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Finite Larmor radius (FLR) effects on E � B test particle chaotic transport in the presence of zonal

flows is studied. The FLR effects are introduced by the gyro-average of a simplified E � B guiding

center model consisting of the linear superposition of a non-monotonic zonal flow and drift waves.

Non-monotonic zonal flows play a critical role on transport because they exhibit robust barriers to

chaotic transport in the region(s) where the shear vanishes. In addition, the non-monotonicity gives

rise to nontrivial changes in the topology of the orbits of the E � B Hamiltonian due to separatrix

reconnection. The present study focuses on the role of FLR effects on these two signatures of

non-monotonic zonal flows: shearless transport barriers and separatrix reconnection. It is shown

that, as the Larmor radius increases, the effective zonal flow profile bifurcates and multiple

shearless regions are created. As a result, the topology of the gyro-averaged Hamiltonian exhibits

very complex separatrix reconnection bifurcations. It is also shown that FLR effects tend to reduce

chaotic transport. In particular, the restoration of destroyed transport barriers is observed as the

Larmor radius increases. A detailed numerical study is presented on the onset of global chaotic

transport as function of the amplitude of the drift waves and the Larmor radius. For a given

amplitude, the threshold for the destruction of the shearless transport barrier, as function of the

Larmor radius, exhibits a fractal-like structure. The FLR effects on a thermal distribution of test

particles are also studied. In particular, the fraction of confined particles with a Maxwellian

distribution of gyroradii is computed, and an effective transport suppression is found for high

enough temperatures. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790639]

I. INTRODUCTION

Zonal shear flows are known to have a profound influ-

ence on transport in fluids and plasmas. Of particular interest

is the relationship between the shear of the zonal flow and

transport barriers. In the context of turbulent transport, it has

been argued that an increase of shear can lead to a reduction

of transport. This is because, under certain conditions, high

enough flow shear can lead to reduction of the turbulence

correlation length and thus to a decrease of the turbulent

transport.1 However, in the context of chaotic transport, the

opposite is typically the case. In these systems, it has been

observed that low levels of shear, and in particular, the pres-

ence of shearless regions is directly related to transport bar-

riers.2–5 It is interesting to point out that recent experimental

studies reported in Ref. 6 indicate that transport in the Texas

Helimak is not reduced in the high velocity shear regions.

In this paper we focus on the chaotic transport regime.

That is, we assume that, from the Eulerian perspective, the

system is not turbulent. However, because of deterministic

chaos, there is Lagrangian turbulence, i.e., test particle tra-

jectories exhibit sensitive dependence on initial conditions

(positive Lyapunov exponents). As it is well-known, in the

case of a constant, uniform magnetic field, the E � B drift

can be described by a Hamiltonian system with the electro-

static potential, /, playing the role of Hamiltonian and the

perpendicular (x,y)-coordinates playing the role of canoni-

cally conjugate variables. When there is a reference frame in

which / is time-independent, the Hamiltonian system is inte-

grable and the isocontours of the potential define transport

barriers in the (x,y)-plane, also known as KAM (Kolmo-

gorov-Arnold-Moser) curves. However, when perturbations

with a time dependence that cannot be removed by a Gali-

lean change of reference frame are added, the Hamiltonian

system is in general not integrable. In this case, while some

of the KAM curves are preserved others are destroyed and

cease to act as transport barriers. The problem of the transi-

tion to chaos consists of determining when and how this hap-

pens. Lagrangian turbulence is relevant in systems

dominated by coherent structures and in particular in systems

with strong zonal shear flows.

Most of the previous works on chaotic transport have

neglected finite Larmor radius effects. That is, in those stud-

ies, the passive tracers were advected using the guiding cen-

ter E � B Hamiltonian. Although this approximation is

widely used, it fails when the Larmor radius is large, as it is

the case, for example, for high energy a-particles produced

in fusion reactions. Among the few previous works on FLR

effects on E � B chaotic transport are Refs. 7 and 8. Refer-

ence 7 studied FLR effects on nondiffusive transport follow-

ing a Lagrangian statistics approach. The Lagrangian

velocity autocorrelation function and the statistical moments

of particle displacements were shown to exhibit non-

diffusive scaling due to L�evy flights induced by the zonal

flow. The shape and the spatio-temporal self-similar anoma-

lous scaling of the probability density functions of particle

displacements were reproduced accurately by a non-local (in

space and time) effective transport model. More recently,

Ref. 8 showed that FLR effects give rise to a bifurcation of

non-monotonic zonal flows that create multiple shearless
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regions. This reference also presented a study of the depend-

ence of the phase space topology and separatrix reconnection

on the Larmor radius. Following Refs. 7 and 8, our study of

FLR effects is based on the gyroaveraging9 of the Hamilto-

nian model of chaotic transport by drift waves proposed in

Ref. 4. FLR effects on turbulent transport, in general and in

particular, sub-diffusive radial transport in Hasegawa-

Wakatani turbulence with zonal flows have also been studied

in Refs. 10–12.

Going beyond these previous studies, in the present pa-

per, we focus on chaotic transport in non-monotonic zonal

flows. We show that an increase of the Larmor radius leads

to a bifurcation of the zonal flow profile that results in the

formation of additional shearless curves and the improve-

ment of confinement. We present necessary and sufficient

conditions for this bifurcation to happen in the case of sym-

metric zonal flows and study its role in the phase space to-

pology of the gyro-averaged Hamiltonian. We provide

numerical evidence of the role of FLR on the reduction of

chaotic transport. In particular, we show that FLR effects

generically suppress chaos and can lead to the restoration of

broken transport barriers. This result is of direct relevance to

fusion plasmas as it implies better confinement for particles

with large Larmor radii, e.g., thermonuclear a-particles in

burning plasmas. We present a detailed numerical study of

the threshold for chaotic transport. We show that in the drift-

wave amplitude versus Larmor radius plane, the boundary

defining the threshold for the transition to global transport

has a fractal-like structure. To explore the dependence of

these results on the plasma temperature, we study the frac-

tion of confined particles with a Maxwellian distribution of

Larmor radii and find an effective suppression of chaotic

transport for high-enough temperatures.

The rest of the paper is organized as follows. Section II

defines the transport model. The starting point is the E � B

guiding center velocity with an electrostatic potential consist-

ing of the superposition of two drift waves and a background

zonal flow. The FLR model is then obtained from the gyro-

average of the E � B Hamiltonian. In Sec. III, we study the

bifurcation of the zonal flow profile as function of the Larmor

radius and the phase space topology of the gyro-averaged

Hamiltonian in the integrable case with a single mode pertur-

bation. Section IV presents a numerical study of the transition

to chaos due to the destruction of transport barriers as func-

tion of the Larmor radius. It is shown that, for high enough

mode amplitudes where transport barriers are no longer

present when q ¼ 0, a transport barrier can reappear as q
increases from zero. The threshold for barrier destruction as

function of the mode amplitude and the Larmor radius is

determined. In Sec. V, we consider cross-flux transport for a

thermal distribution of particles, corresponding to a Maxwel-

lian distribution in q. The effectiveness of the transport bar-

rier is measured by the fraction of total particles that cross the

barrier. Section VI presents the summary and conclusions.

II. FLR TEST PARTICLE TRANSPORT MODEL

We assume a slab model for a toroidal plasma with the

ðx; y; zÞ coordinates corresponding to the radial, poloidal, and

toroidal directions, respectively. The plasma density gradient

is assumed along the x-coordiante and the magnetic field is

constant and purely toroidal, B ¼ Bẑ. We limit attention to

test particles, i.e., self-consistency effects are neglected and

the particles are transported by the flow without modifying

it. Only motion in the plane perpendicular to the magnetic

field is considered so the model is two-dimensional. As men-

tioned before, when finite Larmor radius (FLR) effects are

neglected, in the E � B approximation the particle orbits are

determined by

dr

dt
¼ E� B

B2
; (1)

where r ¼ ðx; yÞ denotes the particle position and E is the

electrostatic field. Writing E ¼ �r/ðx; y; tÞ, Eq. (1) can be

equivalently written as the Hamiltonian dynamical system

dx

dt
¼ � @/

@y
;

dy

dt
¼ @/
@x

; (2)

where the electrostatic potential is the Hamiltonian, the spa-

tial coordinates are the canonical conjugate phase space vari-

ables, and time has been rescaled by B.

The spatio-temporal dependence of the electrostatic

potential of the drift-waves, /, is determined by the

Hasegawa-Mima equation13

½@t þ ðz�r/Þ � r� ðr2/� /� bxÞ ¼ 0; (3)

where the parameter b ¼ n0ðxÞ0=n0ðxÞ is the scale length of

the density gradient. However, rather than solving this non-

linear drift equation, we follow Refs. 4, 14, and 15, and con-

struct / using the eigenmodes of Eq. (3), i.e., we write

/ ¼ u0ðxÞ þ
XN

j¼1

ej ujðxÞ cos kjðy� cjtÞ; (4)

where the first term on the right hand side of Eq. (4) corre-

sponds to an equilibrium zonal shear flow, u0 ¼ u0ðxÞ ey

¼ ez �ru0, which will be taken to be a non-monotonic

zonal flow of the form,

u0ðxÞ ¼ U þ sech2x; (5)

and the second term on the right hand side of Eq. (4) is a

superposition of linear drift waves with eigenfunctions uj,

wave numbers, kj, and wave velocities cj. The variables are

normalized to the characteristic length, L, and velocity, V of

the zonal flow. Following Ref. 4, we use as eigenfunctions

the two regular neutral modes of the system and write

/ ¼ tanh x� gxþ e1 sech2x cosðk1yÞ
þ e2 sech2x cosðk2y� xtÞ; (6)

where g ¼ c1 � U.

For relatively high energy particles, or for a flow vary-

ing relatively rapidly in space, the zero Larmor radius

approximation fails and it is necessary to incorporate FLR

effects. A simple, natural way of doing this is to substitute
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the E � B flow on the right hand side of Eq. (2), which is

evaluated at the location of the guiding center, by its value

averaged over a ring of radius q, where q is the Larmor ra-

dius.9 Formally, the procedure is given by

dx

dt
¼ � @/

@y

� �
h

;
dy

dt
¼ @/

@x

� �
h

; (7)

where the gyroaverage, h ih, is defined as

hWih �
1

2p

ð2p

0

Wðxþ q cos h; yþ q sin hÞdh: (8)

This is a good approximation provided the gyrofrequency,

Xc, is greater than other frequencies in the system. Note that,

as mentioned before, all the spatial scales have been non-

dimensionalized using as length scale the characteristic width

of zonal flow, L. Accordingly, q ¼ q̂=L where q̂ is the dimen-

sional Larmor radius. In our two-mode model, this means

Xc � x. According to Eqs. (6) and (8), the gyro-averaged

Hamiltonian is

h/ih ¼ L0qðxÞ � gxþ e1L0k1qðxÞ cosðk1yÞ
þe2L0k2qðxÞ cosðk2y� xtÞ ; (9)

where the prime denotes the derivative and the function

LkqðxÞ defined by

LkqðxÞ ¼
1

p

ðp

0

tanhðxþ q cos hÞ cosðkq sin hÞdh; (10)

has the symmetries

LkqðxÞ ¼ �Lkqð�xÞ; L0kqðxÞ ¼ L0kqð�xÞ;

L00kqðxÞ ¼ �L00kqð�xÞ: (11)

Substituting Eq. (9) into Eq. (7), we get the FLR test par-

ticles transport model

dx

dt
¼ e1k1L0k1qðxÞ sin k1yþ e2k2L0k2qðxÞ sinðk2y�xtÞ; (12)

dy

dt
¼ L00qðxÞ � gþ e1L00k1qðxÞ cos k1y

þ e2L00k2qðxÞ cosðk2y� xtÞ: (13)

Gyro-averaged calculations are time consuming because

they require a 2-dimensional ring-averaged of the E� B guid-

ing center velocity field. However, in the proposed model, the

relative simplicity of the gyro-averaged Hamiltonian reduces

the computation to the evaluation of the 1-dimensional aver-

age defining the function LkqðxÞ in Eq. (10). Depending on the

problem and the computational resources, the 1-dimensional

averages can be computed every time they are needed for the

integration of the orbits, or else the functions LkqðxÞ can be

computed before-hand and interpolated at each integration

step. Another option is to resort to analytical approximations

of Eq. (10). For example, in the small q limit, the analytical

expression

LkqðxÞ ¼ 1� q2

2
sech2xþ k2

2

� �� �
tanh xþOðq3Þ; (14)

along with its derivatives can be used to evaluate directly the

right-hand-side of Eqs. (12) and (13) with no overhead com-

putation time.

The Larmor radius of thermal ions in fusion plasmas is

typically small, compared to the zonal flow width. However,

this is not necessary the case for a-particles produced by DT

fusion reactions for which the Larmor radius may be actually

larger than L, thus constituting a very important effect to

take into consideration. For ITER parameters, a rough esti-

mate of the size of the normalized gyroradius for alpha

particles at birth gives q � 2, before loosing their energy to

the plasma. As the a-particles thermalize, there will be a

wider distribution of smaller Larmor radii but the mean of

the normalized Larmor radius will typically stay greater than

one.16

III. ZONAL FLOW BIFURCATION AND PHASE SPACE
TOPOLOGY

When FLR effects are neglected, u0 ¼ u0ðxÞ ey �ru0,

implies that a non-monotonic radial electric with a single

extremum will always give rise to non-monotonic zonal flow

with a single extremum. However, when q 6¼ 0, the zonal

flow profile, is given by the gyro-average

v0ðxÞ ¼
@hu0ih
@x

� hu0ih ¼ L00qðxÞ; (15)

which is not trivially related to the electric field profile. In

particular, depending on the value of q, for a given electric

field with a single extremum, the zonal flow can bifurcate

from a profile with a single extremum to a profile with two

maxima and one minimum. An example of this type of zonal

flow bifurcation is shown in the right panel of Fig. 1 for

u0 ¼ tanhx that corresponds to an E � B guiding center ve-

locity with a sech2x profile. Extrema are important since

they are related to shearless barriers that are very resilient to

breakup due to chaos. The location of the zonal flow shear-

less barriers is defined as r0ðx; g; qÞ ¼ 0 where

r0ðx; g; qÞ ¼ @
2hu0ih
@x2

¼ L000qðxÞ: (16)

As discussed in Ref. 8, for a sech2 x profile, when q 	 1:33

there is only one shearless region which corresponds to the

single maximum of the zonal flow. However, for q > 1:33,

the zonal flow bifurcates: the center becomes a minimum

and two symmetrically located maxima are created as seen

in the right panel of Fig. 1. The distance between the maxima

grows linearly with q.

To derive general conditions for the bifurcation threshold,

first note that, in Fourier space, the gyroaverage consists of

the multiplication by the zeroth-order Besell function, J0ðxÞ,

dhu0ihðkÞ ¼ û0ðkÞJ0ðkqÞ; (17)

where f̂ ¼
Ð1
�1 eikxfdx. From here, it follows that

dnhu0ih
dxn

¼ ð�iÞn

2p

ð1
�1

knû0ðkÞJ0ðkqÞe�ikxdk: (18)
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As the previous studies for the special case of the sech2 x
zonal flow showed, the bifurcation of the zonal flow implies

a change in the curvature of the velocity function at x¼ 0. In

particular, it is assumed that for q ¼ 0,

d2hu0ih
dx2

����
x¼0

¼ d2u0

dx2

����
x¼0

< 0: (19)

After the bifurcation
d2hu0ih

dx2

���
x¼0

> 0, and thus, the threshold,

q ¼ q
, is defined by the condition

d2hu0ih
dx2

����
x¼0

¼ � 1

2p

ð1
�1

k2û0ðkÞJ0ðkq
Þdk ¼ 0: (20)

As a tractable example consider a Gaussian zonal flow

u0ðxÞ ¼ e�x2=r2

; û0ðkÞ ¼
ffiffiffi
p
p

re�r2k2=4 : (21)

Using the identity17

ð1
0

x2eax2

J0ðbxÞdx ¼
ffiffiffi
p
p

2ab
e�b2=ð8aÞM1;0

b2

4a

� �
; (22)

where M1;0 is the Whittaker function, we conclude that, for

the Gaussian zonal flow, the critical Larmor radius is given

by the zero of the Whittaker function,

M1;0ðq2

=r

2Þ ¼ 0: (23)

The Whittaker function is related to the confluent hypergeo-

metric function and can be computed numerically. Accord-

ing to Ref. 18, the number n of positive zeros of Mj;lðzÞ is

given by the smallest integer greater than or equal to

d ¼ j� l� 1=2 > 0. Therefore, M1;0 has exactly one zero.

That is, there exists a value of q for which the Gaussian

zonal flow bifurcates.

As an alternative approach to find the bifurcation thresh-

old, consider the Taylor expansion of the zonal flow

u0ðxÞ ¼
X1
n¼0

u
ðnÞ
0 ð0Þ
n!

xn; (24)

and write the second derivative of the gyroaveraged flow as

d2hu0ih
dx2

¼ d2u0

dx2

� �
h

¼
X1
n¼2

nðn� 1Þ
n!

u
ðnÞ
0 ð0Þhxn�2ih: (25)

From here, it follows that

d2hu0ih
dx2

����
x¼0

¼ 1

2p

X1
m¼0

u
ðmþ2Þ
0 ð0Þ

m!
qm

ð2p

0

ðcos hÞmdh; (26)

which implies the following necessary and sufficient condi-

tion for the zonal flow bifurcation condition and the corre-

sponding threshold value q
,

d2hu0ih
dx2

����
x¼0

¼ u00ð0Þ þ
X1
m¼1

ð2m� 1Þ!!
ð2mÞ!ð2mÞ!!u

ð2½mþ1�Þ
0 ð0Þq2m




¼ 0 : (27)

For the Gaussian zonal flow, using the relation,

dn

dxn
e�ðx=rÞ

2

¼ ð�1Þn

rn
e�ðx=rÞ

2

Hnðx=rÞ; (28)

where Hn are the Hermite polynomials of order n, we con-

clude that the threshold q
 is given by the solution of

FIG. 1. Zonal flow bifurcation and corre-

sponding phase space topology. Left

panel: zero Larmor radius with

g ¼ 0:35; e1 ¼ 0:2; k1 ¼ 1. Right panel:

gyroaverage over finite Larmor radius

q ¼ 2:2 showing bifurcated zonal flow

for g ¼ 0:34; e1 ¼ 0:25; k1 ¼ 1. The

dashed lines show the zonal flow with

the drift wave flow perturbation at maxi-

mum and minimum amplitude.
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r2d2hu0ih
dx2

����
x¼0

¼ �2þ
X1
m¼1

ð2m� 1Þ!!
ð2mÞ!ð2mÞ!!H2ðmþ1Þð0Þ

q

r


 �2m

¼ 0: (29)

The first step to understand the effect of the normal

modes on transport is to study the resonances located at the

place(s) where the propagation velocity of the modes

matches the velocity of the zonal flow. According to Eq. (9),

the gyroaveraged Hamiltonian with a single mode in the

co-moving reference frame is given by

h/0ih ¼ L0qðxÞ � gxþ e1L0k1qðxÞcosðk1yÞ; (30)

and the location of the resonances is determined by the

condition

Rðx; q; gÞ ¼ @hû0ih
@x

� g ¼ L00qðxÞ � g ¼ 0: (31)

Figure 2 shows the dependence on q of the location of the

resonances according to Eq. (30) for several values of g. Con-

sistent with the fact that for small values of q the zonal flow

has a single maximum, in this case there can be zero or at

most two resonances. However, for large values of q, when g
is in a range corresponding to wave velocities between the

maxima and the minimum of the gyroaveraged flow profile,

there can be up to four resonances. The resonances are impor-

tant because they are the seeds for the growth of islands cre-

ated by the perturbation. Thus, in this case, as q increases,

there can be two or four chains of islands. The bold line in

Fig. 2 corresponding to g ¼ 0:34 shows an example of four

resonances for a value of q ¼ 2:2 marked by the horizontal

dashed line. This is the same case represented in the right

panel of Fig. 1 which also shows four resonances and the cor-

responding double chain of islands in phase space.

The fixed points ðx
; y
Þ for the single mode gyroaver-

aged Hamiltonian in Eq. (30) are defined by the condition

@xh/ihðx
; y
Þ ¼ @yh/ihðx
; y
Þ ¼ 0, which has a family of

solutions given by,

y
 ¼ pn=k1; g� L00qðx
Þ � ð�1Þne1L00k1qðx
Þ ¼ 0: (32)

The bold dashed lines in Fig. 2 follow the location of fixed

points with n even and odd, for g ¼ 0:34 and e1 ¼ 0:25. As

shown on the right-bottom panel of Fig. 1, in this case, there

are four fixed points (two stable and two unstable). For com-

parison, Fig. 1 also shows with dashed lines, the zonal

flow vx ¼ @xh/0ih þ g, according to Eq. (30) for y¼ 0 and

y ¼ p=k1 which also correspond to the solutions of Eq. (32)

for the resonant modes vx ¼ g; thus these also indicate the

location of hyperbolic and elliptic points as marked by the

vertical lines.

When there is only one mode, the system is integrable

and the topology of the trajectories is determined by the iso-

contours of the Hamiltonian. However, like in the case of

non-twist Hamiltonian systems,19,20 the topology can change

because of separatrix reconnection. In particular, as Fig. 3

shows, for a finite value of the Larmor radius, an increase of

the mode amplitude e1 can lead to a change in the topology

from heteroclinic (in which the two branches of the separa-

trix link different hyperbolic fixed points of the same reso-

nance) to homoclinic (in which one of the branches of the

separatrix links the same hyperbolic fixed point). As shown

in the middle panel of Fig. 3, the separatrix reconnection

leading to the change of the topology has a threshold in

which the two branches of the separatrix link different hyper-

bolic fixed points of different resonances. However, what is

interesting is that, as shown in Fig. 4, FLR effects by them-

selves can cause separatrix reconnection. In particular, an

increase of the Larmor radius from q ¼ 0:5 to q ¼ 1:7
changes the topology from heteroclinic to homoclinic.

Remarkably, as the right panel of Fig. 4 shows, a further

increase of the Larmor radius to q ¼ 3 causes the trapping

regions to disappear, and “rectifies” the flow into an almost

parallel dynamics.

The complexity of the possible separatrix reconnection

scenarios increases for parameter values for which the zonal

flow exhibits two maxima and a minimum as shown, for

example, in the right panels of Fig. 1. In this case, there can

be up to four chains of fixed points (see Fig. 2) and the dif-

ferent hyperbolic points can be linked in multiple ways as

shown in Fig. 5. Another case is the doublet topology pre-

sented in the last panel of Fig. 1. As the gyroradius is

increased there are reconnections at various points between

separatrices leading to topologies from nested separatrix, to

the formation of cusps when a fixed point disappears, to two

island chains in phase that contain three zonal flows. In the

following, we consider Larmor radii smaller than the bifurca-

tion threshold, as these are the cases more likely to be

encountered in fusion experiments.

IV. FLR EFFECTS ON CHAOTIC TRANSPORT

When two modes are present, i.e., for e1 6¼ 0 and e2 6¼ 0,

the equations of motion in Eqs. (12) and (13) are not

FIG. 2. Location of the resonance layers given by Rðx; g; qÞ ¼ 0 when q is

varied, for g ¼ 0:2; 0:3; 0:4; 0:5 and 0.6 from top to bottom, respectively.

The value g ¼ 0:34, shown with the bold line, is the same used in the right

panel of Fig. 1, for which the fixed points of the single-mode Hamiltonian

are also shown (for e1 ¼ 0:25) with the bold dashed line for even and dot-

dashed line for odd n in Eq. (32). The crossings with q ¼ 2:2 correspond to

the (elliptic) O-points.
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FIG. 3. Topology change through separatrix reconnection when e1 is increased from 0.2 to 0.855 to 1.8 for q ¼ 0:2 and g ¼ 0:5. First panel has heteroclinic to-

pology, second panel is the reconnection threshold and third panel has homoclinic topology.

FIG. 4. Finite Larmor radius effects on phase space topology for the gyroaverage Hamiltonian in Eq. (30) with e1 ¼ 0:5, k1 and g ¼ 0:4. As q increases from

q ¼ 0:5 to q ¼ 3, separatrix reconnection changes the topology from heteroclinic to homoclinic and ends with flow rectification.
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integrable in general and test particles can exhibit chaotic

transport. The goal of this section is to study the role of

gyro-averaging on this phenomenon. In particular, we show

that FLR effects tend to reduce, and even suppress, chaotic

transport.

A. Chaotic transport suppression

As it is well-known, for time-periodic perturbations, the

dynamics can be represented in a Poincare plot on which

integrable orbits trace well-defined smooth 1-dimensional

curves, while chaotic orbits spread in a seemly random way

over the 2-dimensional domain. The Poincare plots in Fig. 6

show numerical evidence of chaos suppression due to FLR

effects in the heteroclinic topology. For a small Larmor

radius, and large enough wave amplitude (e2 ¼ 0:05 in this

case), the shearless central transport barrier has been

destroyed and there is global chaos allowing particles to

cross freely from left to right in x. However, as the Larmor

radius increases, the chaotic region is reduced and for large

enough values of q (in this case, q ¼ 0:75), the particle tra-

jectories follow closed orbits and transport along the x direc-

tion is suppressed. A similar situation is observed in Figure 7

for the homoclinic topology. As before, for small q, large

chaotic regions are observed, although in this case a mean-

dering shearless central transport barrier is present. As the

Larmor radius increases, the chaotic regions are reduced, and

for q ¼ 0:75, all the trajectories are regular. It is interesting

to note that the observed suppression of transport occurs for

q values within the range of the typical Larmor radii for

alpha particles in burning plasmas.

B. Transport barriers restauration

The shearless curve is directly associated with the trans-

port barrier produced by the presence of the zonal flow, and

for this reason, it is important to determine the properties of

this curve. The location of the shearless barrier (when it

exists) can be determined using the indicator point method

proposed in Ref. 21 and used in Ref. 22 to detect the shear-

less transport barriers in a meandering flow. The method is

based on the existence of certain symmetries in the equations

of motion for the test particles. It is readily seen that Eqs.

(12) and (13) for k1 ¼ k2 are invariant under the

transformation

S ¼ x0 ¼ �x
y0 ¼ yþ p=k1:

�
(33)

On the other hand, the equations have also the time reversal

symmetry

I0 ¼
x0 ¼ x
y0 ¼ �y:

�
(34)

Let Gt be the evolution operator defined by the solution of

Eqs. (12) and (13) at time t. Then, the evolution operator GT,

FIG. 5. Gyroradius-average-induced separatrix reconnection for increasing q: Top-left panel is for q ¼ 2:3312; g ¼ 0:3; e1 ¼ 0:5 and k1 ¼ 0:5. Top-right

panel is for q ¼ 3:0748; g ¼ 0:3; e1 ¼ 0:5 and k1 ¼ 0:5. Bottom-left panel corresponds to q ¼ 3:25; g ¼ 0:25; e1 ¼ 0:3 and k1 ¼ 0:5. Bottom-right has q ¼ 3:5;
g ¼ 0:2; e1 ¼ 0:25 and k1 ¼ 1.
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where T is the period of the perturbation, can be expressed as

the composition of two involutions I0, I1, as GT ¼ I1I0,

where I0 is given by Eq. (34) and I1 ¼ GTI0, which have the

property I0I0 ¼ I1I1 ¼ 1. The indicator points (IP) are

defined as those satisfying I0ðx; yÞ ¼ Sðx; yÞ or I1ðx; yÞ
¼ Sðx; yÞ, the later being equivalent to finding the solutions

of

GTðx; yÞ ¼ SI0ðx; yÞ ¼ ð�x;�yþ p=k1Þ: (35)

Following Ref. 22, we solve this equation by finding the

minimum of the function

rðx; yÞ ¼ jjGTðx; yÞ � ð�x;�yþ p=k1Þjj (36)

that satisfies rðx; yÞ ¼ 0. Other IPs can also be defined by

I0ðx; yÞ ¼ Sðx; yÞ.
Since IPs belong the shearless curve (SC), they can be

iterated with the operator GT to generate a Poincar�e section

of the SC. Since it can also be shown21 that the involutions

I0 and I1 map the SC onto itself, they can be used to obtain

new IPs from known ones. Using the symmetries, one

can get the following IPs, associated with the involution

I0: ð0; ð1þ 1=2k1ÞpÞ, ð0; p=2k1Þ and ð0; ð1� 1=2k1ÞpÞ,
ðð2� 1=2k1ÞpÞ provided k1 > 1=2. The IP associated with

the involution I1 which is a solution to Eq. (35) is a point in

the neighborhood of (0,1); it changes as the parameters of

the map (such as e2 and q) are modified.

Figure 8 shows the SC embedded in the map of the par-

ticle trajectories obtained from the integration of Eqs. (12)

and (13) in the heteroclinic case (left panel). In this case, the

SC acts as an effective barrier to transport, i.e., despite the

fact that most of particle trajectories are chaotic, the region

around the SC is not crossed by the particles. A similar situa-

tion is observed in the homoclinic topology case shown also

in the right panel of Figure 8.

Using the indicator points, we mapped the SC for differ-

ent parameters of the system. For small q and e2 the SC is a

well defined 1-D curve and acts as a central transport barrier

(CTB). As the value of e2 is increased the SC becomes

stochastic and it no longer forms a curve. However, a CTB

can still prevent the crossing of particles. Finally, for large

enough e2 the SC chaotically fills a global 2D domain indi-

cating that the transport barriers are all destroyed and the

map exhibits global transport. The transition through these

stages is shown in Figure 9. The criterion to determine when

the CTB is destroyed adopted in Refs. 21 and 22, is that it

occurs when the map of the IP reaches global chaos, and that

is established when the map is unbounded in the y-direction.

Here, we observe a particular behavior for the evolution of

the IP map as e2 grows. First, the map is always contained

within the unperturbed (for e2 ¼ 0) outer separatrix bounda-

ries; thus, in spite of the appearance of a global chaos, it

never goes beyond those boundaries. Second, before global

chaos appears there is the so-called banded chaos regime,

where the chaotic motion of the IP is contained between the

FIG. 6. Gyroaverage induced chaotic transport suppression in the heteroclinic topology for parameters x ¼ 2:3; g ¼ 0:5; �1 ¼ 0:5; �2 ¼ 0:05; k1 ¼ 1; k2 ¼ 2.
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CTB and one of the outer separatices (either one of them can

occur). This can be seen in Fig. 9. The establishment of

banded chaos occurs when e2 exceeds a threshold value for a

given q. When Larmor radius is increased, the barrier can be

restored as shown in the Poincar�e map of Figure 6 for

q ¼ 0:75. An example of the homoclinic mapping is given in

Figure 7 which shows a clear transport barrier. The question

then arises of how FLR affects the destruction of the SC.

The threshold for the destruction of the CTB in the

q� e2 plane is shown in Fig. 10. The threshold was com-

puted by fixing q and increasing e2 until the mapping of the

IP reaches either separatrix after 50 000 iterations. This was

made for both heteroclinic and homoclinic topologies. When

e2 is further increased a second threshold value is obtained

when global chaos is established. At this point, the IP map

reaches the separatrices on both sides but quite often this

FIG. 8. Shearless curve (red) embedded in the Poincare map of 80 particles for q ¼ 0:1, x ¼ 2:3, e2 ¼ 0:05 in the (a) heteroclinic (g ¼ 0:5, e1 ¼ 0:4) and (b)

homoclinic (g ¼ 0:85, e1 ¼ 0:5) topologies. In both cases, the shearless curve is a robust transport barrier.

FIG. 7. Gyroaverage induced chaotic transport suppression in the homoclinic topology for parameters x ¼ 2:3; g ¼ 0:85; �1 ¼ 0:6; �2 ¼ 0:05; k1 ¼ 1; k2 ¼ 2.
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takes a much larger number of iterations; for some parame-

ters, the map seems to be contained to one side of an appa-

rent barrier after 50 000 iterations but when it is followed for

longer times is starts filling the other side (last panel in Fig-

ure 9). For this cases, it is necessary to use 80 000 iterations.

There is still some doubt that the cases that appear to be con-

tained on one side of the barrier (possibly corresponding to

banded chaos), might eventually fill the whole region for a

large enough number of iterations. This has not been possible

to confirm because of the very long time it takes to integrate

the map for iterations of the order of 105. With this caveat,

the second threshold, for global chaos, was obtained and

represented in a q� e2 diagram. The results presented are

reliable to within a number of iterations equal to or smaller

than 105.

As seen in the q� e2 threshold diagrams, the depend-

ence is not monotonic since as q increases the threshold

value of e2 varies up and down creating a fractal-like bound-

ary. The threshold values were computed by starting

from e2 ¼ 0 for a given q, and then increasing e2 in steps of

De2 ¼ 0:002 computing at each step the SC, until one of the

above criteria for chaotic SC is met. Then, the position of the

threshold is refined up to a precision of de2 ¼ 0:0003. Then,

the value of q is increased in steps of Dq ¼ 0:004 following

FIG. 9. Evolution of the shearless curve as the parameter e2 is increased, showing the destruction of the curve and the transition to a stochastic layer and to

global chaos. Here x ¼ 2:3; g ¼ 0:5; e1 ¼ 0:4;q ¼ 0:1; from top left to bottom right e2 ¼ 0:01; 0:05; 0:054; 0:06; 0:07; 0:075.

FIG. 10. Threshold for the destruction of the shearless curve for x ¼ 2:3; k1 ¼ k2 ¼ 1 for (a) heteroclinic geometry when q ¼ 0 ðg ¼ 0:5; e ¼ 0:4) and (b)

homoclinic geometry for q ¼ 0 ðg ¼ 0:85; e ¼ 0:5).
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the same procedure for each value of q. Therefore, the plots

are accurate up to the precision Dq and de2; thus if there is a

chaotic IP map in a window smaller than de2 it cannot be

detected by our procedure. This is important due to the frac-

tal structure of the threshold boundary, which is similar to

the fractal boundary found in Refs. 21 and 22 in the x� e
space (perturbation frequency and amplitude).

V. THERMALLY DISTRIBUTED LARMOR RADII

In a thermal plasma, the kinetic energy of the particles

and their corresponding Larmor radii have a Maxwellian dis-

tribution. According to the previous results, particles with

different q experience different gyro-averaged electric fields

and thus different levels of chaos suppression. Thus, in order

to assess the extent to which a transport barrier is present in

a plasma with a finite temperature, we need to consider

ensembles of test particles with different Larmor radii. We

do this by considering a thermal distribution of q for an en-

semble of particles located on a localized region on one side

of a q ¼ 0-barrier (that is, a transport barrier for particles

with q ¼ 0). We then follow each particle in the ensemble

for a large number of iterations in a Poincar�e plot and deter-

mine if each particle has reached the other side of the barrier.

After this process is done for all the particles, the fraction of

particles crossing to the other side of the q ¼ 0-barrier, f, is

computed. This gives an estimate of the effectiveness of the

transport barrier: for f¼ 1 the barrier is destroyed while for

f¼ 0 there is a fully developed barrier.

In order to define f in an operational way, we introduce

the binary function Dðq;~rÞ which is equal to one when a par-

ticle with a given q and located initially at position~r crosses

to the other side, and zero when it does not cross. The initial

location and the crossing criterion are different for each to-

pology and we will address this afterwards. In terms of D,

the fraction of particles crossing is given by,

f ¼
ð

Dðq;~rÞfmðqÞdqd~r; (37)

where the Maxwellian distribution is fmðqÞ ¼ ð2q=q2
thÞ

exp½�ðq=q2
thÞ� and qth is the thermal Larmor radius. For the

case with an heteroclinic topology at q ¼ 0, the group of par-

ticles is located around the left separatrix X-point, within a

region of the size of the distance from the X-point to the

nearby shearless curve. In this way, we assure that all par-

ticles are on one side of the q ¼ 0-barrier and none should

be able to cross the flow. On the other hand, for the case of

homoclinic topology for q ¼ 0, all particles are located on

one side of the left separatrix, between the X-point and the

left-lying shearless curve. In this way, we also assure that all

particles are to the left of the possible barrier.

In Fig. 11, we show the results of the fraction of

particles crossing to the right in the two topologies. In the

heteroclinic case, there is a maximum value of f for a certain

qth. For lower temperatures, the barrier is effective in block-

ing particles since the drift-wave amplitude is not high

enough for most particles. For larger temperatures, the FLR

barrier restoration is the responsible mechanism for not

having particles crossing the flow. In the homoclinic case,

corresponding to higher level of fluctuation from the onset,

there is no barrier at q ¼ 0, this is reflected in the fact that

f 6¼ 0 at qth ¼ 0. In this case, transport barrier restoration

leads to a decrease in f as temperature increases.

VI. SUMMARY AND CONCLUSIONS

We have shown that the inclusion of FLR effects through

the gyroaveraging of the E � B Hamiltonian plays a critical

role in chaotic transport in non-monotonic zonal flows in the

presence of drift-waves. The gyroaverage smooths out the

trapping regions, since a particle typically samples regions

with trapped and circulating topologies. When the Larmor ra-

dius is large enough, a single meandering zonal flow is what a

particle “sees” and thus, cross-flow transport is completely

suppressed. Another interesting feature is the bifurcation of the

zonal flow. The flow has a single maximum for small Larmor

radius, q, but its width increases with q and at a critical value

FIG. 11. Fraction of thermal particles crossing from one side to the other of the barrier that would be present when q ¼ 0, corresponding to (a) heteroclinic to-

pology when q ¼ 0 ðg ¼ 0:5; e1 ¼ 0:4; e2 ¼ 0:07) and (b) homoclinic topology when q ¼ 0 ðg ¼ 0:85; e1 ¼ 0:6; e2 ¼ 0:12). In both cases x ¼ 2:3 and

k1 ¼ k2 ¼ 1.
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it bifurcates to two maxima and a minimum. This bifurcation

can lead to the appearance of four resonances, instead of two,

for a given mode. Because of this, the changes in the topology

due to separatrix reconnection can be very rich and complex.

We have also shown that FLR effects tend to reduce chaotic

transport. In particular, the restoration of destroyed transport

barriers is numerically observed as the Larmor radius

increases. FLR effects lessen the action of the modes and tend

to maintain the transport barriers. This is due to the smoothing

out effect of the trapping regions mentioned before. FLR

effects tend to restore the barrier by suppressing chaotic trans-

port. The boundary for the destruction of the central transport

barrier in the q� e2 plane exhibits a fractal-like structure.

However, it shows a general tendency that the barrier destruc-

tion threshold for the fluctuation amplitude increases with the

Larmor radius. This fractal-like boundary is reminiscent of the

one found in Ref. 22 in the fluctuation amplitude-frequency

plane. Because of this, each particle with a given q experiences

a different threshold for barrier destruction and therefore, for a

thermal plasma, it is necessary to consider the collection of all

particles in order to determine how effective a transport barrier

can be. This was done in order to obtain the fraction of par-

ticles confined by the CTB, which provides the barrier effi-

ciency for different temperatures at certain fluctuation levels.

These results are potentially relevant for future burning plasma

experiments where alpha particles will typically have large

Larmor radii. According to the results presented, FLR effects

will provide a better confinement for these particles when

zonal flows are present. In particular, the effectiveness of bar-

riers to chaotic transport of a-particles is expected to improve

as the temperature increases.

Finally, it is important to point out that the test particle

approach we have followed in the present study is not self-

consistent. In particular, the effects of the particle dynamics on

the plasma have not been taken into account. Self-consistency

may be important when studying strong turbulence and reso-

nant wave-particle interactions. The study of this interesting

phenomena is beyond the scope of the work presented here.
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