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Plasma equilibria for the case of a strong coupling of parallel
and EÃB flows

S. I. Krasheninnikov
University of California at San Diego, La Jolla, California 92093-0403

T. K. Soboleva and J. J. Martinell
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México D. F., Mexico

�Received 9 May 2006; accepted 1 June 2006; published online 7 July 2006�

It is shown that the plasma of a tokamak can adopt equilibria with large pressure and electric
potential variations along a magnetic flux surface, due to the strong coupling between parallel and
perpendicular flows. Different types of solutions to the equilibrium two-fluid equations are found
that describe actual plasma states. In particular, one of the equilibria is such that some plasma
parameters, like the plasma pressure, can have maximum values in the vicinity of the X point of the
separatrix, in agreement with the recent observations in DIII-D �J. L. Luxon and L. G. Davis, Fusion
Technol. 8, 441 �1985��. © 2006 American Institute of Physics. �DOI: 10.1063/1.2217931�
I. INTRODUCTION

Traditionally, the plasma equilibrium solutions in a toka-
mak have been assumed to be those derived from the ideal
magnetohydrodynamic �MHD� equations which, in particu-
lar, require that the pressure and the poloidal current are flux
surface quantities: p= p��� and I= I���. This is the lowest
order equilibrium state usually used for obtaining global
magnetic configurations, which can be the starting point for
more refined solutions and may also be used for stability
studies of MHD modes. When no plasma flows are present,
the equilibrium is described by the Grad-Shafranov equation,
but in presence of a toroidal flow this is modified to the
Maschke-Perrin equation.1 More general equilibria including
other classes of flows have been studied from the ideal Mag-
netohydrodynamic model in Refs. 2 and 3. In those cases it is
seen that the plasma pressure ceases to be a flux surface
quantity, becoming, for instance, p= p�� ,R�, R being the co-
ordinate of the torus mayor radius, and thus the constant
pressure surfaces are shifted with respect to the magnetic
flux surfaces. A multifluid analysis has also been done, to
extend the MHD results,4 where the formal solutions are ob-
tained in terms of a generalized flux function, �� for each
species, that includes the vorticity of the corresponding flow,
in addition to the usual magnetic flux function �, and it turns
out that the pressure is not a function of ��. All these de-
scriptions are meant to compute the global equilibrium of the
toroidal plasma and therefore they focus on special types of
flows that are more commonly found in tokamaks such as
toroidal or poloidal rotations, but they show that in these
particular cases, the presence of flows causes the pressure not
to be constant along magnetic field lines, as it is in static
equilibria.

On the experimental side, there is also evidence of the
variation of the pressure over flux surfaces. One such obser-
vation is the one made in DIII-D,5 that the electric potential
and the electron pressure have maxima near the X point in
low confinement �L-mode� plasmas.6 This drives an E�B

circulation about the X point that takes plasma across flux
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surfaces and the separatrix. The observations were also sup-
ported by numerical simulations with the code UEDGE

7 that
self-consistently included E�B and �B drifts. Although the
first interpretation given in Ref. 6 claimed that the pressure
and the electron temperature were constant on a magnetic
surface, and it was the ion temperature the one that varied
along the magnetic field direction, there is not good evidence
to support the claim, and we argue here that the results can
be more easily explained in terms of a variable pressure over
flux surfaces.

Another example may be the establishment of the so-
called multifaceted asymmetric radiation from the edge
�MARFE�, at the inner edge of tokamaks, where the increase
of plasma density accompanied by a reduction of the plasma
temperature seems not to cause a reduction of plasma density
at the outer side of the torus,8 as it should be for the case of
the radiation-condensation instability. Thus, a quasiequilib-
rium state with p�p��� arises. These examples show in a
more local sense that there is a variation of the pressure
along field lines, probably associated with plasma flows.

The importance of the flow direction to produce field-
aligned pressure variations was pointed out in Ref. 9, where
it was demonstrated that a strong coupling of E�B and
parallel flows can result in a large pressure change along the
magnetic flux surfaces. For this effect to be of relevance it is
necessary to have a shear in the E�B flow that breaks the
symmetry in the direction perpendicular to B. This effect can
be important for many physical applications including phys-
ics of plasma transport in tokamak divertor and X-point re-
gions.

Other situation where the analysis of a variable pressure
over flux surfaces is of relevance is the startup phase of a
tokamak, when the magnetic field is mainly toroidal, as the
plasma current has not been yet built up. This was studied in
Ref. 10 where it was shown that the E�B drift becomes
very important in determining the radial spreading of the
plasma, when the ratio of the poloidal to the toroidal field

�Bp /BT� is very small. These results also suggest that the E
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�B drift effects can be important for the region near the X
point, where the ratio Bp /BT is small also.

In this article we focus on an analytic study of the im-
pact of a strong coupling of parallel and perpendicular flows
on plasma equilibrium. In Sec. II we formulate the problem
and describe the kind of geometries where our analysis is
applicable. In Sec. III we obtain some solutions and discuss
their meaning and the relevance to specific cases, in particu-
lar, the role it can play to explain the experimental results
from DIII-D. Finally, in Sec. IV we discuss the relevance of
our results and give the conclusions, pointing out to further
studies in this regard.

II. BASIC PLASMA EQUATIONS

We will consider a plasma of electrons and ions with the
same temperature. We adopt a cylindrical approximation for
a tokamak with a strong “toroidal” magnetic field in the z
direction, Bz=const., and assume that there is no z depen-
dence of the plasma parameters. Then the velocity of the
flow, v, can be written as follows:

v = bv� + v�, �1�

where b�B /B is the unit vector along the magnetic field B;
v� is the parallel velocity, and v�=VE�b�����Bz /B� is the
perpendicular fluid velocity caused by the E�B drift, � is
the electrostatic potential multiplied by electron charge and
VE is a normalization constant.

Taking into account that �B� � /Bz���1 we have

b 	 ez + ��ez � ��� , �2�

where ����x ,y� is the magnetic flux function, and

v� 	 VE�b � ��� . �3�

Then, considering the cold ion approximation and no parallel
current we have the equations of continuity

� · �nv� = 0, �4�

�n is the plasma density�, parallel plasma momentum balance


�nv · ��v + �P/M� · b = 0, �5�

�P=nT is the plasma pressure, T is the electron temperature,
and M is the ion mass�, and the parallel electron balance


− �� + � � T + �P/n� · b = 0, �6�

where � is the thermal force coefficient.
Recalling that ��¯� /�z=0, the continuity equation �4�

can be written as follows:

nv = eznvz + ez � �G , �7�

where vz is the z component of plasma velocity and G
�G�x ,y� is the particle flux function. Also, from Eq. �4� we
find an estimate v���v�. Then, neglecting the terms �� j

with j�3 we find, from Eqs. �1�–�3� and �7�,

w � � + VE � � = �G/n �8�
�w=�v��, from Eqs. �2� and �6�
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− �� + �1 + �� � T + T � ln�n/n0� = K � � �9�

�K�K�x ,y�, and n0 is a normalization constant� and from
Eqs. �2�, �3�, �5�, and �8�

�ez � �G� · �w + �2�ez � ��� · ��nT�/M = 0. �10�

Notice that from Eqs. �8� and �9� we find

n � w � �� = − �ln�n/n0� � �G , �11�

�T � � ln�n/n0� = �K � �� . �12�

Let us analyze the implications of these equations before
proceeding to their solution. Eq. �8� gives the coupling of the
parallel and perpendicular E�B velocities: w and VE, as
required by the continuity of the flow; that is, an unbalanced
transverse flow should give rise to a parallel flow. Such an
unbalance arises whenever the divergence of v� in �3� is not
zero which occurs when ����n�0. In this case, this term
can be obtained from Eq. �9�, taking the cross product with
�n and assuming that T is a functional of n; i.e. T�n�,

�n � �� = K � n � �� . �13�

From here we see that the nonvanishing of � ·V� must pro-
duce a density function that is not constant on the magnetic
flux surfaces, implying in turn that the pressure in not a
surface quantity. This exemplifies that the coupling of VE and
w, causes P to vary along a magnetic field line.

III. SOLUTIONS FOR THE PLASMA PARAMETERS

In order to make Eqs. �8�–�11� more tractable, we find
that it is useful that instead of x and y we use other variables.
First we will use the variables G and �. Then, from Eqs. �8�
and �9� we find

w = VE��1 + ��
�T

��
+ T

��

��
− K
 , �14�

VE��1 + ��
�T

�G
+ T

��

�G

 = −

1

n
, �15�

where �=ln�n /n0�. From Eqs. �10�–�12� we have

�w

��
=

�2

M

��nT�
�G

, �16�

�w

�G
= −

�

��
�1

n
� , �17�

�T

�G

��

��
−

�T

��

��

�G
=

�K

�G
. �18�

In order to further simplify our equations we will assume
that K=K��, where K�=const. Then from Eq. �18� it follows
that the density n must be a function of the temperature T:
n=N�T�. Next we notice that from Eqs. �16� and �17� we

have
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�2

M

�2�nT�
�G2 +

�2

��2�1

n
� = 0. �19�

Therefore picking

N�T� � n0�T0/T�1/2, �20�

from Eq. �19� we find

�2n0
2T0

M

�2

�G2 �T/T0�1/2 +
�2

��2 �T/T0�1/2 = 0. �21�

One of the possible solutions of Eq. �21� is

� T

T0
�1/2

= CGG + C�� , �22�

where CG and C� are constants. Using Eqs. �20� and �22�
from Eqs. �14�–�17� we find CG=1/VEn0T0�1+2�� and the
following relation between constants C� and K�

VEK� − �1 + 2��VET0C�
2 =

�2

M

1

�1 + 2��VE
. �23�

Thus, we find that for a strong coupling of parallel and
perpendicular dynamics one may have equilibrium solutions
with a large variation of plasma pressure on the magnetic
flux surfaces:

T

T0
= �C�� −

G

VEn0T0�1 + 2���
2

, �24�

n

n0
= �C�� −

G

VEn0T0�1 + 2���
−1

. �25�

This equilibrium allows a qualitative explanation of the
UEDGE modeling results, and of the experimental observation
of the formation of high-density, cold plasma in the vicinity
of the tokamak X point in DIII-D.6 In this case we can, for
example, take a magnetic flux function ��x ,y�	x2−y2, and
G�x ,y� in such a way as to have the equipotentials like those
shown in Fig. 1, with G�x ,y�→const. far away from the X
point �x=y=0�. Such equilibrium has a strong variation of
pressure, P, along the magnetic flux surfaces near the X
point and a flux surface pressure, P= P���, far from it. This
is shown in Fig. 2, where constant pressure contours are
displayed �solid lines� along with magnetic contours �dashed

FIG. 1. Contours of constant magnetic flux ��x ,y� and constant perpendicu-
lar flow G�x ,y� near the X point that will give rise to a pressure variation
over flux surfaces, consistent with observations in DIII-D.
lines� in the vicinity of the X point, and it is clearly appre-
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ciated that the two differ greatly just above this point,
whereas there is a coincidence as the distance from the X
point increases. Similar contours are found for the density
and the temperature. Here we chose to place the region of
circulation just above the X point instead of around it, to
avoid dealing with the transitions between the four regions
divided by the separatrix. The elliptic contours were obtained
from the function G�x ,y�= �1+ 
�x2+ �y−y0�2+
�y
−y0��−1�−1 which satisfies the condition G�x ,y�→1 far from
�0,y0�.

We also can use the variables �=ln�n /n0� and � instead
of x and y. Then, from Eqs. �8�–�10� we find

w − VE�K − �1 + �� � T/��� = ��G/���/n , �26�

VE�T + �1 + �� � T/��� = ��G/���/n , �27�

�G

��

�w

��
−

�G

��

�w

��
+

�2

M

��nT�
��

= 0, �28�

and from Eqs. �11� and �12�

n
�w

��
= −

�G

��
, �29�

�T

��
= −

�K

��
. �30�

Taking w from Eq. �26�, �G /�� from Eq. �27� and �w /��
from Eq. �29� and substituting them in Eq. �28� we find

1

n
� �G

��
�2

+ nVE�T + �1 + ��
�T

��
�

��1

n

�2G

��2 − VE��1 + ��
�2T

��2 −
�K

��
�
 −

�2

M

��nT�
��

= 0,

�31�

FIG. 2. Constant pressure contours obtained from Eqs. �24� and �25� for the
functions ��x ,y� and G�x ,y� displayed in Fig. 1, showing that they differ
from the ��x ,y�=const. contours �dashed line� near the X point, but they
coincide far from it. The maximum pressure is in the region where G�x ,y� is
appreciable.
whereas from Eqs. �26� and �29� we have
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1

n

�2G

�� � �
= − VE

�

��
�K − �1 + ��

�T

��
� . �32�

So that, Eqs. �26�, �27�, �30�, and �31� determine the equilib-
rium for this set of the variables. Taking T=T�n� from Eq.
�30� we find K�K���. We take

K = K��, G � G�� + G���� , �33�

where K� and G� are some constants and G���� is some
function of �. In this case Eqs. �26�, �27�, �29�, and �32� are
satisfied and from Eq. �31� we have

G�
2

n
+ nVE

2K��T + �1 + ��
�T

��
� −

�2

M

��nT�
��

= 0. �34�

From Eq. �34� we find

T = ��n� �
a

�1 + 2� − b�n2 +
CT

n�1−b�/�1+�−b� , �35�

where a=G�
2 / �VE

2K��, b=�2 / �MVE
2K��, and CT is a normal-

ization constant. Examining the solution �33� and �35� we
find that this is the extension of the results of Ref. 9 to an
arbitrary magnetic geometry described by the flux potential
�.

A third possibility to consider is to take � and G as the
independent variables instead of x and y. The same analysis
as before can be made in order to find the relevant relation-
ships among the dependent functions of G and �. It is found
that, if one again assumes that the temperature is a function
of density only, T=T�n�, and ��G ,�� is assumed to be sepa-
rable as ��G ,��=�GG+�����, then the same solution �35� is
recovered, with the condition �����=G����. This shows that
this solution can be derived from different approaches, al-
though with the last approach it is not evident that n and T
are variable along the � constant surfaces because G is used
instead of �.

IV. DISCUSSION AND CONCLUSIONS

We have studied the equilibrium states of an axisymmet-
ric plasma under a cylindrical approximation using a two-
fluid description, when there is a magnetic field that is pre-
dominantly in the “toroidal” direction. With this approach it
was possible to obtain some analytical solutions for particu-
lar equilibria. The applicability of these solutions is specially
important to certain regions of a toroidal plasma that satisfies
the condition �B� � /Bz���1. The inner region �or high
field side� of a tokamak where MARFEs are observed to
appear is more prone to satisfy that condition, and therefore
our results lend themselves to explain the establishment of an
equilibrium state with a strong temperature decrease towards
the radiating zone. More importantly, this analysis is most
relevant to describe the region around the X point of the
separatrix in a divertor, as there the poloidal field vanishes
and the toroidal component is the main one. As we already
mentioned earlier, the solution �24� and �25� found in the first
case studied will be suitable for describing the observed cir-
culation flow and maximum pressure observed about the X
point in DIII-D.6 For this case the velocity function G�x ,y�

would have a circulatory pattern as the one shown in Fig. 1,
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and the corresponding pressure would be given by the prod-
uct of Eqs. �24� and �25�. It will present a maximum value
near the point on maximum G�x ,y� �roughly near the center
of the closed contours� and then decrease along flux surfaces.
Far from this region the flow tends to vanish, indicated by
the chosen condition that G�x ,y�→const. and thus the pres-
sure returns to be a flux surface quantity P��� as in the usual
static equilibrium.

In the governing equations considered we have ne-
glected cross-field anomalous transport under the assumption
that the transport time scale is much longer than the circula-
tion time associated with the plasma flows. This condition is
fulfilled for the case of the exchange time, 
x, measuring the
transit of the flow along an equipotential surface, about the X
point in DIII-D, for the estimated value given in Ref. 6 is

x=0.3 ms, which is smaller than the diffusion time t
= �L2 /De���4 cm�2 / �104 cm2/s��2 ms.

The establishment of circulation can be traced back to
the shearing of the E�B flow. This fact was pointed out in
Ref. 9, and for the case of DIII-D one may check that the
magnitude of the relevant quantities confirms the claim. In-
deed, an estimate of the E�B shear gives VE� �VE /L
��e� /T��cT /eB� /L2�16DB /L2, where DB ��104 cm2/s� is
the Bohm diffusion coefficient; so again for L�4 cm, VE�
��2�10−4 s�−1�
x

−1, which indicates that the exchange
time for the flows coincides with the shearing.

The solution given in �35� is the same as the one found
in Ref. 9 where the plasma flow in the divertor was studied.
The explicit role played by the coupling of the parallel flow
to the E�B flow in producing the pressure variation along
the magnetic field was demonstrated. It was shown that the
regime of detached divertor could be established by this ef-
fect. It is significant that we recovered this solution, meaning
that it is applicable in more general situations, other than the
divertor region.

The existence of the equilibrium states found here is
quite interesting and it has experimental support. The next
thing to ask regarding the plasma dynamics would be how
stable these states are with respect to different perturbation
modes. In the context of ideal MHD it would be interesting
to study for instance the ballooning modes when there is a
variable pressure along B. In relation to the flows about the
X point, it would be necessary to consider the resistive
X-point modes,11 which are a type of resistive ballooning
modes that can give rise to turbulence and, consequently,
transport.
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