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The effect of a sheared flow onmagnetic islands in plasmas
with non-axisymetric geometry
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ABSTRACT
The stability of amagnetic island in a toroidal magnetic confinement
device depends on various factors besides the usual tearing-mode
stability parameter �′, determined by the local current profile.The
presence of a sheared flow in the vicinity of the rational surface that
supports the island is one of the factors that affects its stability since
it can give rise to a polarization current around the island position.
The contribution of the polarization current to the stability has been
computed for a tokamak geometry. Here, we consider the case of
magnetic islands with a shear flow in a stellarator which has a non-
axisymmetric magnetic geometry. The main difference is a contribu-
tion to the polarization current from the toroidal electrostatic oscil-
lation. A correction due to the global toroidal magnetic geometry is
also present. It is found that the regimewhere the stability is affected
corresponds to the large island width relative to the ion gyroradius.
Thus, the contribution is relevant for low-temperature regimes. In
that case, the polarization current is destabilizing for frequencies
larger than the ion diamagnetic frequency. Our results imply that the
sheared flow can produce a growth of the magnetic island in a cold
plasma but it can become narrower as the temperature rises.
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1. Introduction

The plasma in a toroidal confinement device has nested magnetic surfaces that have
constantpressurewhichhold thehigh-temperatureplasma in the core.Whenahelicalmag-
netic mode perturbs the magnetic surfaces a reconnection process takes place at rational
surfaces, where the mode resonates, and creates magnetic islands that connect inner-to-
outer plasma regions, deteriorating the confinement. Thus, the study of magnetic islands
has receivedmuch attention from their formation to the subsequent evolution. Usually, the
islands are formed by tearingmodes that are unstable when the parallel current profile has
a negative gradient around the rational surface, which is the common case in tokamaks,
but if non-axisymmetric fields are present such as in stellarators or when themagnetic field
ripple is large, the islands can appear because of the symmetry breaking, even without
plasma. Once formed, the stability of the island is determined by the plasma conditions
in its neighborhood (1). If the islands grow in size they can deteriorate the confinement or
even lead to disruptions.

CONTACT Julio J. Martinell martinel@nucleares.unam.mx

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/10420150.2018.1442459&domain=pdf
mailto:martinel@nucleares.unam.mx


46 M. S. CANCINO AND J. J. MARTINELL

Several effects enter in the island evolution. One of them is the presence of plasma
flows which normally inhibit magnetic reconnection (2, 3). But when there is a relative
flow between the island and the surrounding plasma, a friction force arises which tends
to reduce the flow and when it stops the island can grow. This is what happens with the
externally imposed resonant magnetic perturbations at the time of the so-called mode
penetration (4). In the linear theory of tearingmodes, pressure gradients impose a rotation
velocity to the reconnecting structures of the order of the ion diamagnetic frequency (5). In
the nonlinear theory, it is found that the diamagnetic effects give rise to the formation of
magnetic islands, even in regimes where the modes are linearly stable (6). Depending on
the islandwidth size,w, relative to the iongyroradiusρi, thedrive for island formation canbe
the polarization current (for w/ρi > 1) or the perpendicular velocity of the unmagnetized
ions (for w/ρi � 1). The role of the polarization current was analyzed in (7) for both large
and small islands establishing the effects that have to be included in each regime. These
studies have made clear that plasma flow relative to the island contributes to the island
stability through the polarization current. This current is due to the polarization drift asso-
ciated with the plasma flow along the island separatrix which is subject to an acceleration
when passing by the nozzle formed by the flux surfaces of the periodic island profile. Since
the drift velocity is not divergenceless, a parallel return current should appear to maintain
quasi-neutrality.

Most works on the role of the polarization current in islands with plasma flow have been
done for tokamaks, which have an inherent current to drive the tearing modes. In stellara-
tors, where there is not a significant current, the islands are normally formed in the vacuum
field produced by the non-axisymmetric external coils which are in turn modified by the
plasma dynamics. In that case the islands are initially locked by the coils but there is a rota-
tional plasma flow due to the ambipolar radial electric field, which is quite important in
stellarators. The polarization current associated with the velocity along the island separ-
trix should then play a relevant role in the island dynamics. For locked islands, it has been
found (8) that this current has adestabilizing effect on the island. In thisworkweanalyze the
island stability including the polarization current for a toroidal non-axisymmetric plasma.
The goal is to determine whether this contribution has a stabilizing or destabilizing effect
for both regimes where the island width is larger or smaller than the ion gyroradius. This is
of interest for the observations regarding the presence of islands in stellarators, in partic-
ular, the association of rational magnetic surfaces with transport barriers observed in TJ-II
and LHD (9, 10). The observations suggest that the rational surfaces give rise to magnetic
islands and at the same location there can be sheared plasma flows that inhibit turbulent
transport, then producing barriers. To explore this possible scenario, it would be necessary
to study first behavior of the islands when the shear flow is present. Although the effect of
the polarization current has been studied in different situations in tokamaks, as described
in (11, 12) relation to the excitation of neoclassical tearing modes, in stellarators there has
been not somuchwork. A possible reason is thatmagnetic island formation, in general, and
the flow-related polarization current, in particular, are not so pervasive as in tokamaks. The
study performed here shows that the flow provides a destabilizing contribution when the
island width is large relative to the ion Larmor radius.

This paper is organized as follows. In the next section, wemake a short description of the
treatment of magnetic islands introducing the role of the polarization current. The analysis
for stellarators is done in magnetic coordinates so we describe the Boozer representation
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which is the one used here. In Section 3, we compute the contribution of the polarization
current to the stability of the island in three regimes: theMHD limit, and the small and large
island width. In the last section, we discuss the results and give the conclusions.

2. Magnetic islands and geometry

Formation of magnetic islands takes place at rational surfaces, where q = 1/ι- = m/n, due
to reconnection of magnetic field lines mainly caused by tearing-mode instability. In the
vicinity of the rational surface, there is a layer where a component of the electric field
parallel to the magnetic field decouples the magnetic field lines from the fluid, so that a
magnetic perturbation grows leading to the a change of topology. Since the perturbations
are periodic a chain of islands is formed repeating m times in the poloidal direction and
n times in the toroidal direction. The linear theory applies when the island is smaller than
the layer width and predicts exponential growth. For larger islands, a nonlinear theory has
to be used in which the growth is proportional to time (13) and eventually leads to sat-
uration. Even in this case, the island width is assumed to be smaller than the equilibrium
scale-lengthsw< L. The width of the islands is determined by the amplitude of the pertur-
bation field and the equilibriummagnetic field shear. In order to express this in the toroidal
non-axisymmetric geometry of a stellarator, it is convenient to use Boozer coordinates, so
we write

B0 = ∇ψ × ∇(θ − ι-φ) = G∇φ + I∇θ + h∇ψ , (1)

B1 = ∇A × ∇ζ + ∇ϑ × ∇α (2)

for the equilibrium and the perturbed field, respectively. Here, θ and φ are the poloidal
and toroidal angles and G, I and the rotational transform ι- are flux functions depend-
ing of ψ only, while h = h(ψ , θ ,φ). The relevant coordinate is the helical angle at the
rational surface α = θ − ι-0φ. The perturbation describes the island through the symmetry-
breaking component A as proposed in (14). This component can arise from the coil errors
in stellarators, producing vacuum magnetic islands, or from plasma produced fluctua-
tions. In both cases, we can adopt a single harmonic approximation for which A(ψ0,α) =
A0 cosmα. Then, the flux function that describes themagnetic surfaces including the island
is (14)

� = 1
2
ι-′x2 − A0

ψ ′ cos ξ ≡ A0
ψ ′ (2χ

2 − 1) (3)

with ξ = mα being the helical coordinate, ι-′0 = dι-/dψ(ψ = ψ0) and x = (ψ − ψ0)
1/2. The

last part defines a normalized flux function χ to label the magnetic surfaces. The X-points
of the magnetic island are given by cos ξ = −1 and χ = 1 (�ψ ′/A0 = 1) is the separatrix,
while O-points have cos ξ = 1 and χ = 0 (�ψ ′/A0 = −1).

The island half-widths with plasma and in vacuum are as follows:

w = 2

√∣∣∣∣ A0ι-′ψ ′

∣∣∣∣, wv = 2

√∣∣∣∣ Av0ι-′ψ ′

∣∣∣∣ (4)

withψ ′ ≡ dψ/dρ = B0/Lα , Lα ≡ |∇α| and ι-′ = ι-/Ls; Ls = Rq/ŝ is themagnetic shear length,
R is the major radius and ŝ = (r/q)dq/dr is the magnetic shear.
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2.1. Evolution ofmagnetic islands

In the linear theory, the tearing mode instability is treated in two regions: the MHD outer
region and the non-ideal small inner region centered at the rational resonant surface.
Then the two solutions are matched through the derivative jump parameter �′ defined
as follows:

�′ = 1
A(x = 0)

dA
dx

∣∣∣∣
x=0+

x=0−
. (5)

When �′ > 0 the configuration is unstable and reconnection ensues. The nonlinear
description provides a relation for thematching condition between the stability parameter
�′ and the cosine component of the parallel current obtained from Ampere’s law which in
our coordinates is

�′A0 = −4π
c

∫ ∞

−∞
dx
∮

dξ cos ξ
γ

B2
J1 · B0 (6)

where γ = G + ι-I = B0 · (φ̂ + (ι- − ι-0)α̂). In addition, the sine component is related to
torque balance ∫ ∞

−∞
dx
∮

dξ sin ξ
γ

B2
J1 · B0 = 0 (7)

and these coupled equations determine the island evolution. When Equation (6) is com-
bined with Ohm’s law and Faraday’s law one obtains the Rutherford equation (13) for the
island width

dw
dt

= Dη�
′, (8)

where Dη is of the order of the magnetic diffusion coefficient (4πη/c2); �′ represents the
free energy available for the instability and it has to satisfy�′ > 0 to destabilize islands as
well as the tearing mode. When there are additional contributions to the current they are
included in the right-hand side of Equation (8). For instance, in toroidal devices there is a
contribution from the bootstrap current �BS which gives rise to the neoclassical tearing
modes. It turns out that an island can be unstable even if it is linearly stable (�′ < 0) as long
as �BS is large enough (15). In our case we are interested in the polarization current Jpol ,
which is the fluctuating part of the parallel current, and can be included in the evolution
equation of the magnetic island as follows:

dw
dt

= Dη(�
′ +�pol) (9)

the polarization current contribution�pol is given by

�pol = − 16Ls
cB0w

∮
dξ
∫ ∞

−∞
dxJpol cos(ξ). (10)

It is worth mentioning that if one is interested in the evolution of the vacuum island in
a stellarator it is necessary to include the phase difference between the island with plasma
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relative to the vacuum island �φ. In this case, �′ can also be divided into cosine and sine
components involving the phase difference

�′
c = �′

0

[
1 − ν

AV

A0
cos(�φ)

]
�′

s = −�′
0ν

AV

A0
sin(�φ) (11)

where ν is an order-unity parameter (14). The cosine component�′
c will contribute to the

island width evolution, while the sine component�′
s will contribute to the torque balance,

entering in the right-hand-side of Equation (7), which will determine the electromagnetic
torque NEM (16). Torque balance determines the relative phase of the island which also
includes a viscous torque NV ,

d2�φ
dt2

= NEM + NV . (12)

The goal is to compute the polarization current in order to obtain�pol. If�pol < 0 then
Jpol has a stabilizing effect in Equation (9) while it will be destabilizing if�pol > 0.�pol can
be parametrized as (7)

�pol = 4g
L2s
w3

ω(ω − ω∗i)
k2v2A

, (13)

where ω is the rotation frequency of the island, ω∗i = k(Ti/qiBLn) the ion diamagnetic fre-
quency and gwill determine the sign of�pol. Combining Equations (10) and (13), we obtain
and expression for g in the limit Ti → 0 that will be considered in the next section:

g = −4k2v2Aw
2

cB0Lsω2

∮
dξ
∫ ∞

−∞
dxJpol cos ξ . (14)

It can be proved (1) that boundary conditions in the island lead to a relation for the
island rotation frequency given byω = fω∗e + (1 − f )ω∗i, with f being the flattening factor
inside the island of the ion temperature profile.Wide islands have profile flattening so f =0,
meanwhile for narrow islands there are gradients and f =1.

3. Polarization current

The polarization current is defined as the oscillating part of the parallel current, Jpol ≡
J‖ − 〈J‖〉. We follow (7) in deriving the parallel current but using the geometry of the stel-
larator in the coordinates of last section. The transport in a stellarator depends on this
special geometry (17) and it is reflected in the calculations of Jpol. The model uses the drift-
MHD equations with cold ions, retaining the nonlinearity in the ion response. The width of
the layer where the velocity changes rapidly is of the order of the ion-sound Larmor radius,
ρs, so that, finite ion Larmor radius effects and ion diamagnetic drift can be neglected.
Thus, only the electron diamagnetic frequency will be of importance. The relevant equa-
tions are particle conservation, quasi-neutrality (∇ · J = 0), Ohm’s law and electron energy
conservation, which for an equilibrium reduce to (7)

�vE · ∇n = 1
e
∇‖J‖, (15)

∇‖J‖ = c2

4πv2A
�vE · ∇U, (16)
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1
n
∇‖n − e

Te
∇‖ϕ = −(1 + a)

∇‖Te
Te

, (17)

Te = Tσ (χ) (18)

the last equation representing the simplest energy conservation when the parallel trans-
port dominates and σ = ± denotes the profiles on each side of the island. Combining the
last two equations one obtains the normalized linear Boltzmann relation

ñ = ϕ̃ + Hσ (χ) (19)

whereHσ (χ) is an integration constant, ñ = (n − n0)/n′
0 and ϕ̃ = (eϕ/Te)Ln/w, with n0 the

density at the O-point. We will consider cases with Hσ (χ) = σH(χ) and Hσ (χ) = 0 inside
the island. Combining Equations (15) and (16), the later can be replaced by

ρ2s ∇2
⊥ϕ̃ − K(ϕ̃) = Hσ (χ) (20)

where K(ϕ̃) is another integration constant. This is like the Grad–Shafranov equation for
the island and its solution would give the potential ϕ̃ entering in the polarization current
derived below. The relevant equations are then Equations (15), (19) and (20).

The E × B velocity, �vE , has a toroidal component which affects the polarization current
in stellarators through the first term of Equation (15). The radial component of �vE is found
to be

vE · ∇ψ = − G

ι-B0
∇‖ϕ − ∂ϕ

∂α
. (21)

Using this in Equations (15) and (19), the resulting parallel current is

J‖ = eσn′
0

4χA
dH
dχ

G

ι-B0
ϕ + eσn′

0

4χA
dH
dχ

∂ϕ

∂α
s + I(χ), (22)

where I(χ) is an integration constant and s is the magnetic line length. The function Hσ (χ)
as well as K(χ) have to be determined by transport analysis. From the equation for J‖,
the polarization current is obtained by subtracting its average over the island flux surface,
which leads to the following expression in which the last term is a new contribution not
appearing in the axisymmetric case,

Jpol = n′
0ecs

ρs

w

Ls
LnLα

σ

χ

G

ι-2B0

dH
dχ

(
ϕ̃ − 〈ϕ̃〉

〈1〉 + ι-B0s
G

∂ϕ̃

∂α

)
(23)

or, in terms of g,

g = −
(
ω∗ew
ωρs

)2 G

ι-2B0Lα

∮
dξ
π

∫ ∞

−∞
dx
σ

χ

dH
dχ

[
ϕ̃

(
cos ξ − 〈cos ξ〉χ

〈1〉χ

)
+ ι-m

B0
G
s
∂ϕ̃

∂ξ
cos ξ

]
.

(24)

The last term (≡ gα) gives the non-axisymmetric effect. We next analyze the effect of this
extra term for wide and narrow islands. It will have a contribution to �pol only for small
ρs/w, coming from the region outside the separatrix layer. The type of flow profile should
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be inserted through Equation (7) inwhich the torques transmit the information to the inner
region, thus determining H(χ). In the case of locked islands the equivalent Equation (12)
would give this information. However, we will not consider this part here, assumingH(χ) is
given, and concentrate on the effect of the non-axisymmetric contribution of the polariza-
tion current. Following Connor et al. (7), we consider three different regimes.

3.1. MHD limit

For the large scales relevant for the MHD description, we can take the limit ρs → 0 and
there is no distinction between electrons and ions. The electric potential can be expanded
in powers of ρs/w and the lowest term turns out to be a flux function: ϕ̃0(χ). Therefore, it
does not depend on the helical coordinate and consequently the new term is gα = 0 for
this case. Thus, gwill be essentially the same as in the case for slab geometry, modified only
by the scale factorsmG/ι-2B0Lα (7),

g = mG

ι-2B0Lα

∫ ∞

0

dχ
χ

d
dχ

(
1
χ

d�̂
dχ

)2 (
〈cos2(mα)〉χ − 〈cos(mα)〉2χ

〈1〉χ

)
. (25)

It can be seen that g>0 and therefore the polarization current has a destabilizing effect in
the MHD limit. It has been shown with numerical calculations, however, that the destabi-
lization is overestimated with this approximation (7).

3.2. The large ρs/w limit

When ρs � w the vorticity term is dominant, as the island is thin; then its contributions,
on H and K, are negligible. Therefore, the solution in this limit does not contribute to gα
either. The only modification relative to the result in (7) is the scale factors, like the MHD
limit, obtaining

g = I G

ι-2B0Lα

w2

ρ2
= I G

ι-2B0Lα

w2

ρ2s

(
1 − ω∗e

ω

)
(26)

with

I = −4
∫ ∞

1
dχ

dĤ
dχ

〈cos ξ〉χ
〈1〉χ > 0 Ĥ(χ) = H(χ)

1 − ω
ω∗e

In this limit,�pol is also destabilizing in the fast rotation regime ω > ω∗e since g>0, but its
magnitude is smaller than in the MHD limit.

3.3. The small ρs/w limit

For the opposite limit, ρs � w, the potential can again be expanded in powers of ρs/w
keeping the first two terms. This provides a correction to the MHD solution. Solving
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Equation (16), the resulting electric potential is

ϕ̃ = ϕ̃0 + ρ

w
ϕ̃1 (27)

with

ϕ̃0 = ϕ̃ext(x,α) = a[|x| − cos(mα/2)]�(|x| − cos(mα/2)), (28)

ϕ̃1(x,α) = a

2
[e−w||x|−| cos(mα/2)||/ρ − e−w(|x|+| cos(mα/2)|)/ρ ], (29)

where a = ϕ̃′
0(1) cos ξ/2. Since there is now a dependence on the helical coordinate α, the

new term gα would be non-zero. There two regions:

(A) Inside the separatrix |x| < cos((m/2)α),�(|x| − cos((m/2)α)) = 0
(B) Outside the separatrix |x| > cos((m/2)α),�(|x| − cos((m/2)α)) = 1

have to be considered separately to solve for gα . Inside the separatrix, the profiles are uni-
form (dH/dχ = 0). Meanwhile, in the outside, they have gradients. The derivatives in the
helical coordinate of the two terms of the electric potential ϕ̃ are as follows:

∂ϕ̃1

∂α
= −mϕ̃′

0(1)

4
sin

ξ

2

[(
1 +

w
ρ
| cos ξ2 |

sgn(|x| − | cos ξ2 |)

)
e−w||x|−| cos ξ2 ||/ρ

−
(
1 − w

ρ

∣∣∣∣ cos ξ2
∣∣∣∣
)
e−w(|x|+| cos(ξ/2)|)/ρ

]
< 0 (30)

and
∂ϕ̃ext

∂α
= ϕ̃′

0(1)m

2

(
sin ξ − |x| sin ξ

2

)
. (31)

The term given in Equation (30) is negative and it would be expected to have positive
contribution to gα , as long as dH/dχ > 0. On the other hand, the term in Equation (31) is
odd in ξ andwhen integratedwith the cos ξ in gα , which is even, cancels out giving gextα = 0
Then the contribution of the polarization current for non-axisymmetric geometry is found
to be destabilizing,�pol > 0, having the value

gα =
(
ω∗ew
ωρs

)2 mσ sϕ̃′
0(1)

2ι-Lα

∫ ∞

1

dχ
x

dH
dχ

×
∮

dξ
2π

cos ξ sin
ξ

2
[e−w||x|−| cos(ξ/2)||/ρ − e−w(|x|+| cos(ξ/2)|)/ρ ] (32)

The result of the integral in g will depend on the expression for H (actually, it is more
convenient to use the normalized Ĥ(χ) = H(χ)/(1 − ω/ω∗e)) which will be related to the
plasma flow profile. That integral will have a numerical value whose sign will be the sign of
dH/dχ since, for the regionoutside the separatrix layer, the term inbracketswill be positive.
Since for physical profiles the derivative is positive, the polarization current contribution is
destabilizing. In (7) it was found that there is also a correction to theMHD value in this small
ρs/w regime that is stabilizing. For a given island width, it is expected these contributions
to be a small for fusion plasmas since it applies at ρs � w, i.e. low temperatures.
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4. Conclusions

The effect of the ion polarization current due a plasma flow on the stability of an island
is considered for a non-axisymmetric device. Cases with the island initially formed by the
tearingmodeor producedby symmetry-breaking external coils are discussed. The later rep-
resents a locked island which has the plasma flow around it. Our emphasis is about the
influence the polarization current on the island evolution for a given velocity profile but
we do not attempt to derive this profile. The results, the implications and the further work
needed are the following.

• Themain effect of�pol is the sameas in the caseof axisymmetrywhich is generally desta-
bilizing in the MHD limit and in the limit of small island relative to the ion Larmor radius.
For large relative size of the island the non-axisymmetric contribution is important and
has two parts coming from the solution outside the separatrix layer and an internal term
which is second order in ρs/w.

• The toroidal geometry in flux coordinates provides a correction with a scale of the
order of mG/ι-2B0Lα which would be less than one. Thus, the effect is to decrease the
contribution of the polarization current.

• The new non-axisymmetric contribution is found to be destabilizing in the regime of
high velocity ω > ω∗.

• A vacuum island that is locked to the external fields would tend to grow provided the
effect of�pol is large enough,whichwill happen for steep velocity profiles. Thismight be
related to the interplay observed between MHD activity and transport barriers around
rational surfaces in stellarators (10).

• Here, there is no consideration of the torque balance equation or of the transport analy-
sis, so it should be included in a more complete study. Transport is expected to provide
a better information of the coupling with the external plasma and the torques would
determine the influence of the external flow profiles.
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