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Local modeling of collisionless magnetic reconnection
in the dayside magnetosphere

Julio J. Martinell*

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
A. Postal 70-543, Mexico D.F., Mexico

Driven magnetic reconnection in the magnetospheric plasma, where collisions are extremely rare, is studied
using a two-fluid collisionless plasma model. A local approximation is used for the dayside magnetosphere
in which the magnetic field at the magnetopause has a null X-point with a guide field. Numerical computa-
tions are made for two situations that can occur: namely, a continuous solar wind drive and a bursty drive.
They are compared under different circumstances focussing on the way the reconnection rate changes in
time and on the resulting magnetic configurations. It is shown that the case of sequential impulsive events
is more efficient than the continuous reconnection case.

Keywords: magnetosphere physics; magnetic reconnection; collisionless plasmas; numerical modeling;
auroras

1. Introduction

The interaction of the solar wind magnetic field with the Earth’s magnetosphere gives rise to
various important phenomena such as geomagnetic substorms or flux transfer events (FTEs). It is
now accepted that the physical process behind most of these episodes is magnetic reconnection,
which takes place at different locations. Magnetic reconnection can occur either at the dayside
of the magnetosphere or within the geomagnetic tail, and each one is associated with different
observational phenomena. One result of reconnection is the conversion of magnetic energy into
energetic particles, which move polewards along magnetic field lines giving rise to the aurora.
It is believed that these events originate mainly at the geomagnetic tail, but it has been shown
that dayside reconnection can also be important in producing auroral events. The latter can occur
for both orientations of the solar wind magnetic field direction; for southward direction, the
reconnection takes place near the equator, while high-latitude reconnection occurs for northward
interplanetary magnetic field (IMF) directions in the solar wind. It has been found that high-latitude
reconnection produces the so-called dayside proton auroral spots (1).

There is also the question of the duration of reconnection events. It is well known that the
magnetic substorms are burst-like events that last for a short time, and the auroras also have a finite
duration. On the other hand, the global dynamics of the magnetosphere indicates that magnetic
reconnection occurs at a steady pace. It follows a cycle that starts with the creation of open field
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lines by dayside reconnection, which are convected by the solar wind to the nightside where they
pile up along the magnetotail and then there appear closed field lines by the tail reconnection
which convect back to the dayside. This cycle may occur through a continuous reconnection
process that takes place at both places, the dayside and the magnetotail, simultaneously, but it
might also result as a sequence of bursty reconnecting events. There is some controversy as to
the nature of this process. At the geomagnetic tail, it is likely that reconnection is produced by
high-speed regions of the solar wind, which increase the plasma pressure around the tail, and
these are impulsive processes. On the dayside, there are non-steady processes such as FTEs (2)
that involve merging of magnetic flux tubes, but due to a continuous flow of the solar wind, the
reconnection can also happen steadily at certain places; its onset and ending would just depend
on the direction of the IMF. However, owing to the changing conditions of the solar wind, some
observations show a bursty sequence of reconnections (3), while others support the existence of
a continuous process (4).

Here, we consider a dayside magnetic reconnection in the magnetopause. For low-latitude
reconnection, the IMF is southward and there is evidence that favors intermittent behavior. In
contrast, for northward IMF, there is high-latitude magnetic reconnection, which gives rise to
dayside proton aurora and detailed observations show that it appears in a continuous way (4).
The place of the reconnection moves about in longitude as the east–west direction of the IMF
fluctuates, since the reconnecting field lines have to be always antiparallel, but the process does
not stop. It is thus of interest to consider both steady and bursty magnetic reconnection events.

In general, the magnetic field does not have to be antiparallel for the reconnection to take
place; it is possible to have a component of the magnetic field perpendicular to the plane of
reconnection. This would correspond, for instance, to an east–west component of the IMF when
the Earth’s magnetic field is north–south, like in the noon position. This perpendicular field
component (or guide field) is taken into account in the model presented here.

Magnetic line merging is initiated when two plasma regions having magnetic fields of opposite
polarities are pushed together in what is known as driven reconnection. Since magnetospheric as
well as solar wind plasmas are effectively collisionless, the mechanism for current limitation that
leads to reconnection has to come from non-ideal effects such as electron inertia. Other effects,
such as the Hall term in the generalized Ohm’s law, may also contribute to the phenomenology.
Many studies on collisionless magnetic reconnection have been made that include various terms in
Ohm’s law, with and without a neutral sheet, but few are directly applicable to the magnetospheric
conditions.

For the parameters at the magnetosphere, n ∼ 1010 cm−3, T ∼ 6 eV, B ∼ 10−4 G, the ion–
sound gyroradius is ρs ∼ 20 km while electron inertial skin depth is de ∼ 1 km. Additionally, for
these parameters, one finds that the ratio of thermal to magnetic pressure is β ∼ 1/4, so that
the relevant regime to consider has ρs > de but β < 1. Moreover, it is appropriate to model the
local magnetic geometry by an X-point with a guide field normal to it. This would represent
the meeting point of the solar wind IMF with the magnetosphere at the magnetopause, since the
two fields would in general meet with directions having different angles relative to the ecliptic.
This is one of the most studied configurations for driven magnetic reconnection: in this case,
the drive provided by the convection of the solar wind plasma. A recent study of this geometry
within the range ρs/de > 1 of current interest was presented in (5), but for the parameters relevant
for the Versatile Toroidal Facility where reconnection experiments are conducted, including an
approximate analytical estimate of the growth rate, as well as a numerical evaluation, but in the
linear regime for the drive strength. A more complete analysis of collisionless driven reconnection
has been addressed in (6), but the regime ρs > de was not studied. Therefore, analyzed here is
the evolution of an X-point configuration for the regime ρs > de and in the presence of a guide
field, for a compressible collisionless plasma taking into account the Hall effect. Full nonlinear
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116 J.J. Martinell

equations are used, as opposed to the works of (5, 6), where the linearized equations were analyzed
analytically and numerically.

2. Driven reconnection model

The mathematical model used is based on the two-fluid equations with the quasi-neutrality con-
dition ne = ni = n. The relevant equations are the particle conservation equation and the ion
momentum and electron momentum equations:

∂n

∂t
= −∇ · (nVi ), (1)

mi

[
∂

∂t
+ (Vi · ∇)

]
Vi = eE + e

c
Vi × B − eηJ, (2)

E + 1

c
Ve × B = −me

e

[
∂

∂t
+ (Ve · ∇)

]
Ve + ηJ − ∇p

en
, (3)

where the current is J = ne(Vi − Ve) and the fields are governed by Maxwell’s equations without
the displacement current. The ions are assumed to be cold.All quantities have their usual meanings.
Although this paper is interested in a collisionless plasma, the resistivity η is included here for
completeness and for comparison purposes, but will eventually be made zero.

A Cartesian geometry is considered, symmetric along the z coordinate, having an equilibrium X-
point magnetic configuration in the (x, y)-plane and a guide field in the z-direction. The magnetic
field is represented by B = ẑ × ∇ψ(x, y, t) + Bz(x, y, t)ẑ. The equilibrium magnetic potential
that gives an hyperbolic X-point is ψ0 = B ′

⊥xy and is characterized by a scale length defined by
l0 ≡ Bz0/B

′
⊥. The ion velocity is actually the plasma velocity Vi = v, and a general representation

can be given in terms of the potentials φ and χ (related to the plasma compressibility) as vi =
ẑ × ∇φ(x, y, t) + ∇χ(x, y, t) + vz(x, y, t)ẑ. In the equilibrium state, the values v0 = 0, J0 = 0
and n0 = constant are taken. Then, the two-fluid equations are taken for the strong guide field
orderings, β < 1 and l0/di � 1, where di = c/ωpi is the ion skin depth. In the limit vz → ∞, they
can be reduced to a set of three equations for the three perturbed variables ψ, φ and the density n,
which enters through the variable ξ ≡ (l0/di) log(n/n0). They follow from the component ẑ · ∇×
of Equation (2) and the component ẑ· of Equation (3). These equations are (7):

∂U

∂t
= [U, φ] + [ψ, ∇2ψ], (4)

∂

∂t
(ψ − d2

e ∇2ψ) = [ψ − d2
e ∇2ψ, φ] − ρ2

s [ψ, ξ ] + εη∇2ψ, (5)

∂ξ

∂t
= [ξ, φ] + [ψ, ∇2ψ], (6)

where [f, g] ≡ ẑ · ∇f × ∇g, U ≡ ∇2φ is the vorticity and all variables are normalized according
to φ → φ/(l2/τA), ψ → ψ/(l2B ′

⊥), the lengths to the system size l and the time to theAlfvén time
τA = (4πn0mi)

1/2/B ′
⊥. The term proportional to ρs in Equation (5) is proportional to the electron

compressibility and the resistive term is given by εη = (de/l)2νeiτ , with νei the electron–ion
collision frequency.

A linearized version of this set of equations was studied in (5, 6), for the case of forced recon-
nection by an induced electric field in an X-point, finding time-asymptotic analytical solutions
that were corroborated numerically. A nonlinear simulation of a similar model was made in (8)
but for an initial equilibrium of the type of a neutral current sheet and for parameters not relevant
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to the magnetosphere. Equations (4)–(6) can be simplified to the so-called reduced model for
reconnection when U = ξ . This model, as well as other models, has been studied by Aydemir (9)
in driven X-point reconnection, and he showed that the reconnection rate is independent of the
particular model, being determined only by the external driving features, which are introduced
through the boundaries. A similar conclusion can be reached for the current model, as will be
shown below.

When the external drive leading to reconnection is weak, the linearized equations can be sim-
plified to a single equation which can be solved analytically in the time-asymptotic limit (5), but
the full-time evolution has to be obtained numerically. In order to study the nonlinear evolution of
the X-point configuration, Equations (4)–(6) are solved numerically, starting from the equilibrium
state mentioned above and driving an inwards flow from the boundaries of the domain considered.
The numerical method used is based on a finite difference leapfrog trapezoidal scheme in a finite
square box of size L. The imposed flow at the boundary with a velocity v0 is given in terms of
the stream function by

φ(x, y, t = 0) = v0l0

4
ln

(
y2 + δ2

x2 + δ2

)
, (7)

where δ is a parameter used to avoid singularities and is of order ρs. The boundary conditions are
applied at (x, y) = ±L and L = 1 is taken. For φ, ξ and U , the boundary values of the functions
are fixed to their equilibrium values plus a driving function, while for ψ and J , the values of
the normal derivatives are the ones specified. The time-dependent boundary conditions are in
accordance with Equation (7):

φ(±1, y, t) = 1

4B ′
⊥

f (t) ln(y2 + δ2), φ(x, ±1, t) = − 1

4B ′
⊥

f (t) ln(x2 + δ2), (8)

∂ψ(±1, y, t)

∂y
= B ′

⊥y,
∂ψ(x, ±1, t)

∂x
= B ′

⊥x, (9)

and ξ(±1, y, t) = ξ(x, ±1, t) = 0, where f (t) is the time-dependent driving function. For an
impulsive drive,

f (t) = v0Bz0

(
t

τd

)
exp

[−t

τd

]
, (10)

is used, while for a steady forcing:

f (t) = v0Bz0

(
1 − exp

[−t

τd

])
. (11)

These expressions are chosen in such a way as to start at zero for t = 0 and then have a growth with
a characteristic time τd. The initial conditions inside the computational domain are φ(x, y, t =
0) = 0, ξ(x, y, t = 0) = 0 and ψ(x, y, t = 0) = B ′

⊥xy.
The numerical code was benchmarked for a case of low and continuous forcing with VI =

v0l0 = 0.1 and it was found that the system evolves to reach a steady reconnection state which
corresponds to the asymptotic analytical solution found in (5) for the central current density.
The parameters used over most studies were ρ2

s = 0.2, d2
e = 0.02, l0/di = 2. The guide field

magnitude is included in l0. The cases with no guide field are not described by these equations
and thus they will not be addressed here. In the following, the numerical computations for the
three relevant quantities ξ, φ and ψ , as well as the vorticity U and current density J = ∇2ψ

are shown. In most of the results presented, the collisionless limit is taken, with εη = 0, and the
resistivity is just taken into account for comparative cases, which are explicitly mentioned.
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118 J.J. Martinell

3. Impulsive and continuous reconnection

We assume that some perturbation in the solar wind is pushing on the external boundary of
our simulation region and thus the time evolution starts when a velocity drive is produced as a
boundary condition in the initial equilibrium state ψ0 = B ′

⊥xy. We first use the continuous drive
given by Equation (10) in the boundary condition (Equation (8)). The important parameter in
determining the reconnection properties is the driving strength VI. As it was found in (9), it can
be obtained that for low VI the X-point maintains its configuration as reconnection proceeds and
thus the induced current is concentrated mainly around the X-point. However, for large VI, the
strong forcing is faster than the reconnection rate and the X-point flattens to form a current sheet.
This indicates that the external conditions, imposed through the boundaries, are the main factors
in determining the reconnection properties, as concluded in (9). Here, the resistive case is used
as a reference to compare the collisionless results. In that case, the reconnection starts increasing
during the drive characteristic time, which is taken as τd = 1.0, and then the magnetic flux grows
at a steady pace, giving a constant reconnection rate γR0. Similarly, the current grows in a time
of a few τds and then it saturates at a constant value Jm. This behavior is obtained for all values
of the driving strength VI. It is found that both γR0 and Jm increase with B ′

⊥ and VI with almost
linear dependence. In fact, the following relations hold true

γR0

B ′
⊥

∼ V α
I ,

Jm

B ′
⊥

∼ V α
I , (12)

with α ≥ 1.
Figure 1 shows the final configurations for the velocity potential φ, the magnetic potential or

magnetic flux ψ , the density ξ and the current J , after the transient time has elapsed, for both
the resistive and the collisionless cases. The diagrams represent constant contour plots of the
respective quantities and thus they give the velocity stream lines (φ) and the magnetic field lines
(ψ). The flow is incoming from the lower-left and upper-right corners and exits from the lower-
right and upper-left corners. At earlier times, U and ξ evolve independently but at this late stage it
is found that the vorticity coincides with the density, i.e. U = ξ , which is precisely the condition
for the reduced model to apply. This means that the system tends to adjust itself to that model and
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Figure 1. Contour plots for φ and ψ (upper row) and current and density ξ (lower row). The resistive case is on the
left-hand side and the collisionless case on the right-hand side. For both cases, B ′⊥ = 0.6, VI = 0.4, and for the resistive
case, εη = 0.1, while d2

e = 0.02 and ρ2
s = 0.2 for the collisionless case.
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then Equations (6) and (4) give the same evolution, reducing the system to just two Equations
((4) and (5)) that have been studied repeatedly. The high driving strength with VI = 0.4 is used
here, which is enough to produce a current sheet in both cases. The formation of a noticeable
current sheet occurs for VI ≥ 0.1. For the collisionless case, the current sheet becomes unstable for
the strong drive and the smooth structure is destroyed, so the times shown for that case correspond
to earlier times than for the resistive case.

The central value of ψ gives a measure of the reconnected magnetic flux, and the reconnection
rate will be defined by γR = dψ(r = 0)/dt . In Figure 2, the time evolution of ψ(r = 0) = ψ0

is shown, together with that of the central current density, J (r = 0), for a moderate drive of
VI = 0.1. The slope of the curve ψ0(t) gives γR. For comparison, also shown is the reconnected
flux ψ0 and Jm for the purely resistive case. They are given by the dashed curves which correspond
to εη = 0.1 and ρs = de = 0. It is clear that in this case, both γR and J (0) approach a constant
value, which is determined solely by the forcing strength, as given by Equation (12). However,
for the collisionless case, the growth rate and current are continuously changing and there is
no tendency of getting to an asymptotic limit. In contrast, the low forcing case behaves more
like the resistive case, reaching constant values for γR and Jm. As can be seen, the collisionless
reconnection proceeds initially at a slower rate than the resistive one, since the noncollisional
effects that lead to reconnection are weaker, but as time increases γR grows substantially and then
goes back to a moderate value but still about 50% larger than the resistive one for the parameters
of Figure 2. The high γR is associated with a large current rise too, leading to very large final
values of J0, but very localized at the X-point position.

The second case studied is the impulsive drive. This is given by Equation (11), which lasts
only a time of the order τd. It is expected that the reconnection will only last a finite time, as
the drive is pulsed. That could be the result of a solar wind gust buffeting the magnetosphere,
which would lead to short-lived reconnection and it will die out at large times. That is indeed the
situation found, with the physical features obtained for continuous forcing remaining almost the
same, during the reconnection period. However, the important issue is the decaying time of the
reconnection process once the drive is over. As it turns out, the plasma near the X-point takes
quite a long time to go back to its original state, especially when the drive is strong. In Figure 3,
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Figure 2. Reconnected magnetic flux ψ0 and X-point current J (0) as functions of time with continuous drive for the
resistive case (dashed lines) and collisionless plasma (solid lines). Curves for J (0) are marked with circle symbols and
correspond to scales at the right axes. The larger scale (0–25) is for the collisionless case, while the resistive case has
lower currents (0–0.3).
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the time evolution of ψ0 and J is depicted for a collisionless plasma when the forcing is moderate
(VI = 0.1). The development of the instability observed for continuous forcing is still playing a
role, since the current does not fall back to zero immediately after the flux stops growing. The
growth rate γR is essentially zero after a time t ≈ 4τd = 1, while the current remains at J (0) ≈ 1
for several times τd.

This will have important consequences when there are multiple impulses in a sequence, since
the remaining effects of the first pulse will affect the initial conditions for the second pulse and
so on. This will be relevant in the magnetosphere when consecutive solar ejections (coronal mass
ejections) or similar events arrive at the magnetosphere. The resulting reconnecting events will
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Figure 3. Reconnected magnetic flux ψ0 and X-point current J (0) as functions of time for the collisionless case with
an impulsive drive with a time constant, τd = 1. The curve marked with circle symbols refers to J (0) with its scale on the
right-hand side axis.
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symbols) and ψ0.
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have a memory of the previous pulses and the magnetic configurations would be different. Such
an example is shown in Figure 4, which represents the evolution of ψ0 and J (0) upon the arrival
of two pulses separated in time T = 12τd. Naturally, the amount of reconnected flux increases
with the arrival of each pulse, but the central current also keeps increasing when the pulses arrive
in sequence. Thus, in some sense, these processes act as some kind of continuous reconnection,
keeping track of the previous events. Only if the separation between pulses is very long, the plasma
will return to its initial state after the reconnection and one will have the effect of independent
impulsive events.

4. Conclusions

This paper has studied the magnetic reconnection phenomenon in a collisionless plasma having
the physical conditions relevant to the magnetosphere, i.e. ρs > de and β < 1. The issue of having
continuous drive or a pulsed drive was addressed, since this is of great relevance in the dayside
magnetosphere. As a representative local magnetic configuration, we used an X-point geometry
which initially is in equilibrium with zero electrical current. The mathematical model consists of
three equations for the three fields φ, ψ and the density. It was shown that this model converges
to the reduced model with only two equations, in the time-asymptotic situation.

For the case of a continuous forcing, some differences were found between the current model
and the resistive model, dominated by collisions. When compared with the resistive case, the
collisionless model has an initially slower reconnection rate, but after a few Alfvén times, it starts
growing faster so that there is a larger net reconnected flux in the case with no collisions. The
spatial distributions are more compact in the sense that the currents are concentrated into smaller
volumes. Then the case of impulsive drive showed that while ψ0 approaches a final value after
the drive has finished, the current is maintained without falling off for a longer time. This has the
effect that when there are multiple pulses arriving in sequence to drive the reconnection, there is
some degree of memory that continues to increase the total reconnected magnetic flux and the
X-point current. This accumulative effect will act in the same way as the continuous drive.

These results may explain the observations reported in (4) of the continuous presence of auroral
spots for periods of 4–9 h, which indicate a that continuous reconnection event was taking place,
even for different solar wind conditions. They also showed evidence that the reconnection does
not stop for periods longer than 5 min. This can be understood in terms of multiple pulses, since
the final result is to give the appearance of a continuous reconnection, even when the drive is
switching on and off. As Figure 4 shows, the magnetic flux and the X-point current are always
increasing, although at a slow pace between pulses. For the parameters in the magnetosphere
given in Section 1 and l0 = 10 km, the Alfvén time is τA ≈ 4 × 103 s, which means that the
reconnection process for a single pulse continues for more than 1 h, explaining the timescales
reported in (4).
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