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The derivation of equations for fluctuations and transport
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A self-consistent set of equations for the fast space—time evolution of fluctuations and the slow
space—time evolution of density and flows in a toroidal plasma, relevant for simulations using
field-aligned coordinates in thin flux tubes, has been derived. The methodology for the derivation of
these equations is outlined for a model set of equations for the plasma edge, specific to resistive
ballooning modes but readily adaptable to other instabilities. The derivation proceeds by first
writing the axisymmetric and fluctuating equations in the usual toroidal coordinate system. These
are then transformed to the twisted coordinate flux-tube system. Most simulations which use twisted
flux-tube computational grids transform to the field-aligned coordinate system first and then take
averages to obtain the slow evolution. They however miss some terms since the two operations,
namely, multiscale separation and coordinate transformation, do not necessarily commute, because
of subsidiary assumptions on the box size. In the present formulation, all the relevant neoclassical
effects such as the Pfirsch—Sdielucurrent and the Stringer spin-up as well as the toroidal Reynolds
stress are properly included. This set of multiscale equations is appropriate for the study of the
formation and evolution of transport barriers. I®98 American Institute of Physics.
[S1070-664X%98)01605-X]

I. INTRODUCTION “slow” evolution equations, because of an intrinsic flaw in
their derivation and the assumptions peculiar to the method.

The modes that are believed to be responsible fofrhe standard method that is used is to transform a given
anomalous transport in tokamak plasmas have radial and PQystem of equations to the field-aligned geometry. The

loidal correlgtion Ien_gths a few orders of magnituQe Sm‘f"”e“‘slow” evolution of the flow and equilibrium quantities are
th.an the minor radius. This makes numerical Slrnul"’1'“0nsbelieved to be contained in the transformed system of equa-
with resolution of all scale-lengths, from these short scale; )\« The “siow” equations can be obtained by an appro-
lengths to the scale-length of the minor radius, impossible t riate averaging of these transformed equations. We will

perform with present day computational resources. For thi how that this sequence of operations, namely, transforming
reason, many of the simulations of turbulence are done in a . . : :

. 0 the twisted coordinate system and averaging, does not
smaller computational voluménarrow flux tubes con-

. . . . ield correct equations. A more natural approach that avoids
structed around field-aligned coordinates instead of the ful . . ) . )
1-6 . . . - . the above pitfalls is to first derive separate sets of equations
torus.~° These numerical grids provide an efficient prescrip-

tion for addressing the issue of small-scale generated tuergr th'e'fast and slowor axisymmetric PaﬁOf the various
lence and transport. However, stemming from this smayquantities and then do the transformation to the twisted sys-

scale turbulence is the generation of large-scale flows anf™: We fmddthaththese tWO, opgraﬂo_ns clio SOI rr:ecessarlly
modification of the equilibrium parameters. If one attributesCOMmute, under the approximations involved. The correct-

the variety of enhanced confined modes observed on tok&1€SS of our present prescription is evidenced by the fact that
maks, like the High(H)” mode and the enhanced reversedOUr slow equations yield all the relevant neoclassical effects

shear(ERS® modes, to be a result of suppression of fluctua-SUch as the Pfirsch—Schén current and the Stringer
tions by self-generated shear flow or steepening of densityPin-up; as well as the toroidal Reynolds stress. Our recent
gradients, a proper system of equations for the fast modes, 8dy of a quasi three-dimensional model for Low—High
well as the large-scale flows, valid for the smaller volume(LH) transitions in tokamaks helped us identify the
field-aligned geometry have to be used. problem?® This allowed us to formulate more carefully the
The main purpose of this work is to call attention to the 9eneral problem in the twisted coordinate system in flux
incomplete nature of standard simulations, regarding trangubes.
port. We believe that most simulatiofiscluding our own, The procedure for obtaining the combination of fast and
which resort to the use of the smaller volume field-alignedslow equations in toroidal coordinates is similar to that used

geometry, do not incorporate all the important terms in thén Ref. 11, but here the averaging is taken over the toroidal
coordinate, i.e., the averaged quantities are axisymmetric.

. . . The technique is applied to the problem of resistive balloon-
dpermanent address: Institute for Nuclear Sciences, National Autonomous q PP P

University of Mexico, Apdo. Postal 70-543, 04510 Mep D. F., Mexico; N9 mOde§ in a flux tu_be with f|e|d'a|!9ned geome_try- The
electronic mail: martinel@nuclecu.unam.mx fast equations agree with those used in previous simulations
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of edge turbulenc&® But the important result is that the € €

slow equations contain information that is not present in the X'=X, y'=y— ax Z'=z+ a0 5
equations used previously in numerical simulations; in par-

ticular, the anomalous Stringer spin-up mechanigfn'? In these coordinates,

The methodology we are going to describe could be used V,=dlaz,
on any set of equations that describe a specific model, con-
sisting of transport and turbulence. In our particular case, we ¢ g sz 49
apply it to the set of equations that describe a low beta, 5y~ a—x,+ ﬁqa_y’ (6)
collisional plasma, obtained from the two-fluid Braginskii R
equations? which for electrostatic modes consist of the con-Wwith the magnetic shea=a dIn g/dx.

tinuity, parallel flow and vorticity equations, In the equations for the axisymmetric quantities, since
dn ne d dl9z=0, ally’ variations can be mapped 16 variations by
a_anvl_V(Q_IBaVqu)JFV(nU):O’ (1) izﬂi (7)

5 ay' €9z’
”(ﬁ +v, - V) v+ anV”vHJrciVHn:O 2 and so they are considered to be only functiong’cindz’.

This also implies that the averages oxaran be transformed
to averages ovey’, interpreted appropriately.

In order to keep just the physically relevant effects and
avoid dealing with complicated equations, we use the small

V-

P —

nc d B_ (V¢ TVn
e gVt oVl -
Q|B dt B7]|| neB7]”

eH

2c parametere=a/R, and assume that the scale lengths are
~egPXx Vp=0, 3 ordered as
wherev, =(c/B)bxV ¢, and k=b-Vb. For the magnetic Lp/a<<l, Lo/L,<1, (8

field we use the representatioB=(¢+06)Bo/Ro(1  whereL, is the scale length of slow quantities in the radial
+ € cos#d). This is our basic set of equations which contains iy ction Lit~aln gax) al~glIn gay and L, repre-

all the fundamental physics required in our model. The ef- . then correlation length  of f,luctuati(())nsL_(l
fects of viscosity and temperature variations would modify~07 In Z/ax). This is applicable to edge plasmas, as p;)evious

he results in ntitative w. t not intr new . >
;f?ecfssuts a quantitative way but do not introduce ne imulations have Shouwd®

Il. METHODOLOGY AND COORDINATES IIl. EQUATIONS

Since we are interested in turbulence and transport in a W& now apply the method just described to the set of
tokamak, we assume that all macroscopic quantiies, ~€duations1)—(3). The dependent variables argv,, and .
non-fluctuating are axisymmetric. Thus, all dependent vari- When the equations are averaged over the coordinared
ables (,v,,¢) are separated into an axisymmetfinacro- only t_he S|gn|f|cant terms i are kept, the resulting set of
scopio component, plus a fluctuating piece related to theauations is the following:

micro-instabilities: a_n_+ 3(3_3'9_”—_ a_ga_ﬂ - @sin ea—ﬁ e an_T“
Exy,2)=E(x,y) + E(x.,2), 4 ot Bloxadgy dyax] BR™ "ox q dy

where we usx=r—a, y=a#, andz=Re. As a first step, € #PH cladan dpan

the equations are averaged over the coordizate obtain + e &_y2+ §<& oy 5>Z=0, 9)

their axisymmetric part §), and these are then subtracted
from the original equations to get the fluctuating, non—&v_II c agav_u 3530_\\ € 0 ;“2 , € on
axisymmetric components£(. The axisymmetric equations i + g( X oy ay 0x) a3y > +Cs —FW:O-
evolve on a slow time scale, while their fluctuating counter- q (10
parts are fast evolving.

Once we have the separate sets of equations, these &/® c¢(d¢p do d¢p do| 20,T = n
then transformed to a field-aligned, twisted coordinate SySﬁ"' B cRn sin X
tem. Notice that in all previous formulations the coordinate

ax dy dy ox

transfor_mation is made before any separation in time/space 0.8 82$ clid oo 9w
scales is made, so whatever is lost in the approximations +ZTF+§ X oy v ox =0, (11
made with the transformation applies to fast and slow quan- cq’ney; %Y y 9

tities equally. With this new prescription the transformationWhereHE¢_Cm with «=T/ne held constantfor T~T)
and the approximations may affect differently the two scalesy,q “vorticity,”

In the transformed frame, one coordinate is always aligned
with the sheared magnetic field, so its direction depends on
as well asy andz. The transformation is

Pp P

wEVE(f):W'Fa—yZ,

(12
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We can now write the equations for the five quantities
vy, ¢, n, and ¢, where the overbar is dropped from the
averaged variables,

and

1 27R
<§>z=m f édz

0 an cqfd¢p on  J¢ In 2nc [ Z'\ oH dny,
is thez average. Here, the parallel velocity fluctuations havedt '~ Be | ax’ 9z 92 ax') BR "\ qR| ox' = a2
been neglected, since the resistive ballooning mode is 5 - - - -
supersonié. Notice that these equations are axisymmetric L oH cld¢on_ d¢ on _0 (16)
and hence, two-dimensional. Subtracting these from the en, 9z’ B\ox' gy’ ay’ ox’ v '
original equations, the evolution of the fluctuating quantities s
is obtained. The fast equations are fully three-dimensionafvy | €4 d¢ dvy _ 0¢ dvy| =~ J vi G on _ 17
since no symmetry is assumed. Without the parallel flowgt = Bel\dgx' 9z' 9z’ 9x'| 9z’ 2  n 9z
variations @ ;=0), only two equations are needed, namely, Jo cq( ib do b Jw . 20T ( 2/ ) an
~ — -~ ~ o~~~ —t T o oo sinl — | ——
on . c (ﬁ¢ on ﬂgb aﬁ)-‘r (9(,25 an ad) an ot Be\ ox’ o0z 0zZ" X enR QR X
ot Bl\dx gy dy dx ax dy dy x|, QOB #H ¢ ag o ag) oo

——— —mt s\ ===/ =0, (18

~ ~ cney dz'= B\ox' gy’ ay' ox' |, (18)

2c| eﬁH . , aH y
———|sinf@—+(cosf—e)— ~ o~ ~ o~
BR ax ry dd on  ad In

n ¢ (aqbaﬁ i &n)
at Bl X oy oy X

! ! ! ! ! ’ ! ’
X 1 (62 P20 . aZH) ) s ax' gy’ ay' ax ax' gy’ dy' ax
en \q® ay? 9z ' 5 9°H 0 10
_ L _ o BR +e_m_az’2_ : (19
do ¢ (aqb o dddo| |dd do 9P Jo
ot B|\ax gy gy ax| |ox ay ay ox], do ¢ (&qﬁ Jo  dd aw)+ id dw
_ _ gt B \aox" gy’ ay' ox’ ax’ ay’
20,T( . dn an o
~heRr | Sin 0&+(cosa—e)w _ﬁ(?_‘” _ZQiTC(?{ OB #H - 20
~ ay’ ax’' neR necy, dz'2
. 0,B (62 2A N aZH)_ » y y' yll
n_ean q? ay?  9z° ' where the vorticities are now given by
e P’
where we used the simplifying notatiofié],=¢¢ w=—77 (21)
_<§§>z ~ ~\ 2 o~
At this point, the transformation to the field-aligned co- ~ |99 sz’ d¢ °d
ordinate system given in EE5) is applied. For the axisym- o=l Rq oy’ + ay'? (22)

metric quantitiesy’ variations are linked t@’ variations, . . .
but theqlatter is tge relevant one. When one considers a OIc;\_lotlce that the presence of shear is reflected only here and in
) }he curvature operator defined by,

main along a magnetic flux tube, as is done in numerica

simulations, the longitudinal variatiorglongz’') are weak _ 27\ an 7'

compared to those transverse to the tupg) ( Due to this C(n)=(5in<q—R = COS( q_R) —€

and the fact that turbulence has the same statistical properties

all along thez direction, toroidal averages are equivalent to sz [Z'\] dn

averages ovey’, defined as + q_R sm( q_R) (9—y, . (23

The evolution of the slow quantities is independent of the
magnetic shear.

The coupling of fast and slow equations given in this
Here, L, is the transverse width of the flux tube which is way describes clearly the influence one type of quantities has
larger than the correlation length,. The poloidal coordi- on the other. The turbulence gives rise to transfirough
nate transforms t6=y'/a+z'/Rq. Furthermore because of the terms(...),,), and the modification of the macroscopic
the choice of the flux tube bok,<a, they’/a term is  profiles due to transport affects the level of turbulence. Ob-
neglected in comparison /Rg~0(1). This assumption is viously, the slow and fast equations evolve on two different
well justified for the small-scale fluctuations but not for the time-scales and the averages of the fast fluctuations that enter
axisymmetric “slow” variables. Thus, it is for this reason the slow equations are slowly varying. On the other hand the
that separation of the “fast” fluctuating and “slow” average effect of the slow transport on the fast fluctuations is through
variables be made prior to the transformation to the twistedhe long time modification of equilibrium parameters such as
coordinate system. the radial density profile and the generation of sheared elec-

1 (L
<§>y’:L_y foyde’- (195
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tric fields. The slow equationd6)—(18) contain all the ex- vorticity. It is actually more convenient to integrate Eg5)
pected transport properties, including neoclassical and turbwver x’ to have an equation fat¢,/dx’, which is propor-

lent transport as discussed in the next section. tional to the zeroth-ordeE X B-drift. We get
d (dgyg d¢g\ 2cq z'
IV. PLASMA SPIN-UP +20%) — | )= 2] —= —_
(1+297) at (dx’) (dx’ anyB co gR

We will show here that our multiscale equations are ca- o o
pable of describing two important properties of toroidal plas- dp dn  d¢ dn\ dz'
mas: Pfirsch—Schtar (PS transport and Stringer spin-dp. ay' ax' ox' ay'| 2w’
The latter is not present in the equations used for numerical Y
simulations of turbulence, as will become apparent below. (28)
The wa;ch—Schher return current may b,e obtalneq f“_)m where a term associated with the time derivative of the
Eq. (18) in steady state without the fluctuations ContrIbUtlon’turbulent transport has been omitted, assuming it to be small.
thus balancing the last two terms, corresponding to the CUlgote that we recover the PS enhancement in the factor
vature and parallel current. Two integrations give the PSZqZ. It is seen that the asymmetry in the fluctuation-
potential(neglecting diamagnetic contributions driven radial transport may produce a spin-up instability

2c . "\ dn [(alat)(d¢pglox")>0], provided the turbulent flow’, de-
bo=7 7 TR sin Rq) dx' (24)  fined through
Of course, when this is substituted in the third term of Eq. 1 9 c/dp an ap an
(16), the well-known Pfirsch—Schier diffusion results. = WX'F =B\ o o o] (29
We now derive the anomalous Stringer spin-up. To keep y Yoy

the discussion simple we will do this in the subsonic limit,
i.e., we will assume that/gt<<cs/gR for the averaged quan-
tities. We will also ignore the diamagnetic terms. We expanci(ep
¢= o+ 1. Thus, from Eq.(18), to lowest order this term
would give 9?¢o/9z'?>=0, or ¢o= ¢o(x’). The next order 9 debg
contribution given by the other terms can be obtained by(1+2q?)

is peaked at the outboard side of the totbs.
When all the fluctuation terms in Eq&l6) and(17) are
t, Eq.(28) takes the form

) . . , ) T at dx’
integrating the equation ovetr’, assuming periodicity in
z',*® thereby annihilating the large term. In doing so, the , _~ ~ ~ o~
convective terms cancel since they invok/ederivatives of __¢ % dz f X' < ﬁ (9_“) — % (9_“)>
¢o and the result is B J 2mqR ax’ ay' ay" ox'[
2 ! ! ~ —~ ~ —~
do | 2B% 5£ sin(z—> om 4z, (25 I L A T A A AT
ot cnR gR/ ox’ 2mgR R - arR) \ax" gy’ ay’ ax’ g
where for the moment we have ignored the Reynold’s stress ,
term. To determinen we now consider Eq(17). To lowest + do _2c f cos( Z_)
order the dominant term is the pressure-gradient term, and dx’ anBR qR
thereforec2onq/9z' =0, implying ng=ne(x’). In Eq. (25 7B 9B o i
we need the'-dependent component nfas function ofgg, <_, — _/> _ (30)
so that the integral does not vanish. This is obtained from Eq. gy gx’ox" ay'| ,2mqR

(17) to next order and Eq.16) in the lowest order. Taking ) )
the average over’ of Eq. (16) we can express the time 1he first two terms are the Reynolds stresses, which can also

derivative ofn, in terms of thez’ -average of the fluctuation Make the plasma rotate.

term. Thus, using the notation introduced after Bigt), we ~ Now, we can apply the same analysis to the set of equa-
obtain, tions that are used in the numerical simulations of turbu-

o lence, to show that the spin-up is not obtained, and therefore

~2c (7'} ddo L ¢© dé an they do not provide an adequate description of the transport.
BR™M R/ ax’ "9z " Bng| \ox’ ay’ We start from the equations in twisted coordinates for resis-

tive ballooning modes of Refs. 2, 6. These are three-

ad an dimensional equations unlike the two-dimensional slow
- (9_y’ 9% =0, (26) equations used above. The system of equations is more dif-
vz ficult to reduce due to the two scales involved. The main

difference from our equations for the slow component is that
5t T Beax a7 a7 (27)  the convective terms involve Qerivat_ives with respec_t to the
0 transverse, short-scale coordinaté instead of the field-
Integrating Eq«(26) to obtainv,, substituting it in Eq(27)  alignedz’, and since there is no distinction between fluctua-
and integrating, one can finth(x’,z’). This is in turn sub- tions and averaged quantities, they contain the fluctuation-
stituted in Eq.(25), which gives a single equation for the induced transport as well as large-scale convection. If the

aUH Cq (?¢0 (91)” Cg anl_
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simulations were done in the full torus, there would be noarises from the axisymmetrib=1 componentproportional
problem. This is because for the full torus case, no specifito sin §) of the parallel flow interacting with an axisymmetric
ordering would be imposed on the quantities involved, andm=0 component of the electrostatic potential, leading to
for the axisymmetric perturbations, Ef) would be valid. vgg. In the standard flux-tube approach, the assumption that
However in the flux tube geometry, the box sizeyihis  k, =d/dy'>k=0d/9z" throws away thisSExB convection
limited to sizes much smaller than than the minor radius sderm for all axisymmetric modes. However, the assumption
that contributions of the axisymmetric perturbations to thek, >k is not quite valid for the axisymmetrim=1 compo-

E X B convection term are not included, as discussed in moraent, which hak, ~1/a andk,~1/qR.

detail below. To demonstrate the consequences of these ap- An equation for(¢),, can be derived as before, from
proximations, once again we can write each of the densit¥gs. (31), (33), (34), for the case considered here thép
and the potential as consisting of an average piece and 20, obtaining

fluctuating piece denoted with a tilde)( The average in the J ,

twisted coordinate system is an average with respegt s — —(1+409%sirf 2') M
defined by Eq. (15. This implies that (¢), at 2 IX
=(¢)y/(x',2"). Then, we may take thg'-average of the dz' cosz' | 9 _
equations to obtain their evolution in the transport scale, =-— 3€ — <—[J[¢]Z,dz,n0]>
. . . - 27y ot ,
which reduces the analysis to two dimensions, as before. y
We can start again by integrating the vorticity equation dz'
over a cycle inz’ to eliminate the parallel current term. We - 3€ o f dx'{({p, o))y . (35

can also integrate it it’ to have an equation for thex B
drift instead of the vorticityherew is defined by Eq(22)].  As one can readily see, there are no terms on the right hand
The resulting dimensionless equation for the average in noiside  proportional to the averaged drift velocity

malized variables is (d(¢)y- /dx’), that could give a spin-up. All terms involve
, the fluctuating component @. The second term is the usual
fﬁ (i &<¢>y’ +j dX'({,w})ys+sin 2'(n)y d_Z:o Reynolds stress which can drive rotation. On the left hand
at  ox’ B ') 2 ’ side, we can assum@b), to be independent af’, since it
(31 is a slowly varying quantity, recovering the PS enhancement
where we introduced the Poisson bracket, factor. As it turns out, all possible contributions from the
slowly varying quantities have been filtered by the ordering
(A.C}= JA B IA B (32 assumed in the flux-tube geometry. Therefore, the anomalous
' ax" gy’ ay’ ox'’ Stringer spin-up mechanism cannot be obtained, although the

o _ ) neoclassical PS contributiomg2 does appear properly.
Next, within the subsonic regimeyE&cgty/qR>1), the

parallel flow equation to lowest order yield¢ng),
=(ng)y/(x'). The next order equation fdw ), gives the V. DISCUSSION AND CONCLUSIONS

z'-dependent densityny)y/(x’,z) that is needed in Eq. We have shown that the slow equations include the
(31). This is taken in combination with the continuity equa- Stringer spin-up which, in addition to the Reynolds stress

tion for the average part to lowest order. As before, the timgy, 4 s aiso included, can give rise to sheared radial electric
derivative of the density is eliminated by taking the fieigs which are associated with the observed poloidal rota-

z'-average. Thus we get the following normalized equationsjon, in tokamaks during H mode operation. The fast equa-
analogous to Eqs(26)—(27) (neglecting the diamagnetic jong describe the evolution of the resistive ballooning

term: modes, including the modifications introduced by the trans-
o N By Ho )y port to the axisymmetric quantities. As such, the model is
{[#1y Mo}y — 4| sinz’ —— } 2-=0, self-consistent. Therefore, the effect of fluctuation quenching
x|, 9z i P

z 33 due to a sheared radial electric field is present. We have kept

(33 in the continuity equation the relatively small contribution

Koy o HNydyr from the polarization drift, which is responsible for the den-

T+<{¢1Uu}>y’+ VTZO’ (34)  sity contribution in the functiorH, and the resistive term.

Although these are formally small and might be dropped, we
where §=2L,/R. The first thing that we notice is that Egs. include them in order to be able to compare our equations
(26) and (33) are basically the same. The fundamental dif-with those used in the previous numerical studies of
ference is between Eq7) and(34). In Eq.(34) if we were  turbulence?”® We have already shown that the latter equa-
to assume that the fluctuating parallel flow is negligible, agions do not yield the Stringer spin-up, but here we make
we have done earlier, then thé average of the Poisson more explicit the difference between the two sets of equa-
bracket term vanishes. However Eg7) has the extra term tions. Qualitatively, the reason the spin-up is not present, is
(the second term on the left hand sidehich is the essential that the flux tube approach is restricted to scales of the order
one for driving the Stringer flow. This drive term comes of the tube width and cannot account for scale-lengths typi-
from the ExB convection term in the parallel momentum cal of the axisymmetric quantities, of the order of the minor
equation [vg- Vv, =(d¢dg/dx")(dv /1dz") in Eq. (27)]. It radius. When the usual procedure of averaging is applied to
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the full equations to get the transport, some kind of filteringsingle-mode analysis is that now there are averages of the
takes place. This can be easily seen by directly averaging thféuctuations over the transversal coordinate. This analogy
flux-tube equations used in the simulations to obtain separatealidates the results found in Ref. 10 for the L—H transition,
equations for the averaged parts and the fluctuations, as v@nce they are now based on a more complete model.

did here. As we already mentioned, the average in twisted The more general case of variable temperature and vis-
geometry has to be made over §tecoordinate which is the cosity has been worked out and includes the important effect

fast varying one, and we write, of magnetic pumping, which opposes the spin up. We do not
s o e present this work here to make the presentation as clear as
X"y, 2 )=(d)y (X", 2) + S(X"y",2), (36 possible. The extra terms just produce lower growth rates

and the same fon andv,. This is used in the normalized and rotation speeds, but the structure of the equations is
equations of Refs. 2, 6, and we take the average pvgo  equivalent.

obtain the slow component, and subtract it from the original

equation to get the fast equation. For the normalized vorticACKNOWLEDGMENTS
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