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ABSTRACT
Transport barriers associated with the last KAM surfaces to break
up are studied in the context of turbulent transport produced by a
discrete spectrum of waves in two dimensions using a 2D symplec-
tic map. It is based on the guiding center motion of test particles
but finite Larmor radius (FLR) effects are included taking an average
over the gyroperiod. Poloidal sheared flows are included which are
responsible for the creation of the transport barrier. For large wave
amplitudes, widespread chaos dominates the phase space inter-
rupted only by the most stable KAM surfaces. The torus breakup
depends on the values of the parameters of the map: wave ampli-
tude A, flow velocity C and the Larmor radius ρ. For two types
of sheared poloidal flows, having monotonic and non-monotonic
shear, phase diagrams for barrier breakup are obtained by follow-
ing the iterations of two points on either side of the barrier until
the trajectories get mixed. The threshold that delimits the bar-
rier breakup has the typical feature of a fractal curve for all phase
diagrams.
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1. Introduction

Hamiltonian systems arewell suited to describe several problems in plasma physics such as
heating by waves or anomalous transport in magnetically confined plasmas. In particular,
the turbulence produced by small-scale fluctuations that produce non-collisional transport
canbe studiedusing the chaotic behavior of aHamiltonian systemdescribingwave-particle
interactions. Providing the power spectrum of the waves, the dynamics of the interaction
can give rise to chaos which produces the particles to move in seemingly random tra-
jectories which are sometimes described as Lagrangian turbulence. The analysis can be
usually simplified by reducing the differential equations of the Hamiltonian system to a dis-
crete map since this reduces the computing time considerably. Chaos in symplectic maps
has been studied extensively (1) revealing many interesting properties that can relate to
turbulent particle transport.

In the transition from regular to chaotic motion in symplectic maps, regular surfaces are
destroyedgivingway to chaotic regions boundedby stable KAM torii until a state is reached
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where global chaos is established. The last surviving KAM torus is commonly identified
with a transport barrier. When global chaos sets in, particles can travel unimpeded through
phase space giving rise to transport with specific properties that depend on the character-
istics of the map. For some type of wave frequency spectrum, the map derived from the
Hamiltonian system is exact (2) and can be used to get precise results for stochastic trans-
port. This map is similar to the one describing stochastic plasma heating by lower-hybrid
waves (3) and is a special case of the kicked Harper map which has been used to study
anomalous diffusion (4, 5) and transport barriers (6).

An important effect in fusion plasmas is the presence of seared flows since they have
been shown to stabilize various instabilities and may produce a concomitant turbulence
reduction. It is therefore of interest to include a sheared flow in the map which is linked
to new KAM torii representing the particle trajectories carried by the plasma flow (7). When
chaosbecomeswidespread the last KAMsurface tobreakupacts as a transport barrier sepa-
rating chaotic regions andpreventingparticles fromdiffusing from the center to theplasma
edge. The determination of the barrier breakup conditions is quite important since it gives
the parameters for the plasma to be well confined. The purpose of this paper is to deter-
mine these conditions for two different kinds of flows: those that vary monotonically with
the transverse distance (shear of one sign) and those having a non-monotonic variation
(shear changing sign).

Depending on the nature of the map the transport barriers have different properties.
For non-degeneratemaps (when the rotation number has a non-vanishing derivative), also
known as twist maps, the last KAM surface to break up is the one with the most stable irra-
tional rotation number (usually the golden mean). For non-twist maps which violate the
non-degeneracy condition the most robust torus is the shearless surface. When there are
no background plasma flows, transport barriers are not a characteristic feature of the map,
although in (6) theywere characterized for the kickedHarpermodel. However, the presence
of flows produces clear transport barriers since the flow lines give rise to KAM torii that are
resilient to chaos.

Transport barriers have also been studied with a Hamiltonian system that includes par-
ticle interaction with just two waves, by directly integrating the equations of motion (8, 9).
The barrier breakup diagrams obtainedwere found using the indicator pointsmethod (10),
which is applicable to non-twistmaps, providing a reliableway for the determination of the
parameters for good plasma confinement. The use of amapping adopted heremakes com-
putations faster allowing a more convenient way of computing barrier breakup diagrams.
However, since we consider both twist and non-twist mappings we use a method appli-
cable in the two cases. Otherwise, separate formal methods should be considered since for
non-twistmaps KAM theory does not apply anddifferent approaches have beendeveloped
for their study (11). Here, as well as in (8, 9), there is an emphasis on FLR effects.

The paper is organized as follows. In Section 2 thewave-particlemodel adopted is briefly
described including the FLR corrections. The properties of the map without macroscopic
flow are summarized. Then, in Section 3 the modification to the map by a macroscopic
poloidal flow is introduced describing the use of monotonic and non-monotonic flows.
Section 4 describes the method for analyzing barrier breakup and the phase diagrams are
shown anddiscussed in Section 5 for both flow types. Finally, the conclusions are presented
in Section 6.
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2. Transport model

For a test particlemoving in themagnetic field of a toroidal plasma (assumed in the z direc-
tion) subjected to an n electrostatic potential φ(x, y), the guiding center motion can be
written as a Hamiltonian system

dx
dt

= −∂φ

∂y
,

dy
dt

= ∂φ

∂x
,

which canbeaveragedovergyro-radius to take into account the finite Larmor radius effects,
using

〈�〉θ ≡ 1
2π

∫ 2π

0
� (x + ρ cos θ , y + ρ sin θ)dθ .

It has to be pointed out that in this slab model the coordinates (x, y) correspond to radial
and poloidal coordinates respectively in the torus. For an infinite, discrete wave spectrum
of the form

φ = A
∞∑

n=−∞
cos(x + θn) cos(y + θn − nt). (1)

the equations can be exactly converted into a discrete map, which after gyro-averaging
takes the form (7)

xn+1
+ = xn+ + 2πAJ0(

√
2ρ) sin(xn−)

xn+1
− = xn− − 2πAJ0(

√
2ρ) sin(xn+1

+ )
(2)

where x± = x ± y and J0(x) is the Bessel function of zero order.
This map is a special case of the kicked Harper model for the case of equal amplitudes

of the sinusoidal, which has been studied extensively (3, 4). The phase-space structure has
periodic closed particle orbits that are local KAM torii, which become chaotic around the
hyperbolic points as the amplitude A is increased. The chaotic region increases until the
phase space becomes totally chaotic for large enough A. The Larmor radius has the effect
of reducing the chaotic regions size (7) implying that high-energy particles have less trans-
port than thermal particles (see Figure 1). This is a non-twistmap since the non-degeneracy
condition ∂xn+1

− /∂xn+ = 0 is violated for xn+1
+ = (2j + 1)π/2. This defines a shearless curve.

In Figure 1 it can be appreciated that for large A chaos connects the left-hand side of
the space (the plasma core) with the right-hand side (plasma edge) which amounts to hav-
ing bad particle confinement. For A � Ac = 0.318/J0(

√
2ρ) there is global chaos in phase

Figure 1. Phase-space diagram for the particle orbits with A = 0.04, 0.3; ρ = 0, 0.6.
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space and particles are transported in random walk-like trajectories. It can be shown that
the transport is diffusivewith a quasilinear diffusion coefficient proportional to the squared
amplitude D ∼ A2 (2, 7). The overall transport can be modified by the presence of acceler-
ator modes which are stable periodic orbits that coherently propagate across the phase
space. For the kicked Harper map it has been shown that they produce a divergence in the
diffusion coefficient and they can induce partial transport barriers, or cantori, in the chaotic
regions which modify the nature of the transport to be superdiffusive (5). However, for this
special case, there are no transport barriers of relevance since in spite of the existence of a
shearless curve it is broken up before global chaos is established (6).

3. Inclusion of poloidal flows

A macroscopic poloidal flow along y direction can be included adding an AC component
to the electrostatic potential representing a radial electric field. The resulting map is a
compositionM = T2 · T1 of the following single maps

T1 :

{
x′+ = xn+ + π�(xn)

x′− = xn− + 2πAJ0(
√
2ρ) sin(x′+) − π�(xn)

(3)

T2 :

{
xn+1
− = x′− − π�(x′)
xn+1
+ = x′+ − 2πAJ0(

√
2ρ) sin(xn+1

− ) + π�(x′)
(4)

where �(x) is the flow velocity profile.
Depending on the form of function�(x) the flow can bemonotonic or non-monotonic.

When�(x) is linear the compositemapM can be reduced to a singlemap that has a unitary
Jacobian assuring that it is an area-preserving or symplectic map. For �(x) = Cx, in the
explicit form it becomes

xn+1
+ = xn+ + 2πAJ0(

√
2ρ) sin(xn−) − C

2
(xn+ + xn−) (5)

xn+1
− = 1

1 − C/2

[
xn− − 2πAJ0(

√
2ρ) sin(xn+1

+ ) + C

2
xn+1
+

]
(6)

In addition to the linear velocity profile, all variations that are monotonic in x have a non-
zero derivative d�/dx which implies it is a twist map. On the other hand, if �(x) is non-
monotonic, it has maxima or minima, where the derivative is zero. Thus the map can be
non-twist when ∂yn+1/∂xn = 0 for some set of points that would define a shearless curve.

It is of interest to study both types of profiles to compare the results, thus in addition to
the linear velocity profilewe consider anon-monotonic profilewith aGaussiandependence
given by

�(x) = Ce−x2 (7)

An important difference between the two profiles is that the linear type is finite over the
whole space and has zero average velocity since it is symmetric over positive and negative
values,whereas theGaussianprofile is localizedover a finite rangeof x andhas anet average
velocity. The latter resembles the type present in plasmas with zonal flows and then it can
be used tomodel that phenomenology that is quite common in toroidal plasmas. Although
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there ismore to the zonal flowphenomenon than just the profile shape, someof its features
can be reproduced with this model. In particular, the appearance of a strong transport bar-
rier has been associated with non-monotonic profiles located around the shearless curve
in both rotating fluids and plasmas (12).

The phase-space structure when there is background flow includes global invariant tori
that extend along the flow direction. Some of the most stable torii may have the effect of
transport barriers when chaos starts developing. For the linear flow, depicted in Figure 2
the structure is not modified close to x = 0 because there the velocity is small but farther
away from the streamlines that carry the particles with the flow are dominant when the
wave amplitude and the flow velocity are small. When chaos starts spreading these curves
do not allow a communication from the center to the edge, as seen in the two right pan-
els of Figure 2. The radial transport is thus hindered by the KAM tori. Only when they are
destroyed, as global chaos is established, transport can be effective in taking particles to
the plasma edge. This happens as A increases but also when C gets larger.

The streamlines that cross from top to bottom in Figure 2 are the invariant KAM tori
which are identified by a rotation number. According to KAM theory, the torii with rational
rotation numbers are destroyed first and the most robust are those with irrational rotation
numbers. A transport barrier will subsist until the last KAM torus is destroyed. In the next
section, we describe how the destruction is determined.

For the non-monotonic flow, the phase space is mainly affected around x = 0, as
opposed to the linear flow, since it is there where it is concentrated. This zonal flow then
meanders about the central region and it is no longer symmetric and thus the figure depicts
the positive and negative region. When the flow strength C rises, it initially straightens the
flow lines but when rising further it gives rise to chaotic regions. On the other hand, an
increase in the wave amplitude A produces an increment in the level of chaos, as is usual.
The shearless curve is embedded in the meandering flow and it is expected to be the last
to survive to chaotic breakup (Figure 3).

The effect of FLR is always to reduce the chaotic regions size and so it is expected that for
larger Larmor radii the transport barrier breakupwould be delayed. Visually, it is sometimes
not so clear the chaos reduction effect of the FLR, especially when global chaos is estab-
lished, but it can be assessed by computing the Lyapunov exponents when ρ is changed
since this gives ameasure of the level of chaos. This computation can be done in away sim-
ilar to that in (13). When this is done for the two types of flow it was found, as an example,
that (a) in the linear profile for the parameters A = 0.2, C = 0.75 the Lyapunov exponents

Figure 2. Phase space of particle orbits with linear flow with ρ = 0 for values of A = 0.1, 0.2 and
C = 0.4, 0, 8.
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Figure 3. Phase space depicting the orbits in presence of flow with a Gaussian profile with ρ = 0 for
values A = 0.1, 0.25 and C = 0.2, 1.3.

forρ = 0 andρ = 0.2 areλ = 0.408 andλ = 0.399, respectively and (b) in theGaussianpro-
file for the parameters A = 0.2,C = 0.3 the Lyapunov exponents for ρ = 0 and ρ = 0.2 are
λ = 0.193 and λ = 0.183, respectively. In both cases, the reduction in λ when ρ increases
indicates a reduction in the level of chaos. In addition, the level of chaos is lower in theGaus-
sian flow, forwhich the flow strengthwas taken smaller. Thus, for the samewave amplitude,
larger flow shear produces more transport.

4. Determination of barrier breakup

Now we have to establish a way of finding the conditions for transport barrier breakup.
There are several methods that have been developed for twist and non-twist maps. For
the former case, some methods include criteria like Chirikov resonance overlap or Greene
residue theorem which allow to find the parameter threshold values for the establishment
of global chaos and hence barrier destruction (1). For non-twist maps, for which the stan-
dard KAM theory is not applicable, it is known that themost robust surface is located by the
velocitymaximum, where the shear vanishes (11). The level of chaos needed for its destruc-
tion can be determined using established methods for this situation such as the indicator
points (10).

However, the application of these methods is cumbersome and dependent on the spe-
cific kind of map. In our case, it is sometimes not known a priori if the map is twist or
non-twist, specifically for the non-monotonic profile. Therefore, we followed amethod that
is equally applicable for any situation having a transport barrier, although it is less formal
than the others.

The first step is to locate the position of the barrier for a relatively low level of chaos.
This is done by inspecting the phase-space diagrams. As an example, Figure 4 shows a few
typical cases for the flowwith aGaussian profile. In red, there is the trajectory of a single par-
ticle with chaoticmotion and in blue the trajectory of a second particle started in a different
region. Since panels (a) and (c) they remain in separate regions this is indicative that there
is a transport barrier between them that prevents the mixing of the two chaotic regions.
In panel (a) there is a central barrier whereas in (c) there seem to be also two side barriers
that keep the orbits confined in narrow regions. In (b) and (d) the mixing of colored dots
is indicative that the central barrier has been broken although in (d) the side barriers are
still present. The study presented here focuses on the existence of the central barrier which
is expected to be the most robust, as mentioned before. For the linear profile, there is a
similar situation although sometimes the location of the barrier is not so clear cut. In that
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Figure 4. Phase space for two cases with local chaos separated by transport barriers and the concomi-
tant disappearance. (a) Presence of a central barrier, (b) no barrier present, (c) central and side barriers
and (d) central barrier broken remaining only side barriers.

case, there are nomultiple barriers because the profile is not degenerate avoidingmultiple
resonances.

Once the barrier is located an ordered search is started for the threshold parameters that
make the barrier break up.We start from a set of parameters (A,C, ρ) that allow a barrier and
let two colored particles on each side of the barrier to evolve iterating the map 104 times.
A scan is performed that varies each parameter in small steps across an interval leaving the
others constant, generating the correspondingphase spacediagrams. A visual examination
of all the diagrams allows to determine the points for which the particle trajectories start to
interpenetrate,marking the break upof the barrier. In some cases, there canbe resurgences
i.e.when the barrier disappears for a critical value of a parameter, say A = Ath, it can appear
again for someA > Ath. Themethodweused has to be appliedwith care since sometimes it
may appear that the barrier is present but when the number of iterations is increased there
is an apparent barrier penetration. This is maybe due to the presence of cantori surfaces
that are semi-permeable and they are not real barriers. Therefore, once a possible threshold
value has been found, the number of iterations should be increased to make sure it still
holds the particles. We can say that our computations are accurate up to the 104 iterations
used.

5. The barrier breakup phase diagrams

Following the method described above, phase diagrams for the transport barrier breakup
were generated for the relevant variables of the map, namely, A, C and ρ. This is the usual
way to represent the behavior of barrier integrity in chaotic maps by showing the breakup
threshold in two-dimensional diagrams. The two profile types are considered separately.
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5.1. Monotonic velocity profile

The linear profile has a constant shear that produces KAM surfaces with progressively
increasing rotation numbers, with rational and irrational values. The irrational surfaces sur-
vive longer and our method should isolate the most stable surface and determine the
moment it breaks up, which is when global chaos sets in. This is the typical behavior of
twist maps. In this case, the transport barrier was found to be located in the position shown
in Figure 5.

In applying the breakupmethod, initial conditions for two particles on both sides of the
barrier were given and the parameters were scanned in the ranges: A from 0.1 to 0.3 with
step size 
A = 0.005; C from 0 to 0.9 with step 
C = 0.001; and ρ = 0, 0.1, 0.2. This gives
a total of 110,700 states. The resulting phase diagram in A−C space for constant ρ = 0 is
shown in Figure 6. The colored area is where the barrier is no longer present while in the
white area the barrier is stable. As is usually the case in the phase diagrams, the thresh-
old boundary is irregular with jagged features which have made it to be called ‘bird wing
diagram ’. Actually, it has been shown that the boundary is not a 1D curve but a fractal.
The general tendency is that for large A or C the barrier is broken. The jagged structure
of the boundary reflects the phenomenon of barrier resurgence mentioned before. For a
fixed value of A, the increment of C may lead to destruction of the barrier and then to a
reappearance whenC increases more (like in A = 0.18, C = 0.34, 0.35).

FLR effects are seen in Figure 7 where the same A vs. C diagrams are shown but for the
other two values of ρ considered. Due to the smallness of the Larmor radius, the differences
are not large but upon close examination, it can be seen a small shift to the right in some of
the featureswhichwould be indicative of a longer duration of the barrier asρ increases. The
reason for using these small values ofρ is that, in normalized units, that iswhat corresponds
to thermal particles in a typical tokamak plasma.

Figure 5. Transport barrier for themonotonic linear flowmarkedwith black line. A particle chaotic orbit
is held by the barrier on one side.
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Figure 6. Breakup diagram in A−C space for constant ρ = 0 for the linear profile. White regions are
where a barrier is present.

Figure 7. Breakup diagrams in A−C space for two values of ρ for the linear profile. White regions are
where a barrier is present.

5.2. Non-monotonic velocity profile

For non-monotonic flows, the map can be non-twist, in which case the criterion for barrier
breakup is related to the robustness of the shearless curve. These barriers are more robust
than in twist maps. The location of the barrier for the Gaussian profile given in Equation (7)
is shown in Figure 8. Applying the same method as before, the two particles are initiated
on each side of this barrier, letting them evolve for 104 iterations. The parameter scan is
performed within the following ranges: A from 0.1 to 0.3 with step size
A = 0.005; C from
0 to 2with step size
C = 0.001; and as before ρ = 0, 0.1, 0.2. This time the total number of
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Figure 8. Transport barrier for the non-monotonic Gaussian flowmarked with black line. Chaotic orbits
of two particles (blue and red) are kept separated by the barrier.

Figure 9. Breakup diagrams inA−C space for constantρ = 0 for the Gaussian profile.White regions are
where a barrier is present.

states is 246,000. The resulting phase diagram in A−C space for the case of ρ = 0 is shown
in Figure 9.

Again, the white area is where the barrier is still present. It is noticed that for this case
the barrier persists for larger values of the flow C, and at some points, it extends to large
A values. This is indicative of the higher robustness of the barrier. For other values of the
Larmor radius, the structure is almost the same as seen in Figure 10 although there is a
small increment in the white region, especially for ρ = 0.2, as in the linear case, indicating
the stabilizing effect of FLR.

For energetic particles, the stabilizing effect of FLR should be more important keeping
the transport barrier for larger values of the parameters A and C. This effect is clearly seen
in Figure 11 where the phase diagram of ρ − C is presented for a value of A = 0.5. For this
diagram, a scan over ρ was run from 0 to 2.7 in steps of
ρ = 0.025while Cwas varied from
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Figure 10. Breakup diagrams in A−C space for two values of ρ for the Gaussian profile. White regions
are where a barrier is present.

Figure 11. Phase diagram for ρ vs. C when A = 0.5 which corresponds to global chaos. Barrier is
reestablished when ρ is close to a zero of J0(

√
2ρ).

0.015 to 1.605 with the step 
C = 0.015. The value of A was chosen so that the system is
completely chaotic for all values of C. Then the stabilizing effect of FLR is seen when the
barrier appears as ρ is increased over 1, although larger values are needed for large C. This
effect is the result of the way ρ enters in the map which is multiplying the amplitude A by
the Bessel function J0(

√
2ρ). Then, when the Bessel function is close to zero the effective

wave amplitude is small and the chaos is much reduced. For the same reason, the barrier
gets destroyed again when ρ increases further beyond the zero of J0(x).
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6. Conclusions

The transport barriers due to the presence of sheared flows in a plasma in combination
with drift waves in two dimensions have been analyzed. Plasmawave interactions aremod-
eled by a guiding center approach of test particles with FLR corrections. The description is
reduced to a symplectic iterative map which is used to follow the evolution of an ensem-
ble of particles in an efficient way. The chosen wave spectrum (Equation (1)) leads to amap
that is a particular case of thewell knownkickedHarpermodel,which leads to chaotic orbits
when thewave amplitudeA is increased. The resultingdiffusive transport scales likeD ∼ A2.
FLR effects reduce the level of chaos. When the shear flow is added, themap is modified by
the appearance of integrable KAMsurfaces that run along the flowdirection. These surfaces
do not let the chaos propagate to cover all phase space and thus act as transport barriers.

The plasma flow represents the poloidal flows that are common in toroidal plasmas. Two
types of shear flow profiles have been considered having qualitative different properties:
(a) a monotonic variation with radius and (b) a non-monotonic variation which is localized
to a finite region of the plasma and has a maximum value at some radius. The former is
taken here as a linear flow, while the latter is represented by a Gaussian function and may
be considered as a simple model for a zonal flow (although the full concept of a zonal flow
is more extensive). In both cases, the associated transport barriers were characterized indi-
cating that, in the linear flow the description corresponds to a twistmapwhile the Gaussian
flow may produce a non-twist map. The transport barrier for the twist map is the last KAM
surface to break up. In the non-twistmap, the transport barrier is associatedwith the shear-
less surface which is quite robust. After identifying the location of the transport barriers in
each case, their integrity of themwas analyzed with amethod that follows two particles on
each side of the barrier. When their trajectories get mixed, it marks the destruction of the
barrier. With this method, phase diagrams have computed that show the boundary of the
barrier breakup in the A−C space. The boundary has the typical bird wing shape indicating
the presence of barrier resurgences. As a general feature, the barriers break upwhen either
A or C are raised enough.

While the method applied here is not very accurate and the resolution of the diagrams
is relatively low, they give pretty good information on how the behavior of the barriers is in
these maps. Also, FLR effects were noted in the sense of reducing the loss of particles and
in delaying the destruction of the transport barrier. For both profile types, the results are
similar although for the Gaussian flow they seem to be more resilient, in agreement with
what is expected in non-twist maps.

Since transport barriers are extremely important for fusion plasmas, the results pre-
sented here are quite relevant to the understanding and advancement of plasma confine-
ment. In particular, our results indicate that the velocity shear, while needed for barrier
formation, shouldnot bemade too largebecause thatwoulddestroy thebarrier. Our results
should be improved by applying more accurate methods for barrier destruction such as
the Chirikov resonance overlap of the Greene’s residue criterion (1). For non-twist maps,
there are othermethods like the indicator points which are based on the symmetries of the
map (10).

Disclosure statement

No potential conflict of interest was reported by the author(s).



136 C. A. TAFOYA AND J. J. MARTINELL

Funding

This work was partially supported by project DGAPA-UNAM IN110021 and by Conacyt project A1-S-
24157. Support from supercomputer project LANCAD-UNAM-DGTIC-104 is also acknowledged.

Notes on contributors

Carolina A. Tafoya has BS in Physics from National Autonomous University of Mexico (UNAM).

Julio J.Martinell has a PhD fromMIT, USA and is a Professor at Instituto de Ciencias Nucleares, UNAM.

References

(1) Lichtenberg, A.J.; Lieberman, M.A. Regular and Chaotic Dynamics, 2nd ed.; Springer: New York,
1992.

(2) Kleva, R.; Drake, J. Phys. Fluids 1984, 27, 1686.
(3) Karney, C.F.F. Phys. Fluids 1979, 22, 2188–2209.
(4) Saito, S.; Nomura, Y.; Ichikawa, Y.H. Prog. Theor. Phys. 1995, 94, 745.
(5) Leboeuf, P. Phys. D 1998, 116, 8–20.
(6) Shinohara, S. Phys. Lett. A 2002, 298, 330–334.
(7) Kryukov, N.; Martinell, J. J.; del-Castillo-Negrete, D. J. Plasma Phys. 2018, 84, 905840301.
(8) Martinell, J. J.; del-Castillo-Negrete, D. Phys. Plasmas 2013, 20, 022303.
(9) del-Castillo-Negrete, D.; Martinell, J.J. Commun. Nnlinear Sci. Numer. Simul. 2012, 17, 2031–2044.

(10) Shinohara, S.; Aizawa, Y. Prog. Theor. Phys. 1997, 97, 379.
(11) del-Castillo-Negrete, D.; Greene, J.M.; Morrison, P.J. Phys. D 1996, 91, 1.
(12) del-Castillo-Negrete, D.; Morrison, P.J. Phys. Fluids A 1993, 5, 948.
(13) Ramasubramanian, K.; Sriram, M.S. Phys. D 2000, 139, 72–86.


	1. Introduction
	2. Transport model
	3. Inclusion of poloidal flows
	4. Determination of barrier breakup
	5. The barrier breakup phase diagrams
	5.1. Monotonic velocity profile
	5.2. Non-monotonic velocity profile

	6. Conclusions
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


