy [1, 17], during which it will be assumed
that no energy is deposited into the plasma,

tdelay = 0.1386
z

3/2
3

z1
ln

(
0.5 +

8.3181z−3/2
3

1 − 0.091(1 − z2) + 0.1047(1 − 1/z1)

)
(17)

and an interval of time in which the fusion energy is assumed to be deposited uniformly and
will be taken to be equal to the characteristic energy equipartition time between the electrons
and ions in the plasma [18, 19]. That is

tspread = 0.535

1 − 0.0386(1 − z2) + 0.1108(1 − 1/z1)

z
3/2
3

z1
(18)

with tdelay and tspread in seconds, and where z1, z2 and z3 are the normalized plasma parameters
defined in (8). At the nominal operating conditions of this work the critical energy is 0.54 MeV;
thus the alpha particles deposit almost 85% of their original energy directly to the plasma
electrons during the thermalization time. Under these conditions (17) yields a value of 0.3 s
and (18) a value of 0.54 s, yielding an effective thermalization time of approximately 0.84 s.
In the above expressions we have included the contribution of the electrons, D–T and helium
ash in the thermalization process, but the contribution of the high-Z impurities is neglected.
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Figure 3. Structure of the RBNN used in this work, showing the Gaussian nodes in the hidden
layer and the sigmoidals in the output units.

3. RBNNs and the parallel training strategy

Similarly to the standard multilayered perceptrons, the radial basis networks have a feedforward
topological structure and in this work we will be concerned with RBNNs composed of Gaussian
nodes in the hidden layer and sigmoidal units in the output (see figure 3). In general, an RBNN
is composed of three layers: the input layer (l = 1), the hidden layer (l = 2) and the output
layer (l = 3); the activation of the j th node in the lth layer will be denoted by O(l)

j and the
number of nodes in each layer by J (l).

Since communication exists exclusively between units in adjacent layers, the output of
the RBNN is computed by propagating forward the activation of the nodes in the previous
layer of neurons. The nodes in the hidden and output layers are nonlinear functions which
map the multidimensional input taken from the previous layer into a one-dimensional output.
Similarly to the standard feedforward artificial neural network, the role of the input nodes is
to pass unaltered the values received in their inputs to the Gaussian nodes in the hidden layer,
whose activation levels are then determined by

O(2)
j = exp

(
−

J (1)∑
i=1

(O(1)
i − Cji)

2/2σ 2
ji

)
for j = 1, . . . , J (2). (19)

Here the set {Cji, i = 1, . . . , J (1)} defines the location of the centre of the j th Gaussian node
in the feature or input space, and σji is the width of the Gaussian function in the ith feature
direction. The activation of the output nodes is given by

O(3)
j = f (input(3)j ) ∀j = 1, . . . , J (3) (20)

where

input(3)j =
J (2)∑
i=1

ωjiO(2)
i + θj

are the net input to the different output nodes and f (·) is the sigmoidal function

f (input) = 1/(1 + e−input).

Hereωji is the weight connecting the ith node in the hidden layer with the j th node in the output
layer and θj denotes the threshold of the j th output node. Using sigmoidals, the activation
level of the output nodes is thus bounded between zero and one. The activation level of each
particular hidden node is determined not only by the value of the input but also by the location
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Figure 4. RBNN–dynamical system feedback configuration used for the stabilization of the burn
conditions.

of the centre of the Gaussian function in the feature space as well as by the width of the
receptive field determined by the values σji .

In general, both the centres and the widths of each Gaussian unit, as well as the weights
connecting them to the output layer, can be treated as parameters to be determined during the
learning stage. However, in many cases, where the inputs of the set of examples are known
to be uniformly distributed within some region of the feature hyperspace, the centres of the
Gaussian nodes can be fixed a priori, and if, in addition, the input variables are properly
normalized then the values of the width σji of the Gaussian nodes can all be assigned the
same value σ . The resulting network is called by some authors the standard or regular
RBNN [20].

The activation of any particular Gaussian node depends on the distance between the centre
of the unit and the input pattern, which originated the name of these networks; thus for every
input pattern, each one of the hidden units shows an activation level representing a certain
degree of matching with the corresponding unit centre.

In order to train the neural network to stabilize the burn conditions of a thermonuclear
reactor with energy confinement time varying within certain range of values, the components
of the input vector to the RBNN are the normalized values of the electron density, the relative
fraction of helium ash, the plasma temperature at a given time step and the corresponding value
of the confinement time. The elements of the output vector, on the other hand, are associated
with the normalized D–T refuelling rate, neutral helium injection rate and the auxiliary power
heating, equation (12), through

Ŝf = S0

n0
k1u1 Ŝα = k2(2u2 − 1)2 and P̂aux = k3(2u3 − 1)2 (21)

whereu1, u2 andu3 are the activation levels of the sigmoidal output nodes of the neural network,
which are bounded between zero and one. In this work we chose k1 = 4.0, k2 = 0.1 s−1 and
k3 = 0.2 s−1, defining the maximum values that the refuelling rate, the neutral helium injection
and the auxiliary power heating can take, respectively. Thus, from (12) and (15) we obtain

0 � Sf � 4S0 0 � Sα � 0.1 × f0n0 s−1 0 � Paux � 0.2 × 1.5n0T0 s−1. (22)

In order to stabilize the system around a given state, the neural network must provide
appropriate values for the control variables, according to the current state of the system. Thus
by considering the neural network–dynamical system joint configuration as a single unit, see
figure 4, a set of input–output teaching patterns for training can be generated. Em denotes the
error between the target state zt and the actual final state zmkf of the trajectory reached, after
kf time steps, by the joint neural network–dynamical system configuration given the initial
condition m.
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Thus for a particular set of weights specifying the neural network, and a subset ofM initial
conditions that the system can take, the total error E is defined as the sum of these individual
errors after the generation of the set of M trajectories, i.e.

E =
M∑

m=1

Em = 1

2

M∑
m=1

|zmkf − zt |2. (23)

A successful training consists of determining a set of weights w connecting the Gaussian
nodes in the hidden layer with the sigmoidal output units, for which the total error E is a global
minimum. For this purpose a dynamic backpropagation algorithm [21, 22] is used to calculate
the gradient of the error E in weight space, ∇E ; and with this information we iteratively reduce
the above error by updating the weights using a conjugate gradients method [23, 24].

In the appendix we present the details of the training strategy and the dynamic
backpropagation used.

4. Training results

It is our purpose to train a RBNN to provide feedback stabilization for devices with energy
confinement times ranging between 5.0 s and 6.5 s. Thus, as shown in figure 4, in addition to
the current state of the system we must also provide the value of the energy confinement time
as an input to the network. In order to be able to use a regular RBNN it is necessary to properly
normalize the energy confinement time; this normalization, together with the region of the
phase space that is desired to cover, determine the region of the hyperspace over which the
centres of the Gaussian units in the hidden layer must be uniformly distributed. In this work
the centres of the radial nodes were located such that their coordinates in the phase space cover
uniformly a range of values between 0.8 and 1.2 along each input axis; using four nodes along
each axis, the coordinates of the hidden units in the normalized phase space were obtained from
all possible combinations of the values 0.8, 0.933, 1.067 and 1.2. Thus, a total of 256 Gaussian
units were used in the hidden layer. The width of all the Gaussian units, equation (19), was
chosen as twice the squared distance between closest-neighbour centres, i.e. σ 2 = 0.035 56.

The input parameter associated with the energy confinement time, which we will label z4,
also needs to be restricted to take values within this range, and the corresponding confinement
time will be obtained using the following transformation:

1/τE = 0.292 31 − 0.115 38z4 (24)

which yields τE = 6.5 for z4 = 1.2 and τE = 5.0 when z4 = 0.8. The reason why this
particular transformation was chosen is that it is 1/τE and not τE , the factor that always
appears in the dynamical equations.

In the training algorithm described in the appendix it is required to divide a region of
the phase space into a certain number of hypercells. For the purpose of this work the cells
were constructed as follows: each of the z1, z2 and z3 axes, corresponding to the normalized
densities and temperature, were divided into three sections with upper and lower boundaries
at 1.08 and 0.9 respectively, while the region of the fourth input to the network, z4, associated
with the energy confinement time through equation (24) above, was divided into four sections
between 0.8 and 1.2. This procedure yields 108 hypercells, from which, in step 3 of the
algorithm, the initial states are randomly chosen from within each of these cells. It follows
that three initial states with density and temperature perturbations, in the range within 10%
below and 8% above the nominal values, were chosen for every one of the four values of
the energy confinement time randomly chosen within the range 5.0–6.5 s. Following step 4
of the algorithm, the state of the system was then allowed to evolve over time, according to
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Figure 5. Training error as defined in equation (23) as a function of the iteration number, obtained
with the training algorithm described in section 4.

the configuration shown in figure 4, using a fourth-order Adams–Bashfort integration scheme
[25] with time steps of 0.05 s, while keeping constant the values of τE during the entire
simulated transient. In step 5, during the calculation of the components of ∇ωE using the
dynamic back propagation algorithm in equations (A1)–(A4), it is required to evaluate terms
of the type ∂zi(k + 1)/∂uj (k) and ∂zi(k + 1)/∂zj (k), and we do this in an approximate fashion
using a simple Euler discretization: z(k + 1) = z(k) + f (z(k), u(k)))t , of the dynamical
equations. The maximum number of time steps allowed in each trajectory varied according
to the iteration number of the algorithm: it was set to a maximum of 130 time steps during
the first 10 iterations, to 150 steps during the next 40 iterations and to 170 time steps for the
next 50; then 200 time steps were allowed up to the 300th iteration; followed by 230 steps
up to iteration 500; afterwards a maximum of 250 time steps was imposed. The simulation
transients were forced to stop when either the maximum number of time steps allowed was
reached or any of the state variables deviated by more than 15% from its nominal operating
value. In figure 5 we show the training error E , in equation (23), as function of the iteration
number of the algorithm.

We illustrate the stabilization capabilities of the resulting RBNN with three transient
examples.

Case a. In this example the normalized initial electron density, plasma temperature and
helium ash fraction are chosen to be 1.05, 0.95 and 0.90, respectively. In figure 6 (top row) we
show the behaviour of the state and control variables when the energy confinement time of the
thermonuclear system is 6.5 s, and it is kept constant for the entire length of the simulation. It
is observed that the RBNN is able to control the perturbation, returning the state of the system
close to its nominal operating point within 4 s into the transient.

Case b. In this case, at the start of the transient, the electron density, the plasma
temperature and helium ash fraction are 10% below, and 8% and 5% above their nominal values,
respectively; while the energy confinement time is equal to 5.5 s and remains constant during
the entire duration of the transient. In figure 6 (middle row) we illustrate the time behaviour of
this transient. It is observed that the network is able to suppresses these perturbations within
4 s into the transient.
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Figure 6. Behaviour of the normalized state variables (left-hand column) and the normalized control
variables Sf/(4S0), Sα/(0.1 × f0n0) and Paux/(0.2 × 1.5n0T0) (right-hand column) as functions
of time for different initial conditions in the plasma parameters and different energy confinement
times. The top row contains the results for the initial values ne = 1.05 × n0, fα = 0.95 × f0
and T = 0.9 × T0, and an energy confinement time of 6.0 s; the middle row shows the cases of
an energy confinement time of 5.5 s for the initial conditions ne = 0.9 × n0, fα = 1.05 × f0 and
T = 1.08 × T0. The bottom row shows a transient with initial conditions of ne = 1.05 × n0,
fα = 0.96 × f0 and T = 1.07 × T0, and an energy confinement time value of 6.0 s.

Case c. Finally, in this example we chose an initial perturbation of 1.05, 0.96 and 1.07
for the normalized electron density, helium ash fraction and plasma temperature, respectively.
In figure 6 (bottom row) we show the behaviour of the state and the control variables as time
evolves, when the energy confinement time is 6.0 s. It is observed that the RBNN suppresses
these perturbations within 20 s into the transient.
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In general, large simultaneous perturbations above the nominal values in the electron
density and plasma temperature are more difficult to control because of the greater amount of
fusion reactions taking place in the system, which makes it necessary for the system to first
cool down, reducing the fusion heating power; in addition the larger confinement time of the
helium ash contributes significantly to the longer time required to suppress these perturbations.

5. Robustness tests

In the previous section we presented some examples of the time behaviour of transients with
constant τE , obtained with the RBNN after the training session. In what follows we show that
the training strategy resulted in a network with robust stabilization capabilities, independent
of the device’s scaling law.

It is expected that in practical fusion power plants the global energy confinement time τE
can be measured or estimated on-line from [3]

τE = 3

2

∫
Vcore

d3r
nT

Pnet − Ẇth
(25)

where Pnet is the total net heating power and Ẇth is the rate of change of the total thermal
energy contained in the plasma. Here in order to illustrate the capability of the network to
adapt to different confinement time behaviours, an ‘on-line’ estimation will be simulated with
the instantaneous values of τE obtained from

τelmy = 0.029I 0.90B0.20P−0.66
net n0.40R2.03ε0.19κ0.92M0.2 (26)

a scaling law associated with an ELMy operating mode [15]; where denoting by Vcore the
volume of the plasma, then Pnet = Vcore(Pα + Pohm + Paux − Prad). Under the desired
nominal operating conditions of the system in this work, this expression yields a nominal
energy confinement time τE ≈ 6.17 s, with a gain value QG of approximately seven as can be
deduced from figure 2.

Due to the range of energy confinement times used in the training the RBNN is likely
to fail to return the system to normal operating conditions for perturbations where the energy
confinement time attains values far above the range used for training. Thus, in the results
presented in this section we avoid this unwanted effect by limiting the upper value of the τE
fed into the RBNN to a maximum value of 7 s; nevertheless, the value of τE obtained from
(26) is not modified when used in the dynamical equations.

In order to represent a noisy τE measurement environment or an uncertain scaling law,
we show two simulated transients in which the thermonuclear reactor follows the scaling law
in (26), but where the actual value of τE which is put into the RBNN is obtained at each time
step from a Gaussian stochastic process with a mean value given by the instantaneous value of
τelmy, equation (26), and with a standard deviation of 0.04 × τelmy. Preliminary partial results
of this test were reported in [26].

Case d. For this transient we choose the following initial conditions ne = 0.8 × n0;
for the ash fraction fα = 0.9 × f0, corresponding to a helium ash density of 28% below its
nominal value, and a plasma temperature T = 1.15 × T0. Figure 7 (left column) shows the
time behaviour of the normalized state and control variables for this transient. In figure 7
(bottom figure) the ELMy confinement time τE as function of time is shown, which has been
corrupted with Gaussian noise as explained above. Apart from the Gaussian noise added,
the behaviour of τE can be explained using the scaling law in (26). It has, initially, a small
value because the electron density lies below its nominal value and the contribution of both
the alpha particle heating and the auxiliary heating driven by the controller yield a large net
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Figure 7. Two transients of the RBNN–dynamical system configuration shown in figure 4, for a
fusion device obeying the ELMy scaling law in equation (26). The energy confinement time fed
into the RBNN is corrupted with Gaussian noise as discussed in the text. The behaviour of the
normalized state variables (top row), the normalized control variables Sf/(4S0), Sα/(0.1 × f0n0),
and Paux/(0.2×1.5n0T0) (middle row) and the noisy confinement time fed into the RBNN (bottom
row), are shown as functions of time for the following initial conditions: in the left-hand column
we have case d ne = 0.8 × n0, fα = 0.9 × f0 and T = 1.15 × T0; in the right-hand column we
have the case e discussed in the text, whose initial conditions are ne = 0.82 × n0, fα = 1.07 × f0
and T = 0.82 × T0.

heating power. After approximately 4 s the density has increased and the temperature has
decreased to almost their nominal values; this, together with the fact that the auxiliary heating
has diminished, as observed in figure 7, makes the net heating power into the plasma decrease
and the confinement time to eventually increase around its nominal value. We note that in spite
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of the noise, the control actions produced by the network are able to return the thermonuclear
system to its nominal operating point within 8 s into the transient.

Case e. In this case the electron density and the plasma temperature are both 18% below
their nominal operating values, while the helium ash fraction is 7% above its nominal value;
corresponding, in this case, to an helium ash density nα ≈ 12% below its nominal operating
value. Figure 7 (right column) shows the resulting time behaviour of the electron density, the
temperature and the ash fraction as a consequence of the control actions of the D–T refuelling
rate, the neutral 4He injection beam and the auxiliary heating. In this figure the confinement
time as obtained from (26) corrupted with Gaussian noise is also shown. It is observed that the
network suppresses these perturbations within 15 s into the transient. Again the behaviour of
τE shown in this figure for this case is explained as follows. Since, initially, both the electron
density and the plasma temperature are well below their nominal values a low net heating
power into the plasma is produced in spite of the upper limit value attained by the auxiliary
heating driven by the controller; this produces a large value of τE during the first couple of
seconds into the transient. Afterwards the density increases and although the temperature is
still low, together with the auxiliary heating, the net heating power increases enough and hence
the confinement time decreases. Eventually the plasma temperature increases and the auxiliary
heating decreases, the confinement time then recovers to within a region around its nominal
value.

In what follows we show the effect of the thermalization process of the alpha particles
produced by the fusion reactions on the behaviour of the joint RBNN–dynamical system
configuration. We shall recall that the training of the RBNN, discussed in sections 3 and 4,
was performed assuming instantaneous thermalization of the alpha particles. Following the
discussion of section 2, we test for robustness with regard to this process by approximating
the energy deposition rate in the plasma by an alpha particle produced by a fusion reaction at,
for instance, time t = 0, as

Pα(t) = Qα

tspread
[u(t − tdelay) − u(t − tdelay − tspread)] (27)

where u(x) is the Heaviside unit step function, Qα is the total energy carried by the alpha
particle and tdelay and tspread are the delay and spread time intervals defined in equations (17)
and (18), which depend on the current plasma parameters.

With this assumption, we show, next, two typical transient simulations using dynamical
equations which include the alpha particle thermalization and where the noise has been
excluded in order not to obscure this effect; the fusion reactor is assumed again to follow
the ELMy scaling law in equation (26). It is necessary to point out here that by including the
thermalization time delay, the dynamical system acquires a memory, i.e. the behaviour of the
system defined by equations (9)–(11) is no longer determined by the current values of the state
variables, z1, z2 and z3, alone, but also by their past values which determine the actual energy
deposited into the plasma at the current time. Hence, in the simulated transients shown below
the energy deposited by the alphas into the plasma will not be taken correctly during the initial
stages of the transients, but it is eventually self-adjusted after few thermalization time periods
into the transient.

Case f. In this transient example the following initial conditions were chosen, ne =
0.75 × n0, fα = 0.75 × f0 and T = 1.15 × T0. In figure 8 (left column), the time behaviour
of the normalized state and control variables provided by the RBNN are shown, where it is
observed that in spite of some initial hesitant behaviour of the control actions, due to the
reasons explained above, the network was able to suppress these perturbations within 7 s into
the transient.
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Figure 8. Transient examples corresponding to a fusion device obeying the ELMy scaling
law in (26) in which the thermalization time of the alpha particles is taken into account. The
behaviour of the normalized state variables (top row), and the normalized control variablesSf/(4S0),
Sα/(0.1 × f0n0) and Paux/(0.2 × 1.5n0T0) (bottom row), are shown as functions of time for the
following initial conditions: in the left-hand column we have case f ne = 0.75×n0, fα = 0.75×f0
and T = 1.15 × T0. The right-hand column contains the case g discussed in the text, whose initial
conditions are ne = 1.15 × n0, fα = 0.8 × f0 and T = 0.75 × T0.

Case g. In this case the electron density, the ash fraction and the plasma temperature
were assigned, respectively, the following initial values ne = 1.15 × n0, fα = 0.8 × f0 and
T = 0.75 × T0. The state and control values as functions of time resulting from the RBNN
control actions are shown in figure 8 (right column). As in the previous case the network was
also able to suppress the perturbations within 12 s into the transient. Similarly to case f, the
control actions during the earliest stage of the transient are a little erratic due to an initially
incorrect account in the energy deposition of the alpha particles during the simulated transient
as explained above, which is corrected however, after a short period of time.

It should be mentioned here that in some simulations high-frequency oscillations in the
energy confinement time, which die out after a few seconds, are observed during the evolution
of the transients; these fluctuations are also reflected, although to a smaller scale, in the plasma
parameters. Similar oscillations, which are produced by periodic fluctuations in the net energy
deposited into the plasma, have been observed previously [1].

In figure 9 we show schematically the region of stability in the normalized phase space
(ne/n0, fα/f0, T /T0) of the RBNN–fusion device joint configuration (figure 4) with a scaling
law given in equation (26). Each of the two diagrams in this figure was generated using
343 simulated transients. The shaded squares indicate the initial deviations in the plasma
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Figure 9. Schematic diagrams showing the regions where the RBNN–fusion reactor is stable
(shaded squares) and unstable (white squares) comprehending perturbations between −25% and
+15%, around the nominal values of the plasma parameters. (a) shows the results when the alpha
particles’ thermalization times are taken into account and the cases where Gaussian noise is added
to τE , are shown in (b). In both cases the reactor device is assumed to follow the ELMy scaling
law in (26).

parameters for which the RBNN controller is able to drive the fusion system back to its
nominal operating point, while the white squares indicate those for which it failed to suppress
the perturbation. Figure 9(a) corresponds to the cases where the alpha particle’s thermalization
time was included in the simulated transients. On the other hand, figure 9(b) is associated with
the cases where the current value of τE fed into the RBNN controller is corrupted with Gaussian
noise, as in the cases d and e discussed above. As we can see, the stability regions in both
cases are larger than the original region used for training the RBNN. It is observed that the
system fails to suppress the perturbations in the plasma parameters in those regions of phase
space for which τE is significantly larger than the values used for training. In general we
can say that the time required to suppress a perturbation is larger when, at the onset of the
transient, the electron density and the plasma temperature are both above their values at the
nominal operating point. In contrast, the times required are shorter when their initial values
are both below this point, although for large departures the RBNN also fails to suppress the
perturbations.
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6. Summary and conclusions

In this work it is shown that a RBNN composed of Gaussian activation units in the hidden layer
and sigmoidal nodes in the output layer can be used successfully to stabilize a thermonuclear
reactor under subignited burn conditions for a wide range of energy confinement times. A
zero-dimensional model was used to represent the evolution of the electron density, the helium
ash and the plasma temperature. The radial basis network was trained to stabilize the dynamical
system for a range of energy confinement times; thus each transient evolved over time keeping
constant the energy confinement time during the entire duration of the transient. The control
actions included the concurrent modulation of the D–T refuelling rate, a neutral 4He beam and
an auxiliary heating power, which were constrained to lie within allowable levels.

After training, the resulting network showed that it was able to stabilize the system at
fixed plasma parameters, independently of the scaling law of the device, suppressing plasma
density and temperature excursions significantly far from their nominal values.

Numerical examples were used to test for robustness of the resulting RBNN under
uncertain or noisy environments, showing its capability to adapt to new operating conditions
by controlling perturbations in the plasma parameters when the thermonuclear system follows
a given ELMy scaling law, feeding the instantaneous value of the energy confinement time
corrupted with Gaussian noise into the RBNN. In addition, using analytical expressions to
estimate the thermalization time of the alpha particles produced by the fusion reactions, the
network proved also to be robust with respect to this process. In both cases the region of
stability was roughly estimated using simulated transients.

Further research is being undertaken to develop a neural network with load-following
capabilities, as well as to allow for the ions and electrons to have different temperatures.
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Appendix

The neural network training was performed using a parallel code [11] developed using MPI,
a recently created portable message passing environment standard for parallel programming
and which was modified to work with radial basis networks. A parallel computation in MPI
lies within the distributed memory SPMD framework (Single Program Multiple Data) and
consist of a set of processors concurrently running copies of a single program written in a
standard language, such as F77 or C, enhanced by library calls to MPI functions for sending
and receiving messages (data) between processes as well as for task synchronization [27, 28].

The parallelization strategy used the fact that the gradient of the total error, ∇E , is the sum
of independent gradients of the individual errors Em of each of the trajectories,

∇E =
M∑

m=1

∇Em. (A1)

Thus, assuming that we have a set of P processors, labelled p = 0, 1, . . . , P − 1, which
are available to contribute to the calculation of ∇E , the following parallel algorithm can be
devised.
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• Step 1. Task assigned to processor p = 0. Randomly select the initial values of the set
of weights that specify the neural network, and use MPI library calls to broadcast these
values to all the other P − 1 processors.

• Step 2. Task assigned to processor p = 0. Divide a properly chosen region of the phase
space into a number M of hypercells.

• Step 3. Task assigned to processor p = 0. Select M initial states by randomly sampling
each one of the cells in the extended phase space. Use MPI library calls to broadcast these
states to all the other P − 1 processors.

• Step 4. Assign to each processor a subset of the M initial states following a load balance
strategy. Starting from each one of these initial states we allow the RBNN-system
configuration to evolve over time until either the state of the systems moves out of a
predetermined region or a pre-fixed maximum number of time steps is reached.

• Step 5. Using dynamic backpropagation each of the P processors calculate and store the
gradient of the individual error Em associated with the subset of the M trajectories that
were assigned to it.

• Step 6. A test for convergence in each trajectory of their corresponding subsets is
performed by each processor and the results are sent, using MPI calls, to processor p = 0,
which determines whether or not global convergence has been achieved. If the global
convergence criteria is satisfied one should stop; otherwise proceed to the next step.

• Step 7. Using the MPI global sum operation, the partial gradients of the errors, ∇Em, are
shared by all P processors; each processor then proceeds to determine, by adding these
components, the gradient of the total error ∇E = ∑M

m=1 ∇Em.
• Step 8. All processors individually use ∇E to determine the new conjugate gradient’s

direction, and cooperate in a way similar to step 4 in the search for the minimum along
this direction.

• Step 9. Updating of the weights is performed in each processor.
• Step 10. Repeat steps 3–9 until the training of the neural network is successfully

completed, i.e. when the entire set of M trajectories, each of which starts from a different
cell, reaches the target zt within the error range ε.

Summarizing, the above algorithm involves three phases. In the first phase the joint neural
network–dynamical system configuration evolves over time from an initial state z(1), until a
final state z(N); this final state is then compared with its target value, resulting in an error
signal for each of the state variables of the system. In the second phase these error signals
are propagated recursively backward in time from the final time step N to the initial time
to calculate the components of ∇E . In the last phase, the adjustments needed in the weights
composing the neural network are determined with the method of conjugate gradients. The use
of conjugate gradients has also the advantage of preventing the occurrence of the phenomenon
of premature saturation in the sigmoidal activation units [29].

The components of the gradient of the error Em with respect to the weights of the neural
network, associated with the trajectory generated from the mth cell, i.e. ∂†Em/∂ωpq , are
obtained, using the concept of ordered partial derivatives [1, 21], from the following expression:

∂†Em
∂ωpq

=
N−1∑
n=1

J (3)∑
j=1

∂†Em
∂O(3)

j (N − n)

∂O(3)
j (N − n)

∂ωpq

(A2)

the second factor on the right-hand side of the above equation is obtained for a radial basis
network as

∂O(3)
j

∂ωpq

=
{

0 if p �= j

O(3)
j (1 − O(3)

j )O(2)
q for p = j

(A3)
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where O(2)
q is the activation level of the qth Gaussian node in the hidden layer and O(3)

j is the
activation of the j th sigmoidal node in the output layer; the first factor is obtained using the
following recursive set of equations:

∂†Em
∂O(3)

j (N − n)
=

J (1)∑
i=1

∂†Em
∂zi(N − n + 1)

∂zi(N − n + 1)

∂O(3)
j (N − n)

for n = 1, . . . , N − 1 (A4)

with

∂†Em
∂zi(N − n + 1)

=
J (3)∑
j=1

∂†Em
∂O(3)

j (N − n + 1)

∂O(3)
j (N − n + 1)

∂zi(N − n + 1)

+
J (1)∑
k=1

∂†Em
∂zk(N − n + 2)

∂zk(N − n + 2)

∂zi(N − n + 1)
for n = 2, 3, . . . , N − 1 (A5)

with the following initialization:

∂†Em
∂zi(N)

= ∂Em
∂zi(N)

. (A6)

In the above equations the symbol † is used to denote an ordered partial derivative; O(3)
j (N−n),

the j th output of the neural network, is the value of the corresponding control variable at time
step N − n, and zi(N − n + 1) corresponds to the value of the ith state variable at time step
N − n + 1.
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