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Abstract. In this work we develop an artificial neural network (ANN) for the feedback
stabilization of a thermonuclear reactor at nearly ignited burn conditions. A volume-averaged
zero-dimensional nonlinear model is used to represent the time evolution of the electron density,
the relative density of alpha particles and the temperature of the plasma, where a particular scaling
law for the energy confinement time previously used by other authors, was adopted. The control
actions include the concurrent modulation of the D–T refuelling rate, the injection of a neutral
He-4 beam and an auxiliary heating power modulation, which are constrained to take values
within a maximum and minimum levels. For this purpose a feedforward multilayer artificial
neural network with sigmoidal activation function is trained using a back-propagation through-
time technique. Numerical examples are used to illustrate the behaviour of the resulting ANN–
dynamical system configuration. It is concluded that the resulting ANN can successfully stabilize
the nonlinear model of the thermonuclear reactor at nearly ignited conditions for temperature
and density departures significantly far from their nominal operating values. The NN–dynamical
system configuration is shown to be robust with respect to the thermalization time of the alpha
particles for perturbations within the region used to train the NN.

1. Introduction

It is expected that future practical thermonuclear reactors will be of tokamak type operating
under ignited or near-ignited conditions. In the first case, the energy provided by the alpha
particles produced by the D–T fusion will suffice to keep a steady thermonuclear reaction
level for long periods of time, assuming an appropriate refuelling rate is provided. Near-
ignition states on the other hand, require some kind of external heating which must be small
compared to the alpha particle heating in order to be of interest. However, nominal operating
points of most ignited or nearly ignited tokamak reactors will be inherently unstable if they
are designed to operate in the low-temperature region, i.e. any perturbation will drive the
system away from the operating point; this is due to the fact that in this region the energy
produced by fusion dominates over the energy losses when the temperature increases and
vice versa. It is desired to control these thermal instabilities not only to keep the plasma
under appropriate burn conditions for long periods of time in order to effectively burn the
D–T plasma fuel, but also to prevent wall damage in the reactor chamber due to plasma
disruptions.

Several studies have been made in the past in this regard using volume-averaged zero-
dimensional particle and energy balance equations [1–8]. In particular Haneyet al [7],
suggested that ITER (International Thermonuclear Experimental Reactor) should operate
in the low-temperature region and studied the feasibility of the active control of burn
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conditions for a tentative model of ITER by analysing the individual effects of modulated
neutral beam heating, refuelling rate and the controlled injection of high-Z impurities.
More recently Huiet al [8], using the characteristics of the tokamak reactor proposed by
the ITER-CDA (conceptual design activity) group, studied the design and performance of
a refuelling-rate-based robust control for the burn conditions of a fusion reactor using the
H∞ algorithm [9]. The performance of the constant-gain proportional feedback controller
synthesized by these means was evaluated under several model uncertainties such as helium
ash confinement time and controller time delay. The refuelling-rate-based controller proved
to be able to control both density and temperature excursions. However, because of the
constant-gain characteristic, this refuelling rate control law yields extremely large positive
or negative values, except for very small deviations from the nominal operating point.
This may constitute a major drawback in the practical implementation of such a controller
device, since real control actions are always constrained to lie between some maximum and
minimum levels.

In spite of the many advances in nonlinear control techniques, the great diversity of
nonlinear systems has prevented the development of a systematic and generally applicable
theory for nonlinear control design [10, 11]. In the last decade, artificial neural networks
(NN) have received considerable attention by the dynamical systems community for the
identification and control of nonlinear systems due to their ability to approximate arbitrary
nonlinear mappings [12]. Hence, they provide us with the capability of dealing with
nonlinear systems and with the possibility of nonlinear control designs that cannot be
synthesized with traditional control techniques [13].

The purpose of this paper is to demonstrate the capabilities of neural networks, by
means of a multilayer feedforward NN, for the stabilization of a thermonuclear tokamak
reactor operating in the low-temperature region at nearly ignited burn conditions. The
control actions considered here include the simultaneous modulation of the D–T refuelling
rate, the injection of a neutral He-4 beam and an auxiliary heating power, provided for
instance by appropriate radiofrequency electromagnetic waves. All these techniques have
been previously explored by different authors, but to our knowledge, neither the use of
neural networks for this purpose, nor the concurrent action of the three methods with
imposed maximum and minimum limits that any feasible control action is constrained to
take, have been considered.

The volume-averaged zero-dimensional model adopted in this work is similar to that
used by Huiet al [8], in which for completeness purposes, we have also included the
effect of ohmic heating. In this model, ions and electrons are assumed to have Maxwellian
distributions and share the same temperature at all times. The plasma is assumed to be solely
composed of D–T in equal proportions,nDT; fully ionized helium ionsnα, also called helium
ash, and electrons; with the electron density determined by the quasineutrality condition,
ne = nDT + 2nα. No high-Z impurities are considered. The model assumes instantaneous
thermalization of the alpha particles produced by the fusion reactions, a common assumption
made by most authors in previous works but the effect of a finite thermalization time is also
studied. In addition, both energy and particle transport are taken into account through a
scaling law for the energy confinement timeτE, a helium ash confinement timeτα and a D–T
fuel confinement timeτP . Assuming thatnDT is kept constant, Tayloret al [14] showed
that for a D–T plasma no steady state burn conditions can be achieved whenτα > 15τE; and
that the presence of high-Z, impurities lowers this limit. Here we will assumeτα = 7τE and
τP = 3τE [8]. Bremsstrahlung radiation losses are included as an energy loss mechanism,
while synchrotron radiation is neglected since, for a wide range of reactor parameters, it
becomes comparable to the former only above 30 keV [14].
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The rest of the paper is organized as follows: in section 2, the zero-dimensional
dynamical equations are stated, a nominal operating steady state is determined and, a
normalized set of dynamical equations is derived. Section 3 is concerned with the
NN-system configuration and the algorithm used to train the network. Section 4 discusses the
results of the training process and section 5 presents some illustrative simulation results of
the NN–thermonuclear system behaviour for some particular state perturbations, showing the
capabilities of the NN to deal with the nonlinear aspects of the thermonuclear systems. The
effect of the thermalization time of the alpha particles in the stability of the NN–dynamical
system configuration is studied in section 6, where several constant delay times, together
with a density and temperature dependent thermalization time, are considered. Finally,
section 7 contains some conclusions concerning this work and further extensions and
research suggested in this direction.

2. The dynamical system model

As described above, the zero-dimensional model of the ignited tokamak reactor adopted in
this work is similar to the one used by Huiet al [8] with the inclusion of ohmic heating
and the concurrent modulation of the refuelling rate, the neutral He-4 injection, and the
auxiliary heating power as control variables in the dynamical equations. Thus, with these
considerations we have the following coupled set of evolution equations

d
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which corresponds to the balance equations for the densities of D–T, the helium ash and
the thermal energy, respectively. In these equations,Sf represent the refuelling rate,Sα the
neutral He-4 injection rate, andPaux the auxiliary heating power density;j is the average
plasma current density,Qα = 3.5 Mev is the energy carried by the fusion alpha particles,
〈σv〉 is the D–T reactivity [15, 16],Ab is the coefficient associated with the bremsstrahlung
radiation losses [15] andη is the neoclassical parallel resistivity [17]. FinallyτE, τP and
τα represent the energy, the D–T fuel and the helium ash confinement times, respectively.

Using the quasineutrality conditionne = nDT + 2nα, the above set of equations can be
transformed into the equation
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for the electron density, the equation
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for the relative fraction of helium ions defined byfα = nα/ne, and the following equation
for the plasma temperature
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in which the dependence of the neoclassical parallel resistivityη on the particle densities
and temperature is explicitly written [17], and where the following expression for the D–T
reactivity 〈σv〉 is used [16],

〈σv〉 = 10−2 exp

(
a1

T 0.2935
+ a2+ a3T + a4T

2+ a5T
3+ a6T

4

)
m3 s−1 (7)

where the constantsa1, . . . , a6 are given in table 1.

Table 1. Parameters not specified in the text regarding〈σv〉 and the dynamical equations [16].

a1 −21.377 692 keV0.2935

a2 −25.204 054
a3 −7.101 3427× 10−2 keV−1

a4 1.937 5451× 10−4 keV−2

a5 4.924 6592× 10−6 keV−3

a6 −3.983 6572× 10−8 keV−4

Ab 3.325 071× 10−21 keV1/2 m3 s−1

Ah 3.401 153× 1020 keV5/2 m−3 s−1

Ae 3.181 82× 1010 keV0.47 m−1.41 s0.53

Haney et al [7] used the following offset-linear scaling for the L-mode energy
confinement time of ITER

τE(L) = 0.064A0.2
i I 0.8

P R1.6a0.6κ0.5
s ñ0.6

e B0.35
0 /Pnet+ 0.04A0.5

i I 0.5
P R0.3a0.8κ0.6

s (8)

and assumed an H-mode operation by takingτE = H τE(L), whereH is the enhancement
factor. However, here we adopt the same scaling law used by Huiet al [8]

τE = 0.082I 1.02
P R1.6B0.15

0 A0.5
i κ−0.19

x P−0.47
net (9)

wherePnet represents the net plasma heating given byVcore (Paux+ Pα + Poh− Pbr); with
Vcore the volume of the plasma andPaux, Pα, Poh andPbr are the auxiliary, alpha-particle
heating, ohmic heating and the bremsstrahlung energy radiation densities, respectively. The
reactor operating parameters are also assumed to be similar to those used by Huiet al [8]
and a small list of relevant parameters is shown in table 2. For the parameters specified in
this table, the ignited steady-state condition, i.e. wherePaux= 0 andSα = 0, is obtained for
Sf0 = 4.16× 1018 m−3 s−1 whenn0 = 9.8× 1019 m−3, T0 = 8.28 keV andf0 = 0.0624,
values that will be assumed to constitute the desired operating point for the ignited tokamak
reactor of this work.

For reasons that will become clear in the next sections, we define the following state
variables normalized with respect to the ideal ignited operating point

z1 = ne/n0 z2 = fα/f0 and z3 = T/T0. (10)
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Table 2. Some relevant parameters of the ITER-CDA tokamak model used in the numerical
simulations.

Electron density ne = 9.8× 1019 m−3

Alpha-particle fraction fα ≡ nα/ne = 0.0624
Temperature T = 8.28 keV
50:50 D–T refuelling rate S = 4.16× 1018 m−3 s−1

Plasma current I = 21.58 MA
Magnetic field B0 = 4.85 T
Major radius R = 6 m
Minor radius a = 2.15 m
Elongation atx κx = 2.2
Isotopic number Ai = 1.5
Volume of plasma Vcore= 892 m3

Cross sectional area Asec= 23.7 m2

Using these normalized variables the dynamical equations (4)–(6) can now be written as
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where we have assumedτP = 3τE andτα = 7τE. The energy confinement timeτE, is given
explicitly by the following expression
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where the coefficientAe, takes into account all the parameters in equation (9) that do not
depend onPnet. Table 1 contains the numerical values of parameters in the above equations
not specified in the text. In (11)–(13) we have used the following definitions:

Ŝf ≡ Sf/n0 (15)

for the normalized refuelling rate,

Ŝα ≡ Sα/(f0n0) (16)

for the normalized source of neutral helium atoms, and

Ŝaux≡ Paux/(
3
2n0T0) (17)

for the normalized auxiliary heating power density.
In order to evaluate the effect of the different control variables on the temporal behaviour

of the state variables, we take partial derivatives of the right-hand side of (11)–(13) with
respect to the different control variables, (15)–(17). Since both state and control variables
are normalized, these quantities can be used as a measure of the relative importance of the
control variables. Thus, witḣzj ≡ dzj /dt , we have
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∂Ŝaux

= 1

2− f0z2
+ 1

21
z3

(
2− 24

2− f0z2

)
1

τ 2
E

∂τE
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for the relative importance of the normalized auxiliary heating. It is apparent that the
importance of the different control variables is a function of the current state of the
system. Nevertheless, for small perturbations around the nominal operating point, we can
approximate their values by those at the steady state. Thus, in this region: the importance
of the refuelling rate modulation on thez1, z2 andz3 is+1.0,−1.0 and−1.03, respectively;
the importance of the injection rate modulation of neutral helium is approximately,+0.12,
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+0.88, and−0.1, respectively; finally, the importance of the auxiliary power heating on
the corresponding state variables is−0.08,+0.04, and+0.35, respectively. Hence, we can
conclude that around the nominal operating point, the refuelling rate is highly relevant for
all three state variables; while auxiliary power heating modulation and helium injection
are significant almost exclusively for the plasma temperature and the helium fraction,
respectively.

In the next section we describe the feedforward NN proposed to stabilize the
thermonuclear system at a nominal operating point close to the ideal ignited state(n0, f0, T0),
review some of its characteristics and discuss the algorithm implemented to train the neural
network for this purpose.

3. Artificial neural network and the training algorithm

The purpose of the NN is to provide the sequence of control actions that drives the system
from an arbitrarily selected initial statez1 within a given region in phase space, toward
a target statezt, without violating the constraints imposed on the state and/or the control
variables. The type of dynamical systems we are concerned with here are time-discrete
dynamical systems of the formzk+1 = F (zk,uk), wherezk anduk represent the state and
control variables respectively, at time stepk (k = 1, 2, . . .). It is desired to stabilize the
dynamical system, through the use of a feedforward NN to provide a control law of the
form u = u(z), such that any initial perturbation in the state variables is suppressed by
the neural network, returning to a nominal operating point in the vicinity of the target state
specified byzT = (1, 1, 1). The joint NN–dynamical system configuration is illustrated in
figure 1, where the output of the neural network are the normalized control variablesu as
will be explained later in this section.

Figure 1. Artificial neural network–dynamical system configuration used for the feedback
stabilization of the thermonuclear reactor model.

Feedforward neural networks can be considered as nonlinear continuous multivariate
mappings. In general these NNs are composed of nonlinear computational elements or
nodes arranged inL layers withL > 3. (See figure 2.) The output of the network is
obtained by processing the values of a multidimensional input variable from the first layer
or input to theLth layer or output, passing through theL−2 remaining hidden layers. The
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Figure 2. Three layered feedforward artificial neural network.

namehidden is used because such layers do not communicate directly with the external
environment. The nodes in the first and last layers of the network are fixed by the nature
of the problem itself; however the number of hidden layers and the number of nodes in
each of these layers are not knowna priori, and in general are determined after some
trial and error process. The number of nodes in each layer will be denoted here byJ (l)

with l = 1, . . . , L. Each one of theJ (1) nodes in the first layer are mapped through the
identity function, i.e. these nodes receive as input one of theJ (1) components of the input
vector and transmit them unaltered to serve as the input values to the nodes of the second
layer. Communication exists only between neurons in adjacent layers and is implemented
through unidirectional feedforward connections known as weights. The nodes in the hidden
and output layers are constituted of nonlinear functions, mapping a multidimensional input
received from the nodes of the immediately preceding layer into a one-dimensional output.
In this work each element of the input vector corresponds to the normalized values of the
electron density, the relative fraction of helium ash and the plasma temperature at a given
time step. The elements of the output vector on the other hand, are associated with the
normalized D–T refuelling rate, neutral helium injection rate, and auxiliary power heating,
as will be further discussed later on in this section. The activation of thej th node in the
lth layer,O(l)j , is given by

O(l)j = fj (input(l)j ) (27)

where input(l)j , the effective input to nodej , is the weighted sum of the outputsO(l−1)
i of

the immediately preceding layer, i.e.

input(l)j =
J (l−1)∑
i=1

ω
(l)
j i O

(l−1)
i + θ(l)j (28)

whereω(l)j i denotes the weight that connects the output of nodei in layer l − 1 with the

nodej in layer l; θ(l)j andfj correspond to the threshold value and the nonlinear activation
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function of this node, respectively. The most widely used activation function in feedforward
NN is the sigmoid function [18],

f = 1

1+ e−input(l)j
. (29)

Since the weights and thresholds connecting the nodes can take any real value, the output
of this activation function is bounded between 0 and 1. For short, in general, we will refer
as weightsw to both, the parametersω(l)ij and the thresholdsθ(l)j .

In order to stabilize the system around a given state, the neural network must provide
appropriate values for the control variables, according to the current state of the system. In
contrast with the training process of NNs for pattern recognition tasks [18–20], in which a
set of input–output teaching patterns must be provided, the correct control values are not
known during the training process: only the deviations of the state variables of the reactor
with respect to their target values are available. By considering the NN–dynamical system
joint configuration as a single unit, a set of input–output teaching patterns for training can
be generated. The error between the target statezt and the actual final statezpkf reached by
the phase-space trajectory generated by the joint NN–dynamical system configuration for a
given initial conditionp, will be denoted byEp. For a particular set of weights specifying
the neural network, and a subset ofP initial conditions that the system can take, the total
error E is defined then as the sum of these individual errors after the generation of the set
of P trajectories, i.e.

E =
P∑
p=1

Ep = 1

2

P∑
p=1

|zpkf − zt|2. (30)

Thus, given a topology of the feedforward NN a successful training consists of
determining a set of weightsw for which the total errorE defined above, is a global
minimum. For this purpose a formal methodology known as back-propagation through-time
(BPTT) [21, 22] was used to calculate the gradient of the errorE in weight-space,∇E , such
that the errorE can be reduced by updating the weights iteratively using a steepest descent
method, or some other optimization technique. The systematic procedure of reducing the
errorE is known astraining of the neural network, regardless of the mathematical technique
chosen to adjust the weights.

In contrast to other training procedures which make use of a learning parameter and a
momentum term, the code written for this purpose speeds up the training process making
use of the method of conjugate gradients, which is a quadratically convergent gradient
method that locates an unconstrained local minimum of a multivariate function [19, 23, 24].
Apart from round-off errors, this technique finds the minimum of a quadratic function in
a finite number of steps. However, similarly to all gradient-based optimization methods,
for non-quadratic functions this procedure is iterative, and although it is not guaranteed
to find the global minimum, the algorithm will lead to the bottom of whatever valley it
starts in. The conjugate gradient technique has the additional advantage that it avoids
the undesirable phenomenon of premature saturation of the network output units, which
precludes significant improvements in the network weights causing an unnecessary increase
in the number of iterations required to train the network [25].

The following steps summarize the iterative algorithm used to train a feedforward neural
network as a dynamic system controller:
• Step 1. An admissible volume of the phase space (which in our case is a region

around the steady-state ignited conditions) is divided in a numberP of cells.
• Step 2. Randomly select the initial values of the set of weights that specify the NN.
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• Step 3. Generate a set ofP trajectories by randomly selecting an initial state from
each one of the cells in phase space, and then allowing the NN–dynamical system to evolve
in time until a pre-specified maximum number of time steps is reached, the state of the
system has moved out of a certain region, or satisfied some other criteria.
• Step 4. Convergence is achieved when the entire set ofP trajectories satisfies the

convergence criterion|zi − zit | 6 ε, for all i, whereε is a pre-specified error range and the
subindexi corresponds to the components of the state-space vectorz. Otherwise proceed
to the next step.
• Step 5. Using BPTT, calculate the gradient of the error,∇E , produced by all the

different trajectories and update the weights using the method of conjugate gradients.
• Step 6. Repeat steps 3–5 until the training of the NN is successfully completed, i.e.

when the entire set ofP trajectories, each of which starts from a different cell, reaches the
targetzt within the error rangeε.

Basically the above training algorithm involves two phases. In the first phase, the joint
NN–dynamical system configuration evolves in time from an initial statez(1), until a final
statez(N). This final state is compared with its target value, resulting in an error signal
for each of the state variables of the system. In the second phase, the error signals are
propagated recursively backward in time from the final time stepN until the initial time
step 1, and are used to calculate the adjustments needed in the weights composing the NN
using the components of∇E .

A systematic way to obtain the components of∇E makes use of the concept of ordered
partial derivatives, which are derivatives whose constant and varying terms are determined
by means of an ordered set of equations [21, 22]. A set of coupled algebraic equations
determining the values ofn variables, is said to be ordered when the values of variables,
for example{y1, y2, . . . , yn}, are determined by means of a set of recursive equations of the
form

yi = fi(y1, y2, . . . , yi−1) i = 2, . . . , n. (31)

Let us assume we are interested in a quantity which is a function of the above variables,
e.g.F = F(y1, y2, . . . , yn); the ordered partial derivative ofF , denoted by a† superscript
in the partial derivative symbol, with respect to one of these variables is defined as

∂†F
∂yi
=
(
∂F
∂yi

)
y1,...,yi−1

. (32)

The value of this ordered derivative can then be obtained by either one of the following
two chain rule expansions [21, 22],

∂†F
∂yi
= ∂F
∂yi
+

n∑
k=i+1

∂†F
∂yk

∂yk

∂yi
(33)

or

∂†F
∂yi
= ∂F
∂yi
+

n∑
k=i+1

∂F
∂yk

∂†yk

∂yi
. (34)

Thus, given a particular trajectory produced by the joint NN–dynamical system
configuration in figure 1,{z(n), n = 1, . . . , N}, in which the system evolved from the
initial statez(1), at time step 1, untilz(N) at the final time stepN , the error produced by
this particular trajectory will be measured by an expression of the form

E = E [z(N), zT]. (35)
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Identifying the set of equations produced by the time evolution of the NN–discrete dynamical
system, with the set in (31) and using the chain rule in (33), it follows that the components
of the gradient of the error with respect to the weights,∂E/∂ω(l)pq , are obtained from the
expression

∂E
∂ω

(l)
pq

=
N−1∑
n=1

J (L)∑
j=1

∂†E
∂uj (N − n)

∂uj (N − n)
∂ω

(l)
pj

(36)

where the symbol† in the term∂†E/uj (N − n), denotes ordered derivative, as discussed
above. The first factor on the right-hand side of (36) is obtained using the following
recursive set of equations

∂†E
∂uj (N − n) =

J (1)∑
i=1

∂†E
∂zi(N − n+ 1)

∂zi(N − n+ 1)

∂uj (N − n) for n = 1, . . . , N − 1 (37)

where

∂†E
∂zi(N − n+ 1)

=
J (L)∑
j=1

∂†E
∂uj (N − n+ 1)

∂uj (N − n+ 1)

∂zi(N − n+ 1)

+
J (1)∑
k=1

∂†E
∂zk(N − n+ 2)

∂zk(N − n+ 2)

∂zi(N − n+ 1)
for n = 2, 3, . . . , N − 1 (38)

is used with the following initialization

∂†E
∂zi(N)

= ∂E
∂zi(N)

. (39)

In the above equationsuj (N − n), i.e. O(L)j (N − n), thej th output of the NN, is the value
of the j th control variable at time stepN − n; andzi(N − n+ 1) corresponds to the value
of the ith state variable at time stepN − n+ 1. The nameback-propagation through-time
is due to the fact that the recursive set of equations initialize at the last time step and then
proceeds backwards in time until the first time step.

It is necessary to point out that the algorithm described in this section is not strictly
a conjugate gradient method, because at each successive iteration an entire new set of
randomly chosen initial conditions is used to calculate the total errorE and its gradient.
Nevertheless, this technique allows us to sample uniformly the region of interest in the
phase space, avoiding the problem of memorizing or over-fitting, which is common in
pattern recognition tasks using NNs [20]. As with many optimization techniques, global
minimization cannot be guaranteed and often it is necessary to try several NN topologies as
well as a different starting set of weights before the global or a satisfactory local minimum
is found.

Actual control actions are always bounded between a minimum and a maximum level,
and the type of artificial neural network we propose to use incorporates in a natural way
these constraints. The output of the sigmoidal nodes in this network is bounded between
0 and 1 as can be deduced from (29), and in order to take into account this effect into the
dynamics of the system, we use the following transformation equations relating the output
of the NN with the normalized control variables defined in (15)–(17)

Ŝf = S0

n0
k1u1 (40)

Ŝα = k2(2u2− 1)2 (41)
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and

Ŝaux= k3(2u3− 1)2 (42)

whereu1, u2 andu3 are the bounded outputs of the neural network and the parametersk1, k2

andk3 are prespecified positive constants, defining the maximum values that the refuelling
rate, the neutral helium injection and the auxiliary power heating can take, respectively.
Becauseuj ∈ (0, 1) ∀j , the control variables in the dynamical system are constrained to
take values within the following sets, 06 Ŝα < k2, 0< Ŝf < k1S0/n0 and 06 Ŝaux< k3.

The reason for using the particular transformations in (41) and (42) is the following: the
output level of sigmoidal activation functions yields the values 0 and 1 only asymptotically,
when the net input to the unit attains very large absolute values. On the other hand, the
steady state ignited operating point requiresŜα = 0, andŜaux= 0, something that could not
be satisfied by expressions similar to (40), unless the output of the corresponding unit is
saturated to zero. In order to avoid this undesirable situation, the quadratic form(2u− 1)2

is used, where the zeros ofŜaux and Ŝα are achieved when the activation of the output unit
is 0.5; a value that is obtained when the net input to the unit is zero.

Since the purpose of this work is to demonstrate the capabilities of an NN for the
stabilization at nearly ignited conditions in a tokamak reactor, we choose arbitrarily the
following values for the constantski :

k1 = 4.0 k2 = 0.1 s−1 and k3 = 0.1 s−1. (43)

4. Neural network training process

With the algorithm described in the previous section, we trained a NN to suppress density and
temperature excursions in the nonlinear ITER-type thermonuclear reactor model described
in section 2. The continuous time dynamical equations given in (11)–(13) in the form

dz

dt
= g(z,u) (44)

were discretized in the simplest form following the Euler’s method as

zk+1 = zk + g(zk,uk)1t (45)

where1t is a fixed time-step length, andk (k = 1, 2, . . .), denotes the time step number
as discussed in section 3. After some preliminary study we chose to use1t = 0.1 s, in
order to avoid an excessively large number of time steps during the transient simulations
required by the training process. Given an initial perturbation, it is not possible to know
a priori, the number of time steps required by the NN–dynamical system configuration to
return to the operating state; hence, it is not uncommon in these situations, that convergence,
as established in Step No 4 of the training algorithm in section 3, is not satisfied for an
arbitrarily small convergence parameter during the training process when the maximum
number of time steps specified by the algorithm is smaller than the actual number required.
Nevertheless the resulting NN can show a satisfactory behaviour, returning the system not to
the ideal ignited state but to a nearly ignited state, that will constitute the nominal operating
point for our joint NN–dynamical system configuration.

After some trial and error, the multilayer feedforward NN selected was a three layered
network of 3× 16× 3 architecture, i.e. three input nodes, corresponding to the normalized
electron density, the relative helium ash fraction and the plasma temperature; one hidden
layer with sixteen nodes; and three output nodes, whose activation levelsu1, u2 and u3

determine the values of the normalized refuelling rate, He-4 neutral beam injection and
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the auxiliary heating power density by means of equations (40)–(42). The initial values of
the weights composing the network were randomly selected between−0.05 and+0.05. A
cubic region centred at the target statezT = (1, 1, 1) with lateral size 0.20, was constructed
and 27 initial states were chosen randomly at each iteration from within the 27 cubic cells
of equal size in which the above region was divided. Therefore the initial values for any
normalized state variable were restricted to lie between 0.9 and 1.1.

The training process was divided into four stages each consisting of 1150 iterations of
the algorithm discussed in section 3. In the first stage the maximum number of time steps
was set to 300 while in the second stage it was set to 600. The reason for this is that
during the earliest part of the training the weights are far from their optimal values yielding
a bad performance; by restricting the maximum number of time steps to a relatively small
number, computational time is not spent unnecessarily at the beginning of the training, when
the NN is merely learning to control the fluctuations within a reasonable range. During the
transients, in these first two stages of the training, the state variables were restricted to
remain within the interval 1.0± 0.35, stopping the transient if the phase-space trajectory
leaves this region. In the third and fourth stages the maximum number of time steps in a
transient was set to 700 and the state variables restricted to remain in the interval 1.0±0.4,
except when the initial values of the normalized temperature and electron density were both
greater than 1.08, in which case the maximum number of time steps was set to 900 and
the variables in the phase-space trajectory constrained to the interval 1.0± 0.6. During the
first three stages an additional stopping criterion was set: the phase-space trajectory was
stopped whenever the normalized electron density crossed the target value of one. During
the fourth and last stage this criterion was removed and the trajectories were allowed to
expand the entire maximum number of time steps before stopping.

Figure 3. Training error as a function of the iteration number showing a stochastic-like behaviour
as a consequence of the random choice in the initial states of the system at each iteration as
discussed in the text.

In figure 3, the behaviour of the total errorE is shown, (30), as a function of the
number of iterations in the training process. It is observed that the training error does not
monotonically decrease as function of the iteration number of the training process. This is
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expected because at each iteration the initial conditions are randomly chosen as explained
above, hence the weight update that reduces the error at one particular iteration, i.e. for
a given set of initial conditions, does not necessarily reduce the error for a different set
of initial conditions. Nevertheless the total error shows a tendency to be confined within
a region bounded by a minimum and a maximum value that decrease monotonically; the
points lying outside this region are due to those trajectories that leave the constrained phase
space and are then forced to stop, as discussed above. The training process is thus slowly
adjusting the weights so that the error is eventually reduced for a wide set of different
initial conditions. In tables 3 and 4 we show the weight values of the NN resulting from
the training session just described.

Table 3. Weights connecting theith node in the input layer with thej th node in the hidden
layer.

i

j 1 2 3 θ

1 −1.144 10 0.625 92−2.776 08 1.472 44
2 −1.379 67 0.645 95−2.554 00 1.577 85
3 −1.638 10 0.692 57−2.243 72 1.754 29
4 −1.436 91 0.677 95−2.579 38 1.677 74
5 −1.175 95 0.312 33−2.298 03 1.223 85
6 0.244 81 1.915 63−4.442 59 2.236 38
7 −1.066 74 0.876 29−3.122 99 1.686 17
8 −1.506 79 0.433 48−1.745 03 1.351 76
9 −1.512 08 0.629 87−2.163 22 1.485 75

10 −0.988 73 0.818 94−3.104 87 1.632 86
11 −1.434 35 0.582 12−2.423 71 1.618 00
12 −1.216 02 1.061 06−3.185 16 1.798 01
13 −0.438 56 1.366 54−3.561 60 1.905 59
14 −1.441 30 0.564 16−2.281 54 1.513 75
15 −1.000 83 0.946 89−3.278 29 1.787 92
16 −1.039 53 0.860 75−3.157 65 1.712 48

Extensive testing of the NN–dynamical system configuration showed that the resulting
controller is able to return the state of the system to a neighbourhood within a few per
cent of the ideal target operating point, following perturbations in any state variable or
combination of state variables within the training set used, i.e. 1.0± 0.1. Even more, as is
shown in the examples in the next section, the NN is able to generate appropriate control
actions that suppress excursions with initial conditions outside the region used in the training
process, showing the intrinsic generalization capabilities of the feedforward NN. The nearly
ignited nominal operating statez∗ resulting from the above training process isz∗1 = 1.015,
z∗2 = 0.995 andz∗3 = 0.990, which is obtained with an auxiliary heating power density of
∼3% its maximum allowable value.

In the next sections we present three typical cases that demonstrate the capabilities of
the resulting NN, and a robustness study of the resulting NN to the thermalization time of
the alpha particles. In addition to showing the behaviour of the NN–dynamical system for
the different perturbations, we will also show the time behaviour of the energy confinement
time, (14), and the gain factor defined by the ratio between the instantaneous rate of energy
deposited by the alpha particles produced by the D–T fusion and the auxiliary heating power
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Table 4. Weights connecting theith node in the hidden layer with thej th node in the output
layer.

i

j 1 2 3

1 −2.806 69 −1.274 37 −1.515 46
2 −2.705 81 −1.560 53 −1.532 41
3 −2.573 60 −1.911 74 −1.532 30
4 −2.719 36 −1.620 07 −1.590 68
5 −2.381 98 −1.415 99 −1.337 77
6 −4.273 16 0.497 68−2.361 07
7 −3.124 05 −1.119 98 −1.704 14
8 −2.082 81 −1.857 34 −1.353 71
9 −2.408 42 −1.737 87 −1.529 50

10 −3.106 49 −1.059 11 −1.645 65
11 −2.602 35 −1.662 04 −1.527 72
12 −3.209 40 −1.214 80 −1.843 17
13 −3.560 97 −0.443 32 −1.944 76
14 −2.523 62 −1.692 90 −1.431 78
15 −3.263 42 −1.050 17 −1.720 25
16 −3.134 93 −1.098 50 −1.695 74
θ 8.583 33 3.162 70 5.096 59

density, i.e.Pα/(Paux + Pohmic), which is given by

Q = Aαn
2
0z

2
1(1− 2f0z2)

2 exp(a1/T
0.2935

0 z0.2935
3 + a2+ a3T0z3+ · · ·)

Paux+ ηj2
. (46)

This factor is a measure of how close the thermonuclear system is to true ignition conditions.
In a practical thermonuclear system it is expected thatQ > 25, in order to be economically
viable [26]. The gain value associated with the nearly ignited nominal operating point
obtained with the resulting NN–dynamical system configuration here, isQ ≈ 180.

5. Simulation results

In order to illustrate the capabilities of the NN trained according to the algorithm described
earlier, we present in this section three cases. In the first case, the values of the perturbations
in the plasma density, the helium fraction and plasma temperature lie in the border of
the initial states region used for the NN training; this initial state was chosen because
it manifests an interesting characteristic of the resulting NN controller: the control of
temperature fluctuations dominates over the control of the variations in the plasma density;
in addition, according to the simple control importance analysis made at the end of section 2,
the modulation of the refuelling rate is the most influential of the three control techniques
used. As a consequence, an increase in temperature is neutralized by temporally increasing
the refuelling rate andvice versa. The level of difficulty in the control actions is therefore
higher when the values of the density and the temperature of the plasma are both either
smaller or larger than their nominal operating values.

In the other cases the initial values of the perturbations lie outside the range used during
the training session, and are aimed at demonstrating the capability of the resulting NN to
generalize. Thus, in the second case the initial perturbations of the electron density and the
helium ash are smaller than their nominal operating values while the plasma temperature
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is larger; and finally we show a case in which the electron density and the helium ash
fraction have both initial values larger than their nominal operating values but the plasma
temperature is smaller.

As discussed in the last section the simulation results show that the normalized state
variables do not return exactly to the ideal ignited operating pointzT = (1, 1, 1) but to a
slightly different one,z∗ = (1.015, 0.995, 0.990). This later state corresponds to a nearly
ignited steady state associated with a refuelling rate valueS∗0 ∼= 1.015× S0, an auxiliary
heating power densityP ∗0 = 2.85× 10−3× 3

2n0T0 s−1, and a rate of neutral He-4 injection
S∗α0
∼= 0, yielding aQ factor of∼180, with a value of the energy confinement time of 7.27 s.

These values will constitute our nominal operating conditions for the NN–thermonuclear
system configuration.

We shall recall that the output of the NN,u1, u2 andu3, are always bounded between
0 and 1 as discussed in section 3 and it follows from (15)–(17) and (40)–(43), that the
refuelling rateSf , the neutral He-4 injection rateSα, and the auxiliary heating power density
Paux, are constrained to take values within the following control sets:Sf ∈ (0, 4S0),
Sα ∈ [0, 0.1f0n0 s−1), Paux ∈ [0, 0.15n0T0 s−1), where S0 = 4.16 × 1018 m−3 s−1,
n0 = 9.8× 1019 m−3, T0 = 8.28 keV andf0 = 0.0624 as discussed in earlier sections.

Case (a).Here we present the resulting transient behaviour associated with the following
initial conditions: the electron density is 1.1× n0, the relative fraction of helium ions is
0.9× f0, and the plasma temperature is 1.1× T0. In figure 4 the first 100 s of the resulting
time behaviour of the state and control variables are shown. It is observed that initially
there is an excess of plasma density in the system and the simultaneous injection of the
‘cold’ D–T fuel and atomic helium brings down the plasma temperature, at the expense
of temporarily increasing even further the plasma density. After the first 25 s into the
transient helium injection ceases and the behaviour of the helium fraction is a consequence
of the alpha particles produced by the D–T fusion, its large confinement time 7τE and the
electron density. Eventually the entire system relaxes to a state with a D–T refuelling rate
S = 1.015S0, very close to the desired valueS0, and an auxiliary heating power density
of ∼3% its maximum allowable value. We have to point out that although increasing
the electron density reducesτE, while reducing the plasma temperature increases it, the
combination of the two, in this case, increases the energy confinement time as observed in
figure 5 (top). The energy confinement time reaches a maximum and starts to decrease when
the temperature is low enough and the auxiliary heating is turned on again. Afterwards the
energy confinement time remains practically constant around its nominal operating value of
7.27 s. In figure 5 (bottom) we plot the inverse of the gain,Q−1, as a function of time for
the entire transient period, showing the asymptotic approach to the nominal operating value
Q ≈ 180.

Case (b). In this case we choose the following initial conditions of the system in
the normalized phase space: the plasma temperature value is 1.2, the relative fraction of
helium ions is taken again as 0.9 while the electron density is now 0.8, i.e.z1 and z2 are
20% and 10% below their desired target values andz3 is 20% above. Figure 6 shows
the behaviour of the state variables as function of time resulting from the control actions
of the NN for the first hundred seconds. As we can observe, the D–T refuelling rate is
almost saturated to its maximum allowable value during the first seconds into the transient
in order to increase the values of the electron density. This produces a steep decrease in
the relative fraction of helium ions as well as in the plasma temperature. After 10 s the
refuelling rate falls below its nominal operating value, the electron density starts to decrease
and the temperature and the alpha particle fraction increase again. On the other hand the
auxiliary heating power decreases from a moderately high value to zero, increasing again
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Figure 4. Time behaviour of the normalized state and control variables resulting from the
NN–dynamical system configuration in figure 1. The initial values of the electron density,
the alpha particle fraction and the plasma temperature are 1.1, 0.9 and 1.1, respectively.
Top: behaviour of the normalized state variables defined in (10) as a function of time.
Bottom: associated sequence of control actionsu1, (2u2 − 1)2 and (2u3 − 1)2 produced by
normalized state variables; see (40)–(42).

to almost half its initial value at around 15 s and decreases quickly afterwards to its normal
operating value. As observed in this figure the atomic helium injection rate is always
negligible except during the early stage of the transient. In figure 5 the resulting time
behaviours of the energy confinement time and theQ-factor are shown. Initially the energy
confinement time increases because the plasma temperature is diminishing although the
electron density increases. Around 10 s into the transient the electron temperature reaches
a maximum above its normal operating value and starts to decrease; at the same time the
auxiliary heating increases again, and since the gainQ is large, the energy confinement
time is dominated by the fusion heating energy and the net result is that the plasma energy
confinement time decreases asymptotically to its normal operating value.
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Figure 5. Behaviour of the energy confinement time (top) and inverse of the gainQ (bottom)
as a function of time for the cases (a), (b) and (c) discussed in the text.

Case (c). Finally this example shows the first 60 s of a transient for the following
initial conditions: the electron density is 1.15× n0, the relative fraction of helium ions is
now assumed to be 1.1× f0, while the temperature of the plasma is 0.85× T0. Figure 7
shows the time behaviour of the control and the normalized state variables. It is observed
that in this case the refuelling rate is saturated to zero value while the auxiliary heating
power is slightly larger than half its maximum value during the early stages of the transient;
the helium injection rate has a value of around 20% its upper limit within the first 5 s
decreasing quickly to negligible values afterwards and remaining there for the rest of the
transient. The energy confinement time and the behaviour of 1/Q during the transient are
also shown in figure 5, from where it is observed that although initially the temperature is
low, and the density is high, the energy confinement time is dominated by the temperature
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Figure 6. First hundred seconds of the transitory behaviour of the state and control variables
resulting from the NN–dynamical system configuration in figure 1, for initial values of the
electron density, the alpha particle fraction, and the plasma temperature of 0.8, 0.9 and
1.2, respectively. Top: time behaviour of the normalized state variables as defined in (10).
Bottom: associated control actionsu1, (2u2 − 1)2 and(2u3 − 1)2; see (40)–(42).

variations. Thus,τE decreases because the temperature increases. As can be observed in
figure 5 (bottom) the value of the gain during the first 10 s into the transient increases
which means that the energy produced by the fusion reactions becomes larger compared
to the total auxiliary heating power. The auxiliary heating initially is half the maximum
allowable value, helping raise the plasma temperature, increasing the fusion rate and thus
theQ factor, while decreasing the energy confinement time; after 15 s the auxiliary heating
has already decreased to near its nominal operating value.

In the next section we present a numerical study of the effect the thermalization time
of the alpha particles produced by the fusion reactions has on the stability of the joint
NN–dynamical system configuration of figure 1.
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Figure 7. First 60 s of the transient corresponding to the following normalized initial conditions:
the electron density, the alpha particle fraction and the plasma temperature values are 1.15, 1.1
and 0.85, respectively. Top: behaviour of the normalized state variables as defined in (10), as a
function of time. Bottom: time behaviour of the associated control actionsu1, (2u2 − 1)2 and
(2u3 − 1)2 in (40)–(42).

6. Effect of the thermalization time of the alpha particles

In most of the energy range between 3.5 MeV and the plasma nominal temperature of
8.28 keV, the velocity of the alpha particles is greater than the thermal velocity

√
2T/m

of the ions and much smaller than that corresponding to the electrons. In this range,
vth,i � vα � vth,e, the rate of energy loss of the alpha particles is approximately given by
[27–29],

d
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where the first term on the right-hand side is the energy absorbed by the plasma electrons
while the last term is the energy lost to the ions. The alpha particles lose their energy mainly
to the electrons above a certain energy value, that for the nominal operating parameters of
the thermonuclear reactor of this work is 0.374 MeV. Hence, in the thermalization process,
approximately 90% of the energy of the fusion alphas is absorbed by the electrons and only
10% by the ions. Using (47) it is possible to estimate the time required by the alphas to
slow down from 3.5 MeV to 0.374 MeV which turns out to be 0.22 s, taking an additional
0.06 s approximately to completely thermalize to the plasma temperature of 8.28 keV. This
equation can be integrated exactly to obtain a closed expression for the slowing down time
of an alpha particle from 3.5 MeV to the critical energy, after which its energy is mainly
absorbed by the ions, i.e.

τcrit = 3.33× 1017T
3/2

0

n0

(
z

3/2
3

z1

)
ln(0.5+ 340.7T −3/2

0 z
−3/2
3 ). (48)

On the other hand, the energy absorbed by the electrons is eventually shared with the
plasma ions through an energy equipartition process, obeying the following law [29, 30]

dTe

dt
= Ti − Te

τeq
(49)

whereTe andTi are the electron and ion kinetic temperatures, respectively, andτeq is the
equilibration time given by

τeq= 3

8
√
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e ln3e
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3/2

e∑
ionsni/mi

(50)

for the plasma parameters considered in this work,

τeq= 1.2× 1018T
3/2

0

n0

(
z

3/2
3

z1

)
. (51)

Because it is the ion kinetic temperature which directly affects the fusion rate, and
because the model described in the introductory section assumes that all the components
of the plasma share the same temperature at all times, it is reasonable to consider the
equilibration time as a contributing factor to the effective thermalization time. Thus, we
will assume here that the effective thermalization time is given by the sum of equations (48)
and (51), i.e.

τth = 2.1× 1018T
3/2

0

n0

(
z

3/2
3

z1

)
s (52)

where [T0] = keV and [n0] = m−3. As a simplification, in this expression we have
assumed that the argument of the logarithm in (48) is constant and equal to its value at the
nominal operating point. At the nominal operating parameters of this work, the effective
thermalization time turns out to be approximately 0.51 s.

A set of simulations was performed to test the NN–dynamical system stability with
respect to finite thermalization times, assuming both constant time delays in the energy
deposited by the alpha particles, as well as a state dependent effective thermalization time
as given in (52). To illustrate the results of these simulations we calculate the time behaviour
of the total errorE , as given in (30), for a set of 64 trajectories whose initial states lie inside
the region used to train the NN, as described in section 4. Each of these trajectories was
generated by assigning to the different state variables one of the following four initial
values: 0.9, 0.9666, 1.0333 and 1.1. Figure 8 shows the time behaviour of the errorE
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Figure 8. Time behaviour of the total errorE corresponding to the 64 trajectories discussed in
the text, for different constant thermalization time delays and for the effective thermalization
time given in (52).

for three different constant thermalization time delays: 0.5 s, 1.0 s and 1.5 s; for the
thermalization time in (52) and also include the case where the time delay is null for
comparison purposes. It is observed that all of the 64 trajectories return to the nominal
operating point for constant time delays of 0.5 s and 1.0 s, (comprising the thermalization
time estimated at the nominal operating point) but when the time delay was set to 1.5 s the
total error diverges in time as shown in the figure. However, the culprit of this divergent
behaviour is only one single trajectory: the one originating from the initial statez1 = 1.1,
z2 = 0.9 andz3 = 1.1. Similarly, the total error diverges when the thermalization time
is estimated from (52) for exactly the same reason. In figure 8 we show the total error
produced, in this later case, by these 64 trajectories when this initial state was substituted
by z1 = 1.097, z2 = 0.903 andz3 = 1.097. In fact, when the thermalization time is
calculated from (52), the entire cubic region of size 0.2 centred in the ideal operating point
(1, 1, 1) is stable except for a small region surrounding the corner point(1.1, 0.9, 1.1) in the
normalized phase space; this is indeed a small region, since for instance, the surrounding
points (1.1, 0.9, 1.097), (1.097, 0.9, 1.1) and (1.1, 0.903, 1.1) are all stable. Other values
for the constant thermalization time were also used in the simulations, showing that this
unstable region grows larger for larger thermalization times; damped oscillatory behaviour
in the state variables appear when the constant thermalization time is taken to be∼3.0 s; and
undamped, stationary non-divergent oscillations with a period of 60 s, are found throughout
the training region in phase space forτth = 3.5 s. The nominal operating point of the system
becomes unstable afterwards.

7. Conclusions

In this work we have shown how a feedforward multilayer NN with sigmoidal activation
functions can be trained for the stabilization of a thermonuclear reactor at nearly ignited burn
conditions. A volume-averaged zero-dimensional nonlinear model was used to represent the
evolution of the electron density, the helium ash fraction and the plasma temperature. The
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stabilization is obtained by means of the concurrent modulation of the D–T refuelling rate,
neutral He-4 injection and an auxiliary heating. The stabilization task is made difficult due
to the presence of constraints in the maximum and minimum levels that the control actions
can take. The NN was trained using a back-propagation through-time technique in which a
conjugate gradients algorithm was used to accelerate learning. Although, the resulting NN
is guaranteed to stabilize the system only for initial states within the training region of the
neural network, it was shown to be able to stabilize the nonlinear thermonuclear system for
temperature and density departures significatively far from their nominal operating values so
that the strong nonlinear behaviour of the system is manifested. From a simple sensitivity
analysis, it was found that out of the three control parameters considered in this work, the
D–T refuelling rate and the auxiliary heating, play a more significant role on the stabilization
of the system; although, the auxiliary heating and the neutral He injection are needed mainly
in the early phases of the transient. Using an approximate expression for the thermalization
time, the resulting NN proved to be robust regarding delay times in the energy deposited to
the plasma by the alpha particles produced by the D–T fusion, for perturbations within the
training region of the phase space.

A study concerning the robustness of the NN under uncertainties in diverse parameters
of the system such as energy confinement time, and the behaviour when random noise is
present in the measured values of the state variables, is underway and will be reported
later. Further extensions of this work improving the model by using a more recent design
from the engineering design activity (EDA) for ITER, allowing different electron and ion
temperatures, as well as a more general treatment of the energy confinement times will be
considered in future work. In addition, load following capabilities of the NN controller, as
well as optimal or near-optimal strategies, minimizing for example the transient time, the
total auxiliary heating energy provided to control the transient, or the total energy generated
by power overshoots also needs to be addressed.
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