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Abstract

A model for the observed improvement in confinement when a stationary MARFE develops is proposed. It is based on the
fact that field-aligned flows are naturally created in association to a MARFE, which, when coupled to the field line curvature,
give rise to plasma spin-up. The resulfiradially-sheared poloidal rotation abdbe layer affected by the MARFE at the edge
may suppress turbulence and reduce transport losses.
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1. Introduction due to gas feeding, produces an increment in plasma
radiation at the HFS of the tokamak near the edge,
which in turn cools down the plasma. As a result there
is a pressure drop in that region, and then a particle
flow is driven along the field lines, which brings in
more newly injected particles, from the low field side
(LFS) of the plasma flux surface, thus accumulating
more particles and radiating more. Hence, the MARFE
works as a kind of plasma pump. This effect reinforces
another unstable process that occurs when the temper-
ature lies in a part of the radiation curve L(T), where
the radiation increases d@se temperature decreases
(negative slope). The whole process is known as the
msponding author. ther_mal_condensgtion instability, and it arises if the ra-
E-mail address: martinel@nuclecu.unam.mx (J.J. Martinell). diation increase is larger than the heat influx coming

Multifaceted Asymmetric Radiation from the Edge
(MARFE) in tokamaks is a radiative phenomenon that
takes place mostly at the high field side (HFS) plasma
edge and appears at relatively high densities. It is usu-
ally observed as the density limit is approached just
before a disruption, but it has also been possible to
produce long-living stationary MARFEs [1], which
has provided the possibility to study their properties.
The MARFE appears when an initial density increase,
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from perpendicular diffusion, which apparently is the bility that another process be responsible for the cre-
case in a MARFE [2]. The reason for the appearance ation of a thermal barrier, that improves both particle
of MARFEs at the HFS is that the radial heat transport and thermal confinement.
has a minimum there, and thus a temperature drop can- In this Letter we present a mechanism that can
not be compensated by heat diffusing from the core. explain the improved confinement at the plasma edge
However, the average density over a flux surface is un- due to a MARFE, based on the formation of an
changed: the density is just redistributed. ETB. The physical picture proposed is the following.
Recently, it has been observed in the HT-7 toka- As mentioned before, the MARFE gives rise to a
mak a regime of improved confinement when a sta- field-aligned plasma flow in order to keep pressure
tionary MARFE is created [3]. This is evidenced by: balance, from the LFS to the HFS. If gas-puffing
(1) a density profile peaking, (2) a reduction of the is maintained at a high rate the MARFE density
D, line emission and (3) an increase in line-averaged increases indefinitely, but if it is low enough, cross-
electron density. While the MARFE-related confine- field particle transport can balance mass input and
ment improvement is associated with edge radiation, thus keep the density at a stationary value. Radial
it seems that its characteristics are different from the particle diffusion out of the MARFE is large due to
RI (radiative improved) mode found in TEXTOR [4]. the increased density griadt that is created there;
In the latter, the reason for the transport reduction is the particles recycle at the wall but since they are
apparently related to the suppression of the ITG mode neutralized, re-enter the plasma in a wider poloidal
due to a reduction of the ion temperature gradient pa- range, adding up to gas-puffing. Now, since the high-

rametem; = dlogT;/dlogn [5]. Although it has also
been claimed that in HT-7 an internal transport bar-
rier (ITB) is formed [6], the evidence is not convinc-
ing. Hence, it is most likely that the improved con-

density MARFE is localized in the HFS, the density
on a given flux surface is a function of the poloidal
angle,f, having its maximum ab = =, i.e., at the

plasma inboard side. The poloidal anisotropy of the

finement in HT-7 originate in the region where the equilibrium makes it susceptible to the Stringer spin-
MARFE is localized, as a result of the formation of up instability [11], that is driven by the magnetic field
an edge transport barrier (ETB). Stationary MARFEs line curvature. The equilibrium parallel-flow is shown
have also been produced in TEXTOR [7] and Tore in Fig. 1(a), and it gets modified when a perturbed
Supra [8] experiments but not associated with confine- poloidal rotation sets in. In this case, as shown in
ment improvement. Thus, it should be remarked that Fig. 1(b), the flows convergence point is displaced in
the experimental evidence in favor of an improvement the direction of the rotation (counterclockwise in the
in confinement during stationary MARFEs is not con- case of the figure), thus creating a density increase at
clusive. It is also worth mentioning that a similar par- this point. Due to the presence of magnetic curvature,
ticle confinement improvement has been observed in which plays the role of an effective gravity, this high
detached plasmas [9,10], producing an increase in the
central plasma density. The increased density has been,;pr
attributed to a displacement of the particle source to-
wards the plasma core due to the decrease of the edge
temperature, but also to a reduction of the transport
due to the dissipative trapped electron mode. There-
fore, an analogous mechanism might be in effect in the
case of a stationary MARFE, thus producing the ob-
served density rise in HT-7. However, the concomitant
increase in the energy confinement, also reported for
HT-7, would require an altenative explanation. Thus,
eventhough the experimental data are still not com-
plete, lacking reliable teperature measurements and
any information on plasma rotation, it is worthwhile to
investigate from a theoretical point of view, the possi-
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Fig. 1. Poloidal cross section of toroidal plasma, with the symmetry
axis to the left, showing the effective gravity associated to the mag-
netic field line curvature and the plasma flows; (a) the equilibrium
state in a stationary MARFE, with field-aligned flows converging
at the MARFE position, (b) perturbed state by a poloidal velocity,
displaces the converging point and modifies the initial density.

g



J.J. Martinell, F. Porcelli / Physics Letters A 326 (2004) 259-266 261

density region tends to “sink” moving in the direction where cs2 = T/m; and g = rBy/RB,. According
of “gravity”, that is, towards the LFS. This makes the to this, the initial poloidally dependent density gets
plasma to move counterclockwise, which reinforces modified by én(6). In addition, in the presence of
the initial rotation, and the process continues, spinning magnetic line curvature, there is an effective gravity,
up the plasma. The result is a sheared poloidal rotation geff = —cf:c (k = b - Vb ~ —R/R), that produces
at the edge which can suppress turbulence and reducea “buoyancy” force which moves the higher density
anomalous transport. plasma regionys + Sn(6), towards largerR. This
force accelerates the initial plasma rotation, since it
can only move on flux surfaces. This is seen from
2. Plasma flows and spin-up the poloidal equation of motion averaged over a flux
surface (the curvature contribution comes from the
The plasma flow along the magnetic field lines, convective term),
that is established when the MARFE structures set in, " 40
create a state that is subject to the spin-up mechanismy —2 = yg dngefi g 5—- 3)
as described in [12,13]. We first recall the physics of 2
the spin-up for a poloidally asymmetric radial particle Now, in a MARFE the particles are sucked in at
flow [13], and then we develop the corresponding the inboard side (a plasma pump [1]), which initially
formal model. In the case of a MARFE, the asymmetry increases the density, but when the stationary state is
is due to the poloidal dependence of both the density established the incoming particles have to be diffused
and the diffusion coefficient near the edge. For the out. So the radial flow is peaked ét= 7, which
magnetic field the usual axisymmetric representation means a dependence of the tyjlé &« — cosf. Then,
is used:B = V¢ x V¢ + I (y)Ve, in terms of the combining Egs. (1)—(3), one finds that o siné
flux functiony . In the analysis, we will at times make and én oc —u, sinf. Thus, foru, > 0 the density
use of a toroidal geometry with circular cross section fluctuations reach their maximum amplitude at the
and a coordinate systerr, 6, ), where the major  bottom of the poloidal cross section. Moreover, since
radius isR = Rp(1 + e cosd), so that the magnetic  gefr,9 &< — Sind, the evolution equation for the poloidal
field can be approximated b§ = (Bo/R)({ + €6), flow will have the formdu,/dt = I'u, with I' > 0
andy is identified withr. We will explicitly separate  and therefore:, will tend to grow, spinning up the
the poloidally asymmetric part of any quantity (like plasma. We point out that this effect has to compete
a sourceS) by writing 6§ = S — (S), where the with the viscous damping that comes from rotating
angular brackets denote flux-surface average= the plasma through regions of different magnetic
§ S(1+ ecosd)dd/2x. To heuristically understand field magnitude, the so-called magnetic pumping [14].
the spin-up, following [13], let us consider the radial Thus, the spin-up can occur only if it can overcome

particle flow I to have an asymmetric pad/ = magnetic pumping.

—8(Dan/dr), that consequently drives a parallel flow Having established the nature of the spin-up, we

given by the continuity equation, now consider more specifically the situation in the
15 presence of a MARFE. As mentioned in the Intro-

V)éuy =—n—ra—rr81“, 1) duction, the MARFE can be described as a ther-

mal condensation instability. In order to keep the
whereV| = b -V, with b =B/B, andu/ is a function ~ MARFE stationary, a feedback gas puffing system is
of the poloidal angled. Then if a seed poloidal needed, which stabilizes this instability. Thus, while
rotation,u ,, is applied, an advective force would act the plasma still radiates profusely from the MARFE
upon the parallel flow, which should be offset by region, the density is kept at a steady value instead
pressure; so the parallel momentum balance gives,of growing continuously. To study the dynamical be-

assumingl’ = const, havior we consider the fluid equations obtained from
) Braginskii's equations, in the superdiamagnetic and
gl 88Uy cf 95n @) subsonic limit U4 < u, < Bycs/B) and for time

r ¢ qR 36’ scales faster than the ion transport time<(z;p ~
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(L/qpi)?/vii), as given in Ref. [14]. Herey, is the with the functiona(r) determining the radial extent
plasma poloidal velocityl/, is the diamagnetic speed, of the MARFE, whose value should be related to
L is the characteristic scale lengi, the ion gyrora- the functionL(n, T'), while no(r) corresponds to the
dius andv;; the ion collision frequency. The equations, equilibrium density profile. Note that the function

valid for the edge plasma region, are, a(r) is such thatla(r)| < 1, it peaks atr = ryy,
In u) the MARFE’s radial position, and vanishes within the
— +V-(nup)+B-Vn— =5, (4) plasma core.
ot B Now we can study the dynamical evolution of the
mi(i(nu) +V. (nuu)> plasma described by Egs. (4)—(6), for the poloidally
dt varying density given in (9). A lows plasma will be
- Vp-V.M+ }J « B, (5) considered, SO that we can neglect the time variati_ons
¢ of the magnetic field. For the vectors representation,

we use the contravariant components in the orthogonal

coordinategvy, 6, ¢) defined byu” = u - Vy, where

y = ,0,¢, as well as the covariant components:

Uy = |Vy|2u” (toroidal and poloidal components are

—nTV-u—Ln.T). @ ur = |lu; Vel andu, = |ugVe|, respectively). From
Eq. (6) we get,

1
—Vé¢+-uxB=Ry, (6)
C

3 /0
§n<5 +u- V)T =ViKkiViT +V 1k VI T

where the particle source i§ (i.e., gas puffing) c

and the radiation function id.(n, T). The plasma UL = ﬁ(B x V¢ + R, x B),

velocity u is the ion velocity and the ion and electron _ o

temperatures are equdl = 7, = T. In the electron B-V¢=B-Rai=0 (10)

momentum equation (6), the terR,; represents a for the last equality we assumed, for simplicity, that

general electronen momentum exchange (collisional R.i is perpendicular t®, which gives the realtionship,

and anomalous), which will be responsible for the RY = RgiB%/qBIZ,. Eqg. (10) implies that the electro-

diffusive radial transport. In the total momentum static potential is a flux functiop = ¢ (). Adding a

balance equation (5), the stress terHas responsible  parallel component to the velocityy = uHB, the total

for damping by magnetic pumping. The parallel and velocity can be written as,

perpendicular thermal conductivitiesy, «,, in the B 5

total energy equation (7), determine the appearance of — uj+ug = _up;; +Red'C +Rei x —,  (11)

the MARFE. No heating sources are assumed since By B

ohmic heating is negligible near the edge. whereu, = (B,/B)(u| — cI¢'/B). This is not a flux
First, to simplify the analysis, we will assume fynction and therefore it varies along the poloidal

that the equilibrium density function in the stationary direction; but its flux-surface average describes the

MARFE is determined by the energy equation (7) bulk plasma flow. In order to study the evolution of the

only. That is, the energy balance established in the averaged plasma velocity, we first take the flux-surface

MARFE, defined by the equation, average of the toroidal component of Eq. (5) to obtain,
Vik VT +Vik VLT 9 9
11l 3” LELVL m; E(nu;) = —W<nuguw>, (12)
— znuy VT —nTVjuy—Ln,T)=0 (8) . . . .
2 which gives the conservation of toroidal angular mo-

produces temperature and density distributions that mentum. Here the contravariant radial veloaity =

are minimum and maximumespectively, at the HFS, u-Vy = RZR;, is proportional to the toroidal friction

where the MARFE is located. Thus, instead of solving force. In deriving (12) use was made of axisymmetry

Eqg. (8), we propose an equlibrium density function and of charge conservatioW, - j = 0, which implies

with these feature, expressed as, the ambipolarity condition{j - Vi) = 0. This is cer-
tainly valid for collisional transport, but for anomalous

n(r,0) ~ no(r)(1 — a(r) cost), ©) transport due to electrostatic fluctuations it also holds,
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since they approximately preserve quasineutrality. In
any case, the non-ambipolar contribution would be of
order (va9/c)?, as it was shown in Ref. [16] (where
v4p IS the poloidal Alfvén speed), which is very small
and therefore it will be neglected. Additionally, we
need the parallel momentum equation from Eq. (5),

m,-(%(nB~u)+B-V.(nuu))

—B-Vp+B.V.IL (13)

For the solution of Egs. (4), (12) and (13), we will
assume all relevant time scales are of higher order
than the sound wave transit timgR/cs, SO we will
solve the equations expanding in this parameter. To
lowest order, Eq. (13) give8 - Vp =0, so p =
p(¥). Therefore the temperature must vary in inverse
proportion to the density (9) on a flux surface,

Ty, 0)=pW)/n,0). (14)

Now, we can obtain an equation for the average
density by flux-surface averaging Eq. (4),

d

EM) +(V - (nup)) = (S).
However, for a stationary MARFE, density evolves
according to the transport time scale which is very
long in relation to our relevant scales. Thus,

d d

—&n = —

o1 (= m)

is of higher order. Inside the MARFE region the equi-
librium is given by(V - nu, ) = (S). The poloidally
dependent part of the continuity equation is obtained
by substracting Eq. (15) from (4). We will assume a
poloidally uniform gas puffing, so th&f = (S), and
thus,

(15)

’\’62}’1

V-mu)—(V-nu )=0 (16)
or equivalently,
B- V(nu—p)
By
=<V«(£Rex5>>—V«<£Rexl§>. (17)
B B

The right-hand side contains the poloidally asymmet-
ric radial diffusion, given by thg quantity,;. In fact,
for collisional transportR,; x b/B =—D(Vin +

263

nV i logT, Y3, with D, = p2v;. For anomalous
transport, an analogous expression could be written,
proportional to the effective diffusion coefficient and
the density gradient, and possibly including a convec-
tive term. It is mainly the poloidal dependence of the
density,n(0), what makes the RHS of Eq. (17) non-
zero in our case, and this is the cause of the spin-up.
There is an additional contribution due to the poloidal
dependence of the diffusion coefficient which was
considered in [15], and both are of the same order, thus
enhancing the resulting spin-up. We are interested in
obtaining an equation for the average poloidal plasma
velocity in order to elucidate its evolution; for this we
use the flux functio.(y/) = (u,/B)), which is pro-
portional to the average poloidal angular momentum.
Therefore, in terms of tki parameter, the complete
poloidal velocity is written as,
52 _a(w) + 6a, (18)
BP

the latter containing the poloidal dependence. It is
possible to writeA(y) in terms of the averaged
toroidal and parallel components of the flow, by
eliminating ¢’ in Eqg. (11) from the two respective
components, after being averaged over a flux surface.
The result is,

1
- O(nB?) (<nB = g

(n)1?
(nR?)

— (nB?5) + (nsA) (19)

where,

?n)? B
(nB2)(nR2) B?’
The time derivative of this equation will give the
evolution of the poloidal velocity. We already have
Eq. (12) for the average toroidal angular momentum,
but still have to get the equation for the surface-

averaged parallel flow. By averaging Eq. (13) one
obtains,

O =

%(nB -u) =(B-u(dn/dt — S)) + (Rei - V x nu)

A(pw- ) )

21 (B-V- 1),

mi

(20)
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where use has been made of Eq. (16), Faraday’s law The reason is that we will not try to solve Eq. (23)

and our assumption of quasi-static magnetic field.
The next to the last term is nonlinear («2) and
may be neglected for smailbtation speeds. The term
involving the friction, R.;, will be responsible for
the poloidal spin-up; it contains a term proportional
to A. In order to express the averages of velocities
involved in Egs. (12) and (20), in terms of our
variables of interest and (nu;), we make use of the
following relations, derived by combining components
of Eq. (11),

2

Boui(B2_ L
(nR?)
nl
+ m(nug) + B%82, (22)

where Az = (nR?/(nR?%)) — 1 and we assumed the
radial componenRZ = 0. The evolution equation for
the poloidal average velocity is obtained from Eq. (19)

but use it to determine the conditions for poloidal
velocity growth. It turns out that this equation has a
weaker dependence @, ), so thatthe RHS is just a
function ofA to lowest order ire. Before we make this
reduction, in Eq. (23) we have to evaluate the viscous
stress term, giving the magnetic pumping, which is
only determined by the parallel viscosity [14], and is
also proportional toh. Using the result obtained in
Ref. [17] it is found,

(B-V-I) = ok + , (24)

where,
1o = (4.095p; /vii){(b - VB)?),
K = (4.095p; /v;i)((b - VB)?51).

Eq. (23) is valid for arbitrary flux surface geometry,
but it is difficult to extract the dominant terms is
this form. To proceed further we take the limit of
circular flux surface mentioned above and use the
density function (9). Then, the replacemettsyr —

using the forementioned assumption that the density (1/7)(3/3r) andu? — ru, are made and the averages
varies in a slower time scale, thus treating it here as &€ taken, and the terms are ordered according to
a constant. Keeping dominant terms (neglecting terms the small parametee. It is found that all terms

of order~ B,/Br) the resultis,

8)L_ 1 / u¥ 9 A
E‘@@BZ)[ <ﬁ@” R>
In) 9
- (n;2>wl)\<nu'/’AR)
o nl? wa_”>
“<(B <nR2>)” oy
(g2 2N,
A<<B) <nR2>)aw(” !
7 u¥ 9 nR2
5 ()
I(n) 8 [(nR%u?)
_<nR2>W< (nR?) "“”)
(5]
+ F(8)) — OS'Z%II)], (23)

where F(5A) is a function that contains all terms
that depend onsA which is not important to us.

proportional to(nu;) cancel out to lowest order, and
taking into account thatnu;)/Angl ~ €, only the
terms proportional td. remain. The evolution of the
poloidal velocity to lowest order is finally cast as,

oA
o= '+ H, (25)
with
r= _—1(<1+ g(1—oz))13rur1+ r1 9no

o 2 ror no or

1 90 4.095p;e

_ n—org(rno(x[uro + u,z]) + W),

H = Fy(8A) + k/mangeo, (26)

where, o = (2 — 9a/4 + 30%/2 + g e, Uy =

(u, cognd)) and Fp(8)) is the ordere contribution

to F(81). The average:,1 measures the poloidally
asymmetric component of the radial velocity. The
parameter” includes both the spin-up drive and the
damping by magnetic pumping, but the latter is an
ordere smaller than the spin-up and it will be easy
to overcome the damping; the instability condition
is I' > 0. It is clear that the sign of" depends on
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the sign of the derivatives of the weighted averages become,
of the radial velocity, especially,;. First of all, we
point out that wherx = 0, the equation reduces to
the usuql Spin-up found in [15]: In that case theT spin- |mg +np— rnoF(ao)/w2| > o s
up condition on the asymmetrical velocity is simply mi Lodoq

(d/dr)(rnu,1) < 0. In our case, where the MARFE  with F(o) =2 - (1 — VA —a)/A+a))/a > 0,
produces the asymmetrical density (9), the function which can be satisfied by a wider range of density
a(r) modifies the stability criterium substantialy. For profiles than the case far= const.

definitness we assume the radial flow is due to a

diffusive and a convective component, so that =

—Ddn/dr —nug(r), with ug(r) independent of, but 3. Conclusions

the diffusion coefficient is allowed to be poloidally

rng+ng— rnoF (a)/w? < 0,
noer

varying asD = Do(1+ A cos9) in addition ton. Two We have shown that when a stationary MARFE
limits may be considered: is produced in a tokamak, the flow pattern thus
created is unstable to a poloidal rotation perturbation

(@) When D is poloidally dependent butr is in the region where the MARFE is located, i.e., near
constant, the conditiofr > 0 gives, the edge region. Our treatment of the spin-up is

made for a poloidally depelent density, in contrast

to previous treatments where the MARFE was not
present. The spin-up is excited by the asymmetric
density associated with the MARFE, even if the

PAES

(rn6+n6)<A —a+A%‘(1—a))

12

/
LI Y M‘ radial diffusion is symmetric, especially for a strong
no 2 Do MARFE (largec«). The ensuing rotation would have
- no€er 27 an intrinsic radial shear thus creating a zonal flow.
2m; Dog?R?’ Although we did not study the turbulence, we invoke

the well-known relationship between zonal flows and
turbulence suppression [18], which will produce an
ETB. This would explain the observed improved
confinement in HT-7. A direct comparison with the
experiment could be done in order to check if the
unequalityI” > 0 is actually satisfied. However, we
expect it to hold in most practical cases since the drive
for the spin-up is an order larger than the damping,
which makes the proposed mechanism plausible. It is
quite likely to have plasma spin-up during stationary
y noer MARFEs, and the results of HT-7 might already be
lrng +ngl > 2m: DoatdR2’ (28) an evidence of it, as measured by the change in
io%d confinement properties.
andrng+ng < 0. This constraint is the opposite to the Although there are no other reports of improved
case withe = 0 and a poloidally dependem?, and confinement during stationary MARFEs beside that of
it means that the density profile should be concave- HT-7, itis interesting to mention that a similar process
down at the edge, which is the usual profile shape. may occur just before a density-limit disruption. There
Condition (28) could be satisfied for a sufficiently are indications that the confinement time tends to
asymmetric density profilex(~ 1). increase previous to the disruption [19], possibly
(b) Forthe case of variable(r) the conditionsare  implying that a thermal barrier starts forming when
more complicated and depend on the precise radial density and the associated radiation increase. Poloidal
dependence. As an example, &) = agexgd—(r — asymmetries in these parameters would lead to a spin-
r0)2/2w?] and constaniD, the conditions at = rg up mechanism as the one described here.

with no = 4.095p;/v;; and the prime denotes radial
derivative, while the constraint on the density profile
is X > 0. Whena = 0 the conditions from [15] are
recovered, as mentioned above, which requires the
density profile to be concave-up near the edge. There
is, however, another possibility for spin-up when the
diffusion coefficient is symmetric4 = 0) and justn

is poloidally dependent; far = const and:g = 0, the
conditions for this are,
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