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The derivation of equations for fluctuations and transport
in flux-tube geometries

J. J. Martinell,a) P. N. Guzdar, and A. B. Hassam
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A self-consistent set of equations for the fast space–time evolution of fluctuations and the slow
space–time evolution of density and flows in a toroidal plasma, relevant for simulations using
field-aligned coordinates in thin flux tubes, has been derived. The methodology for the derivation of
these equations is outlined for a model set of equations for the plasma edge, specific to resistive
ballooning modes but readily adaptable to other instabilities. The derivation proceeds by first
writing the axisymmetric and fluctuating equations in the usual toroidal coordinate system. These
are then transformed to the twisted coordinate flux-tube system. Most simulations which use twisted
flux-tube computational grids transform to the field-aligned coordinate system first and then take
averages to obtain the slow evolution. They however miss some terms since the two operations,
namely, multiscale separation and coordinate transformation, do not necessarily commute, because
of subsidiary assumptions on the box size. In the present formulation, all the relevant neoclassical
effects such as the Pfirsch–Schlu¨ter current and the Stringer spin-up as well as the toroidal Reynolds
stress are properly included. This set of multiscale equations is appropriate for the study of the
formation and evolution of transport barriers. ©1998 American Institute of Physics.
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I. INTRODUCTION

The modes that are believed to be responsible
anomalous transport in tokamak plasmas have radial and
loidal correlation lengths a few orders of magnitude sma
than the minor radius. This makes numerical simulatio
with resolution of all scale-lengths, from these short sca
lengths to the scale-length of the minor radius, impossible
perform with present day computational resources. For
reason, many of the simulations of turbulence are done
smaller computational volume~narrow flux tubes! con-
structed around field-aligned coordinates instead of the
torus.1–6 These numerical grids provide an efficient prescr
tion for addressing the issue of small-scale generated tu
lence and transport. However, stemming from this sm
scale turbulence is the generation of large-scale flows
modification of the equilibrium parameters. If one attribut
the variety of enhanced confined modes observed on t
maks, like the High~H!7 mode and the enhanced revers
shear~ERS!8 modes, to be a result of suppression of fluctu
tions by self-generated shear flow or steepening of den
gradients, a proper system of equations for the fast mode
well as the large-scale flows, valid for the smaller volum
field-aligned geometry have to be used.

The main purpose of this work is to call attention to t
incomplete nature of standard simulations, regarding tra
port. We believe that most simulations~including our own!,
which resort to the use of the smaller volume field-align
geometry, do not incorporate all the important terms in

a!Permanent address: Institute for Nuclear Sciences, National Autonom
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‘‘slow’’ evolution equations, because of an intrinsic flaw
their derivation and the assumptions peculiar to the meth
The standard method that is used is to transform a gi
system of equations to the field-aligned geometry. T
‘‘slow’’ evolution of the flow and equilibrium quantities are
believed to be contained in the transformed system of eq
tions. The ‘‘slow’’ equations can be obtained by an app
priate averaging of these transformed equations. We
show that this sequence of operations, namely, transform
to the twisted coordinate system and averaging, does
yield correct equations. A more natural approach that avo
the above pitfalls is to first derive separate sets of equat
for the fast and slow~or axisymmetric part! of the various
quantities and then do the transformation to the twisted s
tem. We find that these two operations do not necessa
commute, under the approximations involved. The corre
ness of our present prescription is evidenced by the fact
our slow equations yield all the relevant neoclassical effe
such as the Pfirsch–Schlu¨ter current and the Stringe
spin-up,9 as well as the toroidal Reynolds stress. Our rec
study of a quasi three-dimensional model for Low–Hi
~LH! transitions in tokamaks helped us identify th
problem.10 This allowed us to formulate more carefully th
general problem in the twisted coordinate system in fl
tubes.

The procedure for obtaining the combination of fast a
slow equations in toroidal coordinates is similar to that us
in Ref. 11, but here the averaging is taken over the toro
coordinate, i.e., the averaged quantities are axisymme
The technique is applied to the problem of resistive ballo
ing modes in a flux tube with field-aligned geometry. T
fast equations agree with those used in previous simulat

us
3 © 1998 American Institute of Physics
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of edge turbulence.2,6 But the important result is that th
slow equations contain information that is not present in
equations used previously in numerical simulations; in p
ticular, the anomalous Stringer spin-up mechanism.9,10,12

The methodology we are going to describe could be u
on any set of equations that describe a specific model, c
sisting of transport and turbulence. In our particular case,
apply it to the set of equations that describe a low be
collisional plasma, obtained from the two-fluid Braginsk
equations,13 which for electrostatic modes consist of the co
tinuity, parallel flow and vorticity equations,

dn

dt
22nk•v'2“•S nc

V iB

d

dt
“'f D1“ i~nv i!50, ~1!

nS ]

]t
1v'•“ D v i1nv i“ iv i1cs

2
“ in50 ~2!

“•S nc

V iB

d

dt
“'f D1

B

e
“ iS“ if

Bh i
2

Te“ in

neBh i
D

2
2c

eB
b3k•“p50, ~3!

wherev'5(c/B)b3“f, and k5b•“b. For the magnetic
field we use the representationB5(f̂1Qû)B0 /R0(1
1e cosu). This is our basic set of equations which conta
all the fundamental physics required in our model. The
fects of viscosity and temperature variations would mod
the results in a quantitative way but do not introduce n
effects.

II. METHODOLOGY AND COORDINATES

Since we are interested in turbulence and transport
tokamak, we assume that all macroscopic quantities~i.e.,
non-fluctuating! are axisymmetric. Thus, all dependent va
ables (n,v i ,f) are separated into an axisymmetric~macro-
scopic! component, plus a fluctuating piece related to
micro-instabilities:

j~x,y,z!5 j̄ ~x,y!1 j̃ ~x,y,z!, ~4!

where we usex5r 2a, y5au, andz5Rw. As a first step,
the equations are averaged over the coordinatez to obtain
their axisymmetric part (j̄ ), and these are then subtract
from the original equations to get the fluctuating, no
axisymmetric components (j̃ ). The axisymmetric equation
evolve on a slow time scale, while their fluctuating count
parts are fast evolving.

Once we have the separate sets of equations, thes
then transformed to a field-aligned, twisted coordinate s
tem. Notice that in all previous formulations the coordina
transformation is made before any separation in time/sp
scales is made, so whatever is lost in the approximati
made with the transformation applies to fast and slow qu
tities equally. With this new prescription the transformati
and the approximations may affect differently the two sca
In the transformed frame, one coordinate is always alig
with the sheared magnetic field, so its direction depends ox
as well asy andz. The transformation is
Downloaded 17 Nov 2000  to 132.248.29.65.  Redistribution subject to
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x85x, y85y2
e

q~x!
z, z85z1

e

q~x!
y. ~5!

In these coordinates,

“ i5]/]z8,

]

]x
5

]

]x8
1

ŝz8

Rq

]

]y8
, ~6!

with the magnetic shearŝ5a d ln q/dx.
In the equations for the axisymmetric quantities, sin

]/]z50, all y8 variations can be mapped toz8 variations by

]

]y8
5

q

e

]

]z8
, ~7!

and so they are considered to be only functions ofx8 andz8.
This also implies that the averages overz can be transformed
to averages overy8, interpreted appropriately.

In order to keep just the physically relevant effects a
avoid dealing with complicated equations, we use the sm
parametere5a/R, and assume that the scale lengths
ordered as

Ln /a!1, L0 /Ln!1, ~8!

whereLn is the scale length of slow quantities in the rad
direction (Ln

21;] ln j̄/]x), a21;] ln j̄/]y, and L0 repre-
sents the correlation length of fluctuations (L0

21

;] ln j̃ /]x). This is applicable to edge plasmas, as previo
simulations have shown.2,6

III. EQUATIONS

We now apply the method just described to the set
equations~1!–~3!. The dependent variables aren, v i, andf.
When the equations are averaged over the coordinatez and
only the significant terms ine are kept, the resulting set o
equations is the following:

]n̄

]t
1

c

B
S ]f̄

]x

]n̄

]y
2

]f̄

]y

]n̄

]x
D 2

2cn̄

BR
sin u

]H̄

]x
1

e

q

]nv i

]y

1
e2

q2eh i

]2H̄

]y2 1
c

B K ]f̃

]x

] ñ

]y
2

]f̃

]y

] ñ

]x L
z

50, ~9!

] v̄ i

]t
1

c

B
S ]f̄

]x

] v̄ i

]y
2

]f̄

]y

] v̄ i

]x
D 1

e

q

]

]y

v̄ i
2

2
1cs

2 e

qn̄

]n̄

]y
50,

~10!

]v̄

]t
1

c

B
S ]f̄

]x

]v̄

]y
2

]f̄

]y

]v̄

]x
D 1

2V iT

eRn̄
sin u

]n̄

]x

1
e2V iB

cq2n̄eh i

]2f̄

]y2 1
c

B K ]f̃

]x

]ṽ

]y
2

]f̃

]y

]ṽ

]x L
z

50, ~11!

whereH[f2an with a5T/n̄e held constant~for Te'T!,
the ‘‘vorticity,’’

v[“'
2 f5

]2f

]x2 1
]2f

]y2 , ~12!
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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and

^j&z5
1

2pR E
0

2pR

jdz

is thez average. Here, the parallel velocity fluctuations ha
been neglected, since the resistive ballooning mode
supersonic.2 Notice that these equations are axisymme
and hence, two-dimensional. Subtracting these from
original equations, the evolution of the fluctuating quantit
is obtained. The fast equations are fully three-dimensio
since no symmetry is assumed. Without the parallel fl
variations (ṽ i'0), only two equations are needed, name

] ñ

]t
1

c

B H S ]f̄

]x

] ñ

]y
2

]f̃

]y

]n̄

]x
D 1F ]f̃

]x

] ñ

]y
2

]f̃

]y

] ñ

]x
G

z
J

2
2c

BR
S sin u

]H̃

]x
1~cosu2e!

]H̃

]y
D

1
1

eh i
S e2

q2

]2H̃

]y2 1
]2H̃

]z2 D 50, ~13!

]ṽ

]t
1

c

B H S ]f̄

]x

]ṽ

]y
2

]f̃

]y

]v̄

]x
D 1F ]f̃

]x

]ṽ

]y
2

]f̃

]y

]ṽ

]x
G

z
J

2
2V iT

neR
S sin u

] ñ

]x
1~cosu2e!

] ñ

]y
D

1
V iB

n̄ech i

S e2

q2

]2H̃

]y2 1
]2H̃

]z2 D 50, ~14!

where we used the simplifying notation@ j̃ z̃ #z[ j̃ z̃

2^ j̃ z̃ &z .
At this point, the transformation to the field-aligned c

ordinate system given in Eq.~5! is applied. For the axisym
metric quantities,y8 variations are linked toz8 variations,
but the latter is the relevant one. When one considers a
main along a magnetic flux tube, as is done in numer
simulations, the longitudinal variations~along z8! are weak
compared to those transverse to the tube (y8). Due to this
and the fact that turbulence has the same statistical prope
all along thez direction, toroidal averages are equivalent
averages overy8, defined as

^j&y85
1

Ly
E

0

Ly
jdy8. ~15!

Here, Ly is the transverse width of the flux tube which
larger than the correlation lengthL0 . The poloidal coordi-
nate transforms tou5y8/a1z8/Rq. Furthermore because o
the choice of the flux tube boxLy!a, the y8/a term is
neglected in comparison toz8/Rq;0(1). This assumption is
well justified for the small-scale fluctuations but not for t
axisymmetric ‘‘slow’’ variables. Thus, it is for this reaso
that separation of the ‘‘fast’’ fluctuating and ‘‘slow’’ averag
variables be made prior to the transformation to the twis
coordinate system.
Downloaded 17 Nov 2000  to 132.248.29.65.  Redistribution subject to
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We can now write the equations for the five quantitiesn,

v i , f, ñ , and f̃, where the overbar is dropped from th
averaged variables,

]n

]t
1

cq

Be S ]f

]x8

]n

]z8
2

]f

]z8

]n

]x8D2
2nc

BR
sinS z8

qRD ]H

]x8
1

]nv i

]z8

1
1

eh i

]2H

]z82 1
c

B K ]f̃

]x8

] ñ

]y8
2

]f̃

]y8

] ñ

]x8
L

y8

50, ~16!

]v i

]t
1

cq

Be S ]f

]x8

]v i

]z8
2

]f

]z8

]v i

]x8D1
]

]z8

v i
2

2
1

cs
2

n

]n

]z8
50, ~17!

]v

]t
1

cq

Be S ]f

]x8

]v

]z8
2

]f

]z8

]v

]x8D1
2V iT

enR
sinS z8

qRD ]n

]x8

1
V iB

cneh i

]2H

]z82 1
c

B K ]f̃

]x8

]ṽ

]y8
2

]f̃

]y8

]ṽ

]x8
L

y8

50, ~18!

] ñ

]t
1

c

B H S ]f

]x8

] ñ

]y8
2

]f̃

]y8

]n

]x8
D 1F ]f̃

]x8

] ñ

]y8
2

]f̃

]y8

] ñ

]x8
G

y8
J

2
2cn

BR
C~H̃ !1

1

eh i

]2H̃

]z82 50, ~19!

]ṽ

]t
1

c

B H S ]f

]x8

]ṽ

]y8
2

]f̃

]y8

]v

]x8
D 1F ]f̃

]x8

]ṽ

]y8

2
]f̃

]y8

]ṽ

]x8
G

y8
J 2

2V iT

neR
C~ ñ !1

V iB

nech i

]2H̃

]z82 50, ~20!

where the vorticities are now given by

v5
]2f

]x82 , ~21!

ṽ5S ]f̃

]x8
1

ŝz8

Rq

]f̃

]y8
D 2

1
]2f̃

]y82 . ~22!

Notice that the presence of shear is reflected only here an
the curvature operator defined by,

C~ ñ !5S sinS z8

qRD ] ñ

]x8
1FcosS z8

qRD2e

1
ŝz8

qR
sinS z8

qRD G ] ñ

]y8
D . ~23!

The evolution of the slow quantities is independent of t
magnetic shear.

The coupling of fast and slow equations given in th
way describes clearly the influence one type of quantities
on the other. The turbulence gives rise to transport~through
the terms^...&y8!, and the modification of the macroscop
profiles due to transport affects the level of turbulence. O
viously, the slow and fast equations evolve on two differe
time-scales and the averages of the fast fluctuations that e
the slow equations are slowly varying. On the other hand
effect of the slow transport on the fast fluctuations is throu
the long time modification of equilibrium parameters such
the radial density profile and the generation of sheared e
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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tric fields. The slow equations~16!–~18! contain all the ex-
pected transport properties, including neoclassical and tu
lent transport as discussed in the next section.

IV. PLASMA SPIN-UP

We will show here that our multiscale equations are
pable of describing two important properties of toroidal pla
mas: Pfirsch–Schlu¨ter ~PS! transport and Stringer spin-up9

The latter is not present in the equations used for numer
simulations of turbulence, as will become apparent bel
The Pfirsch–Schlu¨ter return current may be obtained fro
Eq. ~18! in steady state without the fluctuations contributio
thus balancing the last two terms, corresponding to the
vature and parallel current. Two integrations give the
potential~neglecting diamagnetic contributions!,

f05
2c

B
h iTRq2 sinS z8

RqD dn

dx8
. ~24!

Of course, when this is substituted in the third term of E
~16!, the well-known Pfirsch–Schlu¨ter diffusion results.

We now derive the anomalous Stringer spin-up. To ke
the discussion simple we will do this in the subsonic lim
i.e., we will assume that]/]t!cs /qR for the averaged quan
tities. We will also ignore the diamagnetic terms. We expa
f5f01f1 . Thus, from Eq.~18!, to lowest order this term
would give ]2f0 /]z8250, or f05f0(x8). The next order
contribution given by the other terms can be obtained
integrating the equation overz8, assuming periodicity in
z8,15 thereby annihilating the large term. In doing so, t
convective terms cancel since they involvez8 derivatives of
f0 and the result is

]v0

]t
1

2Bcs
2

cnR R sinS z8

qRD ]n

]x8

dz8

2pqR
50, ~25!

where for the moment we have ignored the Reynold’s str
term. To determinen we now consider Eq.~17!. To lowest
order the dominant term is the pressure-gradient term,
thereforecs

2]n0 /]z850, implying n05n0(x8). In Eq. ~25!
we need thez8-dependent component ofn as function off0 ,
so that the integral does not vanish. This is obtained from
~17! to next order and Eq.~16! in the lowest order. Taking
the average overz8 of Eq. ~16! we can express the tim
derivative ofn0 in terms of thez8-average of the fluctuation
term. Thus, using the notation introduced after Eq.~14!, we
obtain,

2
2c

BR
sinS z8

qRD ]f0

]x8
1

]v i

]z8
1

c

Bn0
F K ]f̃

]x8

] ñ

]y8

2
]f̃

]y8

] ñ

]x8
L

y8
G

z8

50, ~26!

]v i

]t
1

cq

Be

]f0

]x8

]v i

]z8
1

cs
2

n0

]n1

]z8
50. ~27!

Integrating Eq.~26! to obtainv i , substituting it in Eq.~27!
and integrating, one can findn1(x8,z8). This is in turn sub-
stituted in Eq.~25!, which gives a single equation for th
Downloaded 17 Nov 2000  to 132.248.29.65.  Redistribution subject to
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vorticity. It is actually more convenient to integrate Eq.~25!
over x8 to have an equation fordf0 /dx8, which is propor-
tional to the zeroth-orderE3B-drift. We get

~112q2!
]

]t S df0

dx8 D5S df0

dx8 D 2cq

an0B R cosS z8

qRD
3K ]f̃

]y8

] ñ

]x8
2

]f̃

]x8

] ñ

]y8
L

y8

dz8

2p
,

~28!

where a term associated with the time derivative of
turbulent transport has been omitted, assuming it to be sm
Note that we recover the PS enhancement in the fa
2q2. It is seen that the asymmetry in the fluctuatio
driven radial transport may produce a spin-up instabi
@(]/]t)(]f0 /]x8).0#, provided the turbulent flowG, de-
fined through

1

x8

]

]x8
x8G52

c

B K ]f̃

]y8

] ñ

]x8
2

]f̃

]x8

] ñ

]y8
L

y8

, ~29!

is peaked at the outboard side of the torus.14

When all the fluctuation terms in Eqs.~16! and ~17! are
kept, Eq.~28! takes the form

~112q2!
]

]t

df0

dx8

52
c

B R dz8

2pqR E dx8K ]f̃

]x8

]ṽ

]y8
2

]f̃

]y8

]ṽ

]x8
L

y8

2
1

R R dz8

p
cosS z8

qRD K ]f̃

]x8

] ṽ i

]y8
2

]f̃

]y8

] ṽ i

]x8
L

y8

1
df0

dx8

2c

anBR E cosS z8

qRD
3K ]f̃

]y8

] ñ

]x8
2

]f̃

]x8

] ñ

]y8
L

y8

dz8

2pqR
. ~30!

The first two terms are the Reynolds stresses, which can
make the plasma rotate.

Now, we can apply the same analysis to the set of eq
tions that are used in the numerical simulations of turb
lence, to show that the spin-up is not obtained, and there
they do not provide an adequate description of the transp
We start from the equations in twisted coordinates for re
tive ballooning modes of Refs. 2, 6. These are thr
dimensional equations unlike the two-dimensional sl
equations used above. The system of equations is more
ficult to reduce due to the two scales involved. The m
difference from our equations for the slow component is t
the convective terms involve derivatives with respect to
transverse, short-scale coordinatey8 instead of the field-
alignedz8, and since there is no distinction between fluctu
tions and averaged quantities, they contain the fluctuat
induced transport as well as large-scale convection. If
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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simulations were done in the full torus, there would be
problem. This is because for the full torus case, no spec
ordering would be imposed on the quantities involved, a
for the axisymmetric perturbations, Eq.~7! would be valid.
However in the flux tube geometry, the box size iny8 is
limited to sizes much smaller than than the minor radius
that contributions of the axisymmetric perturbations to
E3B convection term are not included, as discussed in m
detail below. To demonstrate the consequences of these
proximations, once again we can write each of the den
and the potential as consisting of an average piece an
fluctuating piece denoted with a tilde (˜ ). The average in the
twisted coordinate system is an average with respect toy8 as
defined by Eq. ~15!. This implies that ^f&y8
5^f&y8(x8,z8). Then, we may take they8-average of the
equations to obtain their evolution in the transport sca
which reduces the analysis to two dimensions, as before

We can start again by integrating the vorticity equati
over a cycle inz8 to eliminate the parallel current term. W
can also integrate it inx8 to have an equation for theE3B
drift instead of the vorticity@herev is defined by Eq.~22!#.
The resulting dimensionless equation for the average in
malized variables is

R S ]

]t

]^f&y8
]x8

1E dx8^$f,v%&y81sin z8^n&y8D dz8

2p
50,

~31!

where we introduced the Poisson bracket,

$A,C%5
]A

]x8

]B

]y8
2

]A

]y8

]B

]x8
. ~32!

Next, within the subsonic regime (g5cst0 /qR.1), the
parallel flow equation to lowest order yieldŝn0&y8
5^n0&y8(x8). The next order equation for̂v i&y8 gives the
z8-dependent densitŷn1&y8(x8,z8) that is needed in Eq
~31!. This is taken in combination with the continuity equ
tion for the average part to lowest order. As before, the ti
derivative of the density is eliminated by taking th
z8-average. Thus we get the following normalized equatio
analogous to Eqs.~26!–~27! ~neglecting the diamagneti
term!:

^$@f̃#z8 , ñ0%&y82dFsin z8
]^f&y8

]x8 G
z8

1g
]^v i&y8

]z8
50,

~33!

]^v i&y8
]t

1^$f̃, ṽ i%&y81g
]^n1&y8

]z8
50, ~34!

whered52Ln /R. The first thing that we notice is that Eq
~26! and ~33! are basically the same. The fundamental d
ference is between Eqs.~27! and~34!. In Eq. ~34! if we were
to assume that the fluctuating parallel flow is negligible,
we have done earlier, then they8 average of the Poisso
bracket term vanishes. However Eq.~27! has the extra term
~the second term on the left hand side! which is the essentia
one for driving the Stringer flow. This drive term come
from the E3B convection term in the parallel momentu
equation @vE•“v i5(]f0 /]x8)(]v i /]z8) in Eq. ~27!#. It
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arises from the axisymmetricm51 component~proportional
to sinu! of the parallel flow interacting with an axisymmetr
m50 component of the electrostatic potential, leading
vE0 . In the standard flux-tube approach, the assumption
k'[]/]y8@ki[]/]z8 throws away thisE3B convection
term for all axisymmetric modes. However, the assumpt
k'@ki is not quite valid for the axisymmetricm51 compo-
nent, which hask';1/a andki;1/qR.

An equation for^f&y8 can be derived as before, from
Eqs. ~31!, ~33!, ~34!, for the case considered here whenṽ i

50, obtaining

]

]t R dz8

2p
~114q2 sin2 z8!

]^f&y8
]x8

52 R dz8

2p

cosz8

g2 K ]

]t H E @f̃#z8dz,n0J L
y8

2 R dz8

2p E dx8^$f,v%&y8 . ~35!

As one can readily see, there are no terms on the right h
side proportional to the averaged drift veloci
(d^f&y8 /dx8), that could give a spin-up. All terms involv
the fluctuating component off. The second term is the usua
Reynolds stress which can drive rotation. On the left ha
side, we can assumêf&y8 to be independent ofz8, since it
is a slowly varying quantity, recovering the PS enhancem
factor. As it turns out, all possible contributions from th
slowly varying quantities have been filtered by the order
assumed in the flux-tube geometry. Therefore, the anoma
Stringer spin-up mechanism cannot be obtained, although
neoclassical PS contribution 2q2 does appear properly.

V. DISCUSSION AND CONCLUSIONS

We have shown that the slow equations include
Stringer spin-up which, in addition to the Reynolds stre
that is also included, can give rise to sheared radial elec
fields, which are associated with the observed poloidal ro
tion in tokamaks during H mode operation. The fast eq
tions describe the evolution of the resistive ballooni
modes, including the modifications introduced by the tra
port to the axisymmetric quantities. As such, the mode
self-consistent. Therefore, the effect of fluctuation quench
due to a sheared radial electric field is present. We have
in the continuity equation the relatively small contributio
from the polarization drift, which is responsible for the de
sity contribution in the functionH, and the resistive term
Although these are formally small and might be dropped,
include them in order to be able to compare our equati
with those used in the previous numerical studies
turbulence.2,6 We have already shown that the latter equ
tions do not yield the Stringer spin-up, but here we ma
more explicit the difference between the two sets of eq
tions. Qualitatively, the reason the spin-up is not presen
that the flux tube approach is restricted to scales of the o
of the tube width and cannot account for scale-lengths ty
cal of the axisymmetric quantities, of the order of the min
radius. When the usual procedure of averaging is applie
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.
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the full equations to get the transport, some kind of filteri
takes place. This can be easily seen by directly averaging
flux-tube equations used in the simulations to obtain sepa
equations for the averaged parts and the fluctuations, a
did here. As we already mentioned, the average in twis
geometry has to be made over they8 coordinate which is the
fast varying one, and we write,

f~x8,y8,z8!5^f&y8~x8,z8!1f̃~x8,y8,z8!, ~36!

and the same forn and v i . This is used in the normalize
equations of Refs. 2, 6, and we take the average overy8 to
obtain the slow component, and subtract it from the origi
equation to get the fast equation. For the normalized vor
ity, for instance, the following pair of equations resul
when periodic boundary conditions iny8 are assumed:

]^v&y8

]t
1sinS z8

qR
D ]^n&y8

]x8
1

]2^H&y8

]z82 1K ]f̃

]x8

]ṽ

]y8

2
]f̃

]y8

]ṽ

]x8
L

y8

50, ~37!

]ṽ

]t
1

]^f&y8

]x8

]ṽ

]y8
2

]f̃

]y8

]^v&y8

]x8
1F ]f̃

]x8

]ṽ

]y8

2
]f̃

]y8

]ṽ

]x8
G

y8

2C~ ñ !1
]2H̃

]z8250. ~38!

The first thing to notice is that Eq.~37! does not have the
convective term that appears in Eq.~18!. On the other hand
Eq. ~38! for the fluctuations does agree with Eq.~20! for
periodic boundaries. It is then clear that then50 component
is the one that is not accounted for properly in the flux-tu
equations, when slow and fast contributions are not con
ered separately. The missing terms in the slow equations
those responsible for the convection along the field lines~in-
volving ]/]z8!, and without them it is not possible to hav
the Stringer spin-up, which is due to the field-aligned retu
flows.9,12

It is noteworthy that the structure of the equations~16!–
~20! is the same as the one used in Ref. 10, where only
unstable mode was retained. The main difference from
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single-mode analysis is that now there are averages of
fluctuations over the transversal coordinate. This anal
validates the results found in Ref. 10 for the L–H transitio
since they are now based on a more complete model.

The more general case of variable temperature and
cosity has been worked out and includes the important ef
of magnetic pumping, which opposes the spin up. We do
present this work here to make the presentation as clea
possible. The extra terms just produce lower growth ra
and rotation speeds, but the structure of the equation
equivalent.

ACKNOWLEDGMENTS

One of us~J.J.M.! was supported by a Fulbright gran
during his stay at the University of Maryland and also a
knowledges support from a National University of Mexic
~Dirección General de Asuntos del Personal Acade´mico! fel-
lowship and Project No. IN101696. This work was also su
ported in part by the U.S. Department of Energy.

1A. M. Dimits, Phys. Rev. E48, 4070~1993!.
2P. N. Guzdar, J. F. Drake, D. McCarthy, A. B. Hassam, and C. S. L
Phys. Fluids B5, 3712~1993!.

3R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas1, 2229~1994!.
4M. A. Beer, S. C. Cowley, and G. W. Hammett, Phys. Plasmas2, 2687
~1995!.

5A. M. Dimits, T. J. Williams, J. A. Byers, and B. I. Cohen, Phys. Re
Lett. 77, 71 ~1996!.

6A. Zeiler, D. Biskamp, J. F. Drake, and P. N. Guzdar, Phys. Plasma3,
2951 ~1996!.

7R. J. Groebner, Phys. Fluids B5, 2343~1993!.
8F. M. Levinton, M. C. Zarnstoff, S. H. Batha, M. Bell, R. E. Bell, R. V
Budny, C. Bush, Z. Chang, E. Fredrickson, A. Janos, J. Manickam,
Ramsey, G. L. Schmidt, E. Synakowski, and G. Taylor, Phys. Rev. L
75, 4417~1995!.

9T. E. Stringer, Phys. Rev. Lett.22, 770 ~1969!.
10P. N. Guzdar and A. B. Hassam, Phys. Plasmas3, 3701~1996!.
11I. A. Voitsekhovitch, M. Coronado, and J. J. Martinell, Phys. Plasmas2,

3667 ~1995!.
12A. B. Hassam, T. M. Antonsen, Jr., J. F. Drake, and C. S. Liu, Phys. R

Lett. 66, 309 ~1991!.
13J. F. Drake and T. M. Antonsen, Jr., Phys. Fluids27, 898 ~1984!.
14A. B. Hassam and J. F. Drake, Phys. Fluids B5, 4022~1993!.
15The variablez8 is not strictly periodic in a sheared geometry but w

assume it for simplicity. However, the same results hold whenz8 is a
ballooning coordinate where the dependent variables vanish for largez8,
which is also appropriate for our case.
 AIP copyright, see http://ojps.aip.org/pop/popcpyrts.html.


