
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.248.29.129

This content was downloaded on 10/09/2015 at 17:44

Please note that terms and conditions apply.

Analysis of TJ-II experimental data with neoclassical formulations of the radial electric field

View the table of contents for this issue, or go to the journal homepage for more

2015 Plasma Phys. Control. Fusion 57 115004

(http://iopscience.iop.org/0741-3335/57/11/115004)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0741-3335/57/11
http://iopscience.iop.org/0741-3335
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1 © 2015 IOP Publishing Ltd Printed in the UK

1. Introduction

The radial electric field, Er, is generally recognized as a key 
factor in determining the quality of transport in stellarators 
and tokamaks. In both types of device there is compelling evi-
dence that sheared ×E B flows can suppress or considerably 
reduce the turbulence that produces large confinement losses, 
especially near the edge where steep Er-gradients have been 
shown to play an important role in L-H transition [2]. In the 
case of stellarators, neoclassical (NC) collisional transport is 
also strongly dependent on Er over the whole plasma column 
due to the nonambipolarity of particle fluxes [3]. NC transport 
theory has been successful in describing the phenomenology 
observed in stellarators and heliotrons with quite different 

magnetic configurations, like the formation of an electron 
heat transport barrier near the magnetic axis in low-density 
discharges for example, the so called ‘core electron root con-
finement’ or CERC (see e.g. LHD [4], CHS [5], W7-AS [6], 
TJ-II [7, 8] or [9] for common features in various devices). 
The establishment of a radial variation of Er is mainly deter-
mined by NC transport and the shear of ×E B flows in turn 
modifies turbulent anomalous transport. Thus, it is generally 
true that Er is a key element for understanding both anomalous 
and collisional transport mechanisms.

In non-axisymmetric magnetic configurations like those 
of stellarators, the NC contribution is crucial in the analysis 
of phenomena related to Er. Indeed, there have been joint 
efforts to proceed to a benchmark of numerically obtained NC 

Plasma Physics and Controlled Fusion

Analysis of TJ-II experimental data with 
neoclassical formulations of the radial 
electric field

C Gutiérrez-Tapia1, J J Martinell2, D López-Bruna3, A V Melnikov4,5, 
L Eliseev4, C Rodríguez3, M A Ochando3, F Castejón3, J García6, B P van 
Milligen3 and J M Fontdecaba3

1 Instituto Nacional de Investigaciones Nucleares, 52045 Ocoyoacac, Edo. de México, México
2 Instituto de Ciencias Nucleares-Universidad Nacional Autónoma México, México D.F., México
3 Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040-Madrid, Spain
4 National Research Centre ‘Kurchatov Institute’, 12382 Moscow, Russia
5 National Research Nuclear University MEPhI, 115409 Moscow, Russia
6 CEA-Cadarache, 13115 Saint-Paul-lès-Durance, France

E-mail: martinel@nucleares.unam.mx

Received 23 September 2014, revised 13 July 2015
Accepted for publication 27 July 2015
Published 10 September 2015

Abstract
Neoclassical theory provides usable expressions for studying transport in toroidal plasmas 
and computing the associated radial electric field. An algebraic and three semi-analytical 
models are used here to study the radial electric field in TJ-II plasmas and compare it with 
experimental data from a heavy ion beam probe (HIBP) and with DKES calculations. Good 
qualitative agreement as well as reasonable quantitative agreement is found which allows us to 
validate the models for describing TJ-II radial electric fields. Furthermore, a simple algebraic 
formulation (2005 Plasma Phys. Rep. 31 14) provides physical insight for the interpretation of 
experimental data from the TJ-II heliac in spite of its complicated geometry, like the place of 
the transition from the electron to the ion root of the radial electric field, which occurs at the 
maximum value of collisionality, for example.

Keywords: stellarator TJ-II, HIBP diagnostic, plasma potential, neoclassical transport

(Some figures may appear in colour only in the online journal)

C Gutiérrez-Tapia et al

Experiment and model electric fields in TJ-II

Printed in the UK

115004

PLPHBZ

© 2015 IOP Publishing Ltd

2015

57

Plasma Phys. Control. Fusion

PPCF

0741-3335

10.1088/0741-3335/57/11/115004

Papers

11

Plasma Physics and Controlled Fusion

IOP

0741-3335/15/115004+14$33.00

doi:10.1088/0741-3335/57/11/115004Plasma Phys. Control. Fusion 57 (2015) 115004 (14pp)

mailto:martinel@nucleares.unam.mx
http://crossmark.crossref.org/dialog/?doi=10.1088/0741-3335/57/11/115004&domain=pdf&date_stamp=2015-09-10
publisher-id
doi
http://dx.doi.org/10.1088/0741-3335/57/11/115004


C Gutiérrez-Tapia et al

2

electric fields and fluxes with experimental data in conditions 
suitable for an NC treatment [10]. In the particular case of the 
TJ-II device, an acceptable agreement between experiments 
and Monte Carlo calculations has been obtained in low den-
sity regimes [11, 12]. For this reason, some works were started 
to compare a particular formulation of NC fluxes to describe 
the electric fields with experiments in restricted plasma condi-
tions [13, 14]. These and other later exercises encourage the 
use of any formulation that preserves the main neoclassical 
scalings of electron and ion radial fluxes to obtain the radial 
electric field. For example, measurements in the T-10 tokamak 
and the TJ-II stellarator could be qualitatively explained using 
collisional transport to calculate the electric field, thus sug-
gesting the ambipolar nature of turbulent fluxes in these two 
devices [15]. Similarly, simple neoclassical descriptions of 
transport could be used to describe experimental trends in 
non-axisymmetric toroidal devices of differing magnetic 
geometry [16].

Since the conditions and basic statements of NC theory are 
well grounded and provide a first approximation to transport, 
it is desirable to have practical implementations that evaluate 
this important contribution to transport and especially to the 
ambipolar radial electric field. The present work is also bench-
mark-minded, but from a more immediate and practical per-
spective: it is based on easy-to-implement formulations of the 
NC particle fluxes. The objective is to provide a practical tool 
for the evaluation of the radial electric field under the assump-
tions that (i) the main non-ambipolar radial fluxes are of neo-
classical origin and (ii) the functional dependencies of such 
fluxes for electrons and ions are enough to obtain Er even if the 
fluxes themselves are not accurately described. If the results 
obtained from the NC formulations are found to be consistent 
with the experimental results, this NC model should be suit-
able as a tool for the interpretation of experimental data, and 
also for predictive estimates. For this to be trustworthy, not 
one but different formulations of the NC problem should yield 
consistent and robust results with respect to the experimentally 
found trends of the radial electric field. We believe that this 
is especially significant when the exercise is undertaken with 
plasmas operated in a complex magnetic geometry like that 
of a Heliac device, as TJ-II is. With this in mind, we organize 
the work as follows. First, the main characteristics of the TJ-II 
stellarator and the plasmas subject to this study are described 
in section 2. In section 3 we recall the NC models that will be 
used for most of the comparisons. All are variants of the basic 
NC approach, having particular representations, and the main 
purpose of the study is to show that all of them give similar 
predictions for Er. A model appropriate for algebraic formula-
tion is described and the solutions for Er are given. Then, in 
section 4 after also explaining the procedure for obtaining Er 
from the numerical models, radial electric field profiles are 
found for all the models, for a representative discharge of 
TJ-II that covers all density ranges of interest. For comparison 
purposes, Er is also found from the kinetic code DKES which 
provides well accepted results. A general discussion of the 
behavior of Er and the NC model with respect to density in 
all the plasma regimes, comparing experimental and model 
results, is given in section 5. Here, the algebraic formulation is 

used to discuss some features of the passage from the electron 
to the ion root in TJ-II plasmas. Finally, section 6 summarizes 
the work and the conclusions are presented.

2. Experimental data

The TJ-II Heliac-type stellarator has a helical magnetic axis 
that winds around a circumference of radius R0   =   1.5 m. 
The plasma has a bean-shaped cross section with an average 
minor radius of ≈a 0.2 m and a magnetic field at the axis of 

≈B 0.950  T. The plasmas are initiated with electron cyclotron 
resonance heating (ECH); absorbed heating powers are nor-
mally PECH  =  (200–400) kW and in the absence of other heat 
sources the line averaged densities are =n 0.3( – ×1.0 1019)  
m−3with central electron temperatures of ∼T 0 1e( )  keV and 
ion temperatures of ∼T 0 0.1i( )  keV due to Coulomb heat 
exchange. Additional heating and fueling can be obtained with 
the help of one or two neutral beam injectors (NBI) delivering 
port-through powers of PNBI  =  (300–700) kW each. Above 
line densities of around ×1.2 1019 m−3 the ECH are no longer 
effective and the plasmas are sustained with NBI heating 
alone up to densities of =n 2.0( – ×6.0 1019)  m−3 with lower 
temperatures: T 0 0.3e �( )  keV and ∼T T0 0.5 0i e( ) ( ).

The electron density and temperature profiles are measured 
using the Thomson Scattering diagnostic from the magnetic 
axis up to ρ≈ 0.7, where ρ is the normalized flux surface label 
proportional to the square root of the enclosed plasma volume. 
In order to obtain the density profiles, atomic beam, interfer-
ometry and reflectometry data are used to extend the profiles 
to the edge ensuring that their line integral matches the experi-
mental value. The ion temperature is normally measured with 
the CX neutrals analyzer. ρTi( ) is quite homogeneous in the 
low density ECH plasmas and thus very different from the Te 
profiles due to the low collisional coupling in these cases. In 
what follows, we use Ti based on the central values provided 
by the diagnostic. The plasma potential in the bulk plasma is 
measured using the HIBP system described in [18].

The usual operation of NBI discharges consists of estab-
lishing a steady state ECH target plasma on which the NBI 
is launched. Owing to coating techniques based on lithiumi-
zation, the NBI phase can be sustained a with steady aver-
aged density [19], but in this work we are interested in the 
variation of plasma potential profiles with density. Therefore,  
a discharge with a continuous density ramp has been chosen, 
figure  1(a). Here, the ECH ( ×2 220 kW, nominal ECH) is 
maintained during the entire discharge but the NBI heating 
(≈400 kW, co-injected) starts at t   =   1070 ms causing a 
slight density increment. After some delay related to NBI 
slowdown times, the neutral beam forces a density ramp up 
with decreasing Te until the ECH cut-off density is reached 
at ≈t 1120 ms. Then Te drops down to  ∼300 eV and the den-
sity grows until the plasma is quenched due to radiative col-
lapse before the NBI phase ends. During the hot NBI phase, 
Ti becomes slightly peaked with central values that stay 
around 0.14 keV. Discharge #15585 in figure 1 is operated 
with hydrogen on the TJ-II standard magnetic configuration 
100_44_64.

Plasma Phys. Control. Fusion 57 (2015) 115004
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Figure 1(b) shows the plasma potential profiles φ ρ( ) 
that correspond to the times indicated by vertical arrows in 
figure 1(a) [17, 25]. Two profiles are shown at each density 
value because the diagnostic takes measurements at both sides 
of the magnetic axis (labeled ‘left’ and ‘right’). This will be 
used as an indication of the uncertainty in the evaluation of 
the plasma potential. During the ECH phase φ 0( ) is positive 
with values in the 400–1000 V range that depend on n. At high 
enough densities still in the ECH phase, the plasma poten-
tial becomes negative near the plasma edge and also causes 
the appearance of negative electric fields around the region 
of the maximum density gradient [20]. In discharge #15585 
this happens during the mixed ECH  +  NBI phase, when n 
increases, Te decreases and Ti also experiences a small (∼20%) 
rise correlated to the increased density. At still larger densities, 
like in the pure-NBI phase, φ 0( ) becomes negative as in the 
rest of the plasma. When ≈ ×n 2 1019 m−3, the plasma poten-
tial is negative everywhere reaching values between  −300 
and  −600 V near the magnetic axis. It should be noted that the 
change in the sign of the plasma potential occurs in a rather 
continuous way, starting near the edge where ∼T 50e  eV and 
moving towards the center as n increases.

In TJ-II, three different types of plasma are typically con-
sidered to represent different collisionality regimes. They 
can be characterized by the corresponding average electron 
density:

LDHT (low density with high electron temperature): 
low density (∼0.6  ×  1019 m−3), high electron temperature 
( ∼T 0 1e( )  keV) and low ion temperature ( ∼T 0.10  keV) as 
normally found in ECH plasmas. This regime is character-
ized by the long mean free paths (LMFP) of the particles 
over most of the plasma, �ν* 1, giving rise to radial fluxes 
dominated by the contribution of bouncing trapped particles 
in the large magnetic ripple. Here, ν ν ω=* / t is the colli-
sion frequency normalized to a nominal transit frequency 
ω ι π= =v R q v R/ / 2t th 0 th 0( ) ( ), involving the rotational trans-
form in radians ι and the thermal speed vth. In this regime the 
electrons, being much faster than the ions and having large 
magnetic moment due to the heating system (ECH), dominate 
the radial fluxes causing Er to be positive and φ∼ T e/e  in the 

plasma core. The plasma potential is then positive over the 
entire plasma column.

IDT (intermediate density and electron temperature): 
intermediate densities (∼1019 m−3) and electron tempera-
tures ( ∼T 0 0.5e( )  keV), typically found in mixed ECH  +NBI 
plasmas, or in high-density ECH plasmas. The electron tem-
peratures are lower than in the typical ECH plasma, while Ti 
remains at the order of 0.1 keV. This regime is known from 
the first TJ-II experimental campaigns for inverting the sign 
of the plasma potential (inferred from floating potential meas-
ured with electric probes [21]), as well as the electric field 
(according to spectroscopic measurements of plasma rotation 
[22]) somewhere inside the plasma. In particular, Er starts 
becoming more negative near the plasma edge [20]. With 
increasing average densities, the negative values of Er also 
cover smaller radii.

HDLT (high density and low electron temperature): high 
density ( �2  ×  1019 m−3) and low temperatures (T 0 0.3e �( )  
keV, T 0 0.14i �( )  keV), corresponding to NBI plasmas. When 
the density is further increased from the IDT regime, the 
plasmas have closer electron and ion temperatures and high 
density giving rise to shorter mean free paths for electrons and 
ions, satisfying ν* 1� , ions being closer to one. The contri-
bution from helically trapped particles is now much smaller 
and the radial transport in these conditions is probably domi-
nated by passing and toroidally trapped particles over a large 
portion of the plasma column, which corresponds to the ‘pla-
teau’ regime. The larger tendency of ions to escape the plasma 
causes <E 0r  in the entire plasma column.

Figure 2 shows density (a) and electron temperature (b) 
profiles taken from the same experimental day of discharge 
#15585 (figure 1) at fixed line densities within a 10% range, 
with values (0.5, 1, 1.5, 2 and 2.5 in 1019 m−3 units). The 
profiles shown correspond to the averages of Thomson 
Scattering profiles based on N discharges, with N  =  (6, 6, 
3, 5 and 1) respectively—only one discharge was available 
for the highest density. Each individual profile is obtained 
after fitting a short expansion (typically 4th or 5th order) 
of Bessel functions in order to obtain ρTe( ) and ρne( ) with 
reasonably smooth radial derivatives. Note that Thomson 

Figure 1. (a) Time signals of electron cyclotron emission (ECE) from the magnetic axis and from ρ = 0.6, line density n through the 
magnetic axis and NBI heating during an NBI discharge (TJ-II #15585) with continuous density rise. The ECE signals drop when the ECE 
cut-off is reached at ≈ ×n 1.2 1019 m−3 but the plasma remains hot until the radiative collapse at ≈t 1160 ms. (b) Plasma potential profiles 
corresponding to the times indicated with the arrows in (a).

Plasma Phys. Control. Fusion 57 (2015) 115004
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Scattering profiles are obtained from around 200 points in 
the TJ-II diagnostic giving a fine structure [23]; in the present 
study we are only interested in the main macroscopic varia-
tions. The error bars in figure 2 are the standard deviation of 
the corresponding N profiles, except for the highest density 
case, where the errors obtained from Bayesian analysis [24] 
are shown for the only available discharge. Incidentally, this 
shows that these two errors are similar. The profiles and their 
radial derivatives are then mapped to a same calculation grid 
ρj[ ]. The ion density ni is slaved to ne through a prescribed 
effective charge =Z 1.2eff .

According to our regime classification, the curve in 
figure  2 labeled 0.5 in line averaged density corresponds 
to the LDHT regime, where we can see the rather flat ρn( ) 
and more peaked ρTe( ). As a cautionary note, we must warn 
that these discharges were operated normally with off-axis 
ECH, which yields less peaking of Te than the customary 
on-axis heating. This is in line with the notion that there is 
no clear temperature (nor density) profile stiffness in these 
plasmas. Similarly, profiles corresponding to the IDT regime 
fall between those labeled 1.0 and 1.5. Typical profiles for 

the HDLT regime are labeled with line densities 2.0 and 2.7. 
The largest density in figure 2 is typical of the last stage with 
pure NBI heating—one injector at ≈400 kW of port-through 
power—when the plasma is cooling down: ≈T 0 200e( )  eV, 

≈T 0 120i( )  eV, ≈ ×n 2.5 1019 m−3.
There is a known trend of smoothly decreasing central 

plasma potential, φ φ=0 0( ) , with average density in TJ-II 
plasmas for all the regimes described above (LDHT, IDT and 
HDLT plasmas) [25]. The value φ0 saturates at around  −600 V 
for the highest densities (see shaded region in figure 7). It is 
worth mentioning, however, that the central electron tempera-
ture, =T T 0e0 e( ), follows an approximately inverse relation 
with the density, as shown in figure 3(a). Thus, the behavior of 
φ 0( ) could be partly ascribed to the electron temperature [26], 
but the combined dependences φ n0( ) and T ne0( ) are a reminder 
of the known link between plasma potential and plasma col-
lisionality in the theory of collisional transport.

Finally, and since an algebraic model will be used later, 
we have prepared a set of analytic profiles that reproduce the 
main features of the experimental ones shown in figure  (2), 
having the form

Figure 2. The averages of Thomson Scattering profiles at different line densities n (1019 m−3) taken from N sample discharges according to 
the ( )n N  sequence 0.5(6), 1.0(6), 1.5(3), 2.0(5), 2.7(1). Large error bars in ( )ρ>T 0.8e  at =n 2.7 have not been drawn for clarity.

Figure 3. (a) Measured central electron temperature as a function of central density showing hyperbolic-like dependence; (b) Ion 
temperature: LDHT regime (solid line) and experimental (hollow-squares), IDT regime (dashed lines) and experimental (hollow-triangles), 
and HDLT regime (dash–dotted line) experimental (right-pointing triangles).
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where na, Tae, and Tai are the electron density, electron temper-
ature and ion temperature at the boundary, while n0, T0e and T0i 
give the corresponding values at the center. Since the central 
values of the experimental data shown in figure 2 can be well 
fitted by an inverse relation, = +T n1/ 0.9226 0.7623e0 e0( ), as 
seen in figure 3(a), we have taken n0 and T0e to fall on this 
curve. The parameters a and b in equation (1) selected for our 
calculations are given in table  1. They produce the profiles 
shown in figures 3(b) and 4, where the model profiles are com-
pared with the experimental ones.

While most profiles are well represented by the simple 
binomial form of equation (1), those that are centrally peaked 
or slightly hollow do not have such a good fit. Although we 
are interested in the global features of the profiles which are 
enough to reproduce the basic behavior of the radial electric 
field profiles, as will be shown later, we can find better fits to 
ρn( ) and ρTj( ) by superposing two binomial forms like
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with the proper parameter choice. These better fits are shown 
in figure 5. However, the analytical calculations of section 4.2 
show that small changes in the profiles produce correspond-
ingly small changes in the ρEr( ) profiles except near the edge 
region where there is a large sensitivity in the relative values 
of Te and Ti. For that reason, we show the calculations with 
simple profiles in order to represent the global features in 
the figures that follow. DKES calculations use profiles (2) as 
explained below.

3. Neoclassical calculations of the radial  
electric field

The radial electric field in a stellarator can be computed from 
the neoclassical transport theory, starting from the diffusive 
fluxes for ions and electrons, Γj (with j   =   e, i). These fluxes 
have been calculated from kinetic theory or a two-fluid descrip-
tion to obtain closed forms in terms of the plasma parameters 
by several authors [3, 27–29]. From the dependence Γ Ej r( ) it 
is possible to compute the radial electric field by applying the 
ambipolarity condition. Here we use three different formula-
tions of the neoclassical fluxes to obtain Er following certain 
procedures that numerically integrate the analytical formulas. 
For the algebraic model described below, the first procedure 
directly solves the ambipolarity equation

Table 1. Constant values appearing in expressions (1) for different regimes of electron density and temperature (LDHT regime, IDT 
regime, and HDLT regime) obtained from the fitting to a hyperbolic curve ( )= +T n1/ 0.9226 0.7623e0 e0 .

na n0 a b Tae T0e ae be Tai T0i ai bi

LDHT 0.11 ⩽ 1 6.21 4.07 0.01 (0.65, 0.7) 1.9 1.66 0.01 0.077 40 10
IDT 0.08 (1, 2) 2.27 1.23 0.02 (0.45, 0.5) 2.91 1.64 0.01 0.09 35 10
IDT 0.09 (2, 3) 1.34 1.02 0.04 (0.35, 0.4) 6.64 5.43 0.01 0.09 35 10
IDT 0.11 (3, 4) 1.53 1.58 0.02 (0.3, 0.35) 5.23 2.12 0.01 0.09 35 10
HDLT 0.09 (4, 5) 4.78 5.11 0.02 (0.25, 0.3) 2.15 2.40 0.01 0.11 30 10

Note: Densities are expressed in 1019 m−3, and electron and ion temperatures in keV.

Figure 4. (a) Density profile and (b) electron temperature: LDHT regime (solid line) and experimental (hollow-squares), IDT regime 
(dashed lines) and experimental (hollow-triangles, right-pointing triangles and hollow-circles), and HDLT regime (dash–dotted line) 
experimental (solid-circles).
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Γ = ΓE Z Ee r i i r( ) ( ) (3)

to determine Er (additional conditions may be necessary if 
multiple roots exist for equation (3) which may produce a dis-
continuity of Er as a function of the radial coordinate). The 
other procedure, which is more convenient from the numer-
ical point of view, follows the evolution of the electric field 
solving the equation

ε
∂
∂

≈ Γ − Γ
⊥

E

t

e
Zr

e i i
∣ ∣ ( ) (4)

until a steady state is reached, which gives Er. Here, ε⊥ is 
the perpendicular dielectric constant and it is assumed that 
a term representing electric field diffusion is small [30] (see 
equation (11)).

The models used in this work simplify the complicated 
magnetic geometry in stellarators to obtain tractable NC 
transport fluxes, with the consequence that the resulting for-
mulas do not give a full account of them, but they can be used 
to calculate Er. No attempt is made to match the observed 
radial transport since it usually has an important anomalous 
component, particularly in regions far away from the plasma 
core. Since the non-ambipolar fluxes are mainly neoclassical, 
we expect that the Er obtained from NC transport explain the 
measured values reasonably well. The ability to reproduce 
the electric field should depend on the way the NC fluxes 
react to this field, which is different in the various models 
considered. The results are later compared to DKES calcula-
tions which include a detailed description of the magnetic 
geometry.

3.1. Semi-analytical models for the neoclassical particle 
fluxes

There are two ways of computing transport coefficients to 
obtain radial electric fields. The first one is by using a kinetic 
code such as DKES [31, 32] to get mono-energetic coef-
ficients as a function of plasma collisionality and the radial 
electric field, and the second consists of modeling these coef-
ficients from general physical criteria. The former is more 
accurate but requires more computational effort, thus we will 
first follow the second approach in order to show that the 
results obtained in a faster way can be still reasonable. For 
this purpose we consider three different models for describing 
neoclassical transport that provide analytical expressions for 
the particle fluxes.

3.1.1. Beidler’s model. The first model provides mono-ener-
getic transport coefficients for an idealized stellarator field 
with a single helical mode (see equation (5) below) obtained 
by Beidler [26, 33] from fits to DKES calculations. This 
model smoothly connects the three collisionality regimes that 
arise from the analytical theory of transport in a stellarator 
(ν ν,  and ν1/ ), together with the axisymmetric transport, 
which becomes dominant at large collision frequencies. The 
mono-energetic transport coefficients have to be integrated 
over the thermal velocity distribution.

3.1.2. Kovrizhnykh’s model. A second model reported by 
Kovrizhnykh [34] expresses particle fluxes, as due to the con-

tributions of an axisymmetric part Γ j
S and an asymmetric one 

Γ j
A (i.e. non-axisymmetric) for both the electrons ( j   =   e) and 

ions ( j   =   i), Γ = Γ + Γj j
S

j
AS. The two parts have expressions 

that depend on the collisionality regime and Kovryzhnikh has 
derived interpolation formulas that are approximately valid 
for all the regimes. Formulas for the radial fluxes were given 
in terms of the thermodynamic forces and the magnetic helical 
ripple hε  entering the assumed representation for the standard 
stellarator magnetic field with a single helical harmonic,

B B R R r l M r I Mr R/ 1 cos ;    / .T h h l0 0 0 0( )[ ( ) ( )] ( ) ( )θ ϕ= − − =ε ε ε
 

(5)

In these expressions, 0ε  is a constant defining the amplitude 
of the stellarator field, related to ι 0( ), and Il(x) is the modified 
Bessel function of the first kind.

The particle fluxes are based on a derivation that correctly 
describes the ambipolar field and the parallel (to B) plasma 
velocity [28], and the expressions interpolated over the col-
lisionality regimes for the symmetric and asymmetric compo-
nents are listed in [34].

3.1.3. Shaing’s model. There is a third model presented 
in [3, 27]. In these reports authors argued that several val-
ues of radial electric field that satisfy the ambipolar equa-
tion can be possible, but some of them are unstable. Thus, to 
find a stable solution for Er from the thermodynamic point 
of view, this field must be at the minimum of the general-
ized heat production rate. Here, helical and toroidal ripples 
( ,h tε ε ) appear explicitly in the magnetic field taken from the 
form θ θ φ= − − −B B l m1 cos cost h0 ε ε[ ( )], which appear 
in the asymmetric transport fluxes [3]. The symmetric part in 

Figure 5. (a) Density profile, (b) electron temperature and (c) ion temperature profiles, using the superposition of two binomial 
expressions, corresponding to the same line densities as figures 3 and 4.
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this case is given by the usual expressions for axisymmetric 
devices [29]. The electric field is obtained by solving equa-
tion  (3) with the asymmetric fluxes, which are valid in col-
lisional and collisionless regimes since they are modified to 
include the ν1/2 regime, according to [13, 35].

The magnetic geometry in the models is taken from typ-
ical equilibrium computations and does not intend to cap-
ture the detailed geometry of the TJ-II device, although the 
main tendencies of collisional transport should be preserved. 
Profiles for the rotational transform ι  and ripple amplitudes 
t h,ε  follow from those computations. For analytical uses the 

ripples are taken from the calculations in [30] which can be 
represented by

α ρ α= = β ρ;    10 ,t t h h
hε ε (6)

where the parameters αs, βs can be chosen to fit experimental 
data to account partially for geometrical effects. We found that 
the most appropriate value is α = 0.06t  for all models, but αh 
and βh are adjusted according to the model to improve the fit 
of the Er profiles.

In all these models the radial electric field only enters the 
non-toroidally symmetric part since in a tokamak-like geom-
etry steady state particle fluxes are ambipolar. The models 
are strictly valid for steady state conditions since no time 
dependent terms due to polarization drifts are included.

3.2. Algebraic formulation

Here we present an analytical model based on a reduced 
representation of Kovrizhnykh formulas, which allows us to 
find the roots of the ambipolar equation  (3) in closed form 
for given plasma profiles. The process followed is to give the 
model profiles of equation (1) for ρ ρn T, e( ) ( ) and ρTi( ), com-
pute the fluxes Γe and Γi and obtain Er from equation (3). This 
simplified analytical model [1] assumes a simple magnetic 
geometry with a single helical harmonic (i.e. equation  (5)). 
For the helical ripple we have taken ρ= 0.134h

0.61ε  [36]. The 
NC fluxes used are more appropriate in a low collisionality 
regime where the most important contribution to the transport 
coefficients comes from particles locally trapped in the helical 
ripple wells.

It is assumed that axisymmetric and anomalous fluxes are 
ambipolar and then only the asymmetric contribution is rel-

evant: Γ = Γj j
AS. In a quasi-stationary state with external par-

ticle sources Γext, the particle balance equation

Γ = Γj
ext (7)

has to be solved together with the ambipolarity equation (3). 
But in our analytical approach, only equation (3) is considered 
which gives an algebraic equation of third degree in the dimen-
sionless electric field =V q E T/i r e. This can be solved once the 
equilibrium profiles ρn( ) and ρTj( ) are given. However, not 
all profiles are physically possible, since the requirement of a 
single real root for V for all radial positions limits the choice of 
values of the profile parameters. This profile constriction can 
be understood, according to [1], in terms of the required par-
ticle sources obtained from equation (7) for the set of profiles 

ρ ρV n,( ) ( ) and ρTj( ). When V is not real and continuous the 
sources are not physically acceptable and then the profiles are 
not actually possible. The equation for the electric field V in 
steady state coming from equation (3) can be written as,

ρ ρ ρ ρ= + + + =F V V b V c V d, 0,3 2( ) ( ) ( ) ( ) (8)

where the coefficients ρb( ), ρc( ), and ρd( ) are given in [1].
Depending on the values of the coefficients ρb( ), ρc( ), and 
ρd( ), equation (8) can have up to three roots, ρ ρ ρV V V, ,1 2 3( ) ( ) ( ). 

In general, when there are three roots, two of them are stable 
and one is unstable, so an additional criterion has to be used to 
decide which root actually appears (see section 3.3). For our 
model profiles, however, there is only a single real root for all 
radial positions and therefore there is no ambiguity. For arbi-
trarily chosen profiles, the solutions in certain regimes may 
present a jump in the Er profile that corresponds to the transi-
tion from one root to another. At the root transition the electric 
field goes through zero and therefore the ambipolarity (equa-
tion (8)) has to be replaced by a differential equation for V, as 
explained in [44] (see equation (11) below). However, for our 
profiles in figures 3–5, this procedure is not necessary since 
they provide a single real root everywhere. It is important to 
note that the edge region is the most sensitive for yielding 
multiple roots, particularly at low densities, in the sense that 
small variations in ρTe( ) there can make a real root appear or 
disappear.

The profiles that have been verified to yield one real root 
solution for Er all over the plasma have central values of den-
sity and electron temperature that fall on the hyperbolic curve 
shown in figure 3(a). This assures that the ambipolarity condi-
tion is satisfied at each magnetic surface. The density and tem-
perature profiles corresponding to the values given in table 1, 
for each of the regimes defined in section 2 satisfy this crite-
rion and are shown in figures 3(b), 4(a) and (b). The improved 
profile fits of figure 5 also comply with the criterion.

3.3. DKES calculations

In addition to the simple models, kinetic calculations using 
the DKES code have been considered in order to have a more 
accurate comparison point. DKES takes the magnetic geom-
etry as obtained by the equilibrium code VMEC and follows 
a variational computation of the monoenergetic transport 
coefficients Dij, obtaining minimum and maximum values 
for them [31, 32]. We proceed as in [45] and since only par-
ticle fluxes are needed we just focus on the coefficient D11, 
which is calculated for a range of collisionality and Er-field 
values. It is then used to obtain the thermal diffusion coef-
ficients by averaging over a Maxwellian distribution. Then, 
the ion and electron fluxes are obtained by multiplying by 
the thermodynamic forces and the electric field is computed 
by solving equation (3). This is made for several radial posi-
tions in order to obtain the radial electric field profile. Near the 
transition point of the electron to ion roots there are typically 
two stable roots and the criterion for deciding which one to 
take is based on the minimization of the heat production rate 
[30, 44], which reduces to determine the sign of the integral 
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∫ Γ − Γ Ed
E

E
i e r

r
i

e
r( ) , where Ee

r and Ei
r are the electron and ion 

roots, respectively. When the integral is positive (negative) the 
ion (electron) root is selected. The values of Er obtained with 
DKES are quite sensitive to the exact values of the density and 
the temperatures as well as their gradients. We used the fit to 
the experimental profiles given by equation (2) and figure 5, 
but the Er profiles can be further changed by modifying the n 
and Tj values within the error bars seen in Figure 2.

4. Comparison with experimental data

4.1. Semi-analytical models

Here we present the results for the three models described 
in section  3.1. The NC particle fluxes are obtained using 
the formulas for each model, and the radial electric field 
is obtained with a numerical code coupled to the ASTRA 
transport shell [37] that starts with an initial Er, normally 

=E r 0r( ) , and evolves equation (4) in every radial position 
rj until a steady state is reached. When the experimental pro-
files of figure 2 are used the profiles obtained for the radial 
electric field are shown in figure  6. They are computed 
for three representative densities using each of the models  
(a, b, c), and the experimental electric field profiles are also 
shown for comparable densities computed from the HIBP 
data of the electric potential. The results from DKES are also 
shown for comparison (d).

The fitting to experimental profiles can be improved by 
varying the parameters α β,h h of equation (6) and it is found 
that α = 0.11h  and β = 1.1h  produce reasonable results for 
Kovrizhnykh’s model while Beidler’s and Shaing’s model 
results are better for α = 0.03h  and β = 1.1h . This can be justi-
fied arguing that the simplification in the magnetic geometry 
used in the models (which is different for each one) is ‘cor-
rected for the purposes of Er fits’ with effective ripple param-
eters that somehow incorporate the complicated geometry of 
TJ-II. It is worth mentioning here that the effect of varying 
the effective ripple is relatively mild on Er, while it is quite 
important for the particle fluxes (scaling like 3/2ε  in the LMFP 
regime), which is due to the strong nonlinearities of the trans-
port coefficients on the radial electric field.

As seen in figure 6, there are some general features in each 
density regime that reproduce those of the experimental pro-
files. In particular, the observed well known property of posi-
tive Er at low density that changes to negative at large n, which 
is clear in figure 6, is reproduced by the theoretical models. 
Similar calculations were also done for the model profiles of 
equation (1) with equivalent results.

Since the potential is the quantity actually measured by 
HIBP we focus on the physical scalings of φ ρ( ). The depend-
ency with density is represented in a plot of the central poten-
tial which is the most sensitive to density. The results of the 
three models can be seen in figure 7 when the experimental 
density and temperature profiles given in figure 2 are used. It 
shows that the behavior of all of the models is quite similar. 

Figure 6. Er profiles for the models of: (a) Kovrizhnykh, (b) Beidler and (c) Shaing calculated for three experimental profiles from figure 2 
for different line densities corresponding to the LDHT (red lines, = ×n 0.48 1019 m−3), IDT (black lines, =n 0.95) and HDLT (blue lines, 

=n 2.45) regimes; experimental profiles for line densities in the same regimes are shown with symbols and error bars. (d) Er profile from 
DKES for the same three densities.

Plasma Phys. Control. Fusion 57 (2015) 115004



C Gutiérrez-Tapia et al

9

We recall that the parameter εh has been adjusted to improve 
the fits in each model, thus allowing good agreement among 
them. The values for the algebraic computations are also 
shown for comparison. The shadowed region in the graph 
indicates the range of experimental values from HIBP and 
shows that the semi-analytical models are able to reproduce 
the measurements to some extent. At intermediate densities 
the agreement is good and some departure is seen for low 
densities due to effects not included in the NC model such 
as the presence of suprathermal electrons. The values of the 
density for the potential sign change are of the same order 
for all models. Shaings’s model gives somewhat smaller φ 0( ) 
values. The figure also includes the results from DKES com-
putations for which the profiles were adjusted by changing the 
density and temperature values within the experiment error 
bars tolerance in order to have a better agreement with the Er 
experimental profiles. This was needed for intermediate den-
sities to get the ion root at large radial positions. In general we 
found that reducing Te or raising Ti or n produces lower values 
of Er, then facilitating the appearance of the ion root. For these 
cases the central potential turns out to be slightly larger than 
the experimental range.

The results for φ 0( ) using the density and temperature pro-
files given by the models of equation (1) are shown in figure 8 
but in this case εh was kept fixed to ε ρ= 0.134h

0.61; for this 
reason the fit with Kovrizhnykh’s model is not so good, being 
always negative. For this case it is observed that the magni-
tude of φ 0( ) is also smaller than the experimental results and 
the agreement between the models is not so good. It is worth 
mentioning that the smaller values of Er∣ ∣ (and φ∣ ∣ ) found in 
the HDLT case with the semi-analytical models coincides 
with the results found numerically based on Monte Carlo 

calculations, which also underestimate the magnitude of Er 
[10]. However, it is noteworthy that the saturation of Er∣ ∣ seen 
at high density is well reproduced by all models, although the 
asymptotic value is model dependent.

While the electric field from DKES is in reasonably good 
agreement with the simpler models, this is not necessarily 
the case for the particle fluxes. This is because what actually 
matters for the Er profiles is the difference between electron 
and ion fluxes and not their absolute values. In this respect, 
the sensitivity of Er mentioned before can also be understood 
noticing that the thermodynamic forces enter the fluxes that 
determine the ambipolarity condition, and these carry the 
detailed information about the n and Tj profiles. The mono-
energetic coefficients calculated with DKES alone are not so 
sensitive.

4.2. Results of algebraic calculations

The roots of equation (8) provide the radial electric field pro-
file and the plasma potential profiles, φ ρ( ), are obtained from 
ρEr( ) after radial integration from the edge to the magnetic 

surface at ρ, imposing the constraint φ =a 0( ) . The results for 
the Er-profiles in each case are shown in figure  9(a), while 
the plasma potential profiles are shown in figure  9(b) (see 
figure 1), where they are compared with experimental results 
from each regime. It is seen that the same general features 
obtained with the semi-analytical models are also repro-
duced, approximately matching the experimental profiles, in 
particular, the sign change of Er in the IDT regime at some 
radial position. The electric field profiles obtained with the 
more accurate profiles of figure 5 are shown in figure 10. As 
mentioned above, the exact shape of the profiles is not too 
important for determining the main properties of ρEr( ), since 
they look similar.

A common feature already observed for TJ-II ECH plasmas 
[36] is that the plasma parameters for which the electric 
field is inverted in passing from LDHT to HDLT plasmas—
the IDT regime discussed above—are found in the interval 

Figure 7. Plasma potential at the center obtained for Beidler 
(B), Kovrizhnikh (K), and Shaing (S) models using the average 
experimental density and temperature profiles of figure 2. The 
analytical result is shown by the the dash–dotted line denoted by 
A. The shaded area shows the range covered by the experimental 
values [17]. DKES results are also shown (D).

Figure 8. Electric potential at ρ = 0 obtained for Beidler, 
Kovrizhnykh, and Shaing models using the model density and 
temperature profiles. The result from the algebraic calculation is 
shown by the curve without symbols.
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< <n0.5 /10 20
19( )  in agreement with the experiments (figure 

9(a)), which correspond to local collisionalities ν ∼* 0.01. It 
should be stressed, then, that the basic NC model, even for 
the complicated geometry of the TJ-II Heliac-type stellarator, 
provides a reasonable first approximation for the main experi-
mental results. The correlation with experimental data shown 
in figure 9 indicates that, although the fit is not perfect, the 
dependence of the plasma potential and the Er field on the 
plasma parameters is consistent with NC transport (including 
the kinetic predictions).

5. Discussion

In light of the results obtained from our computations with 
the different approaches and models and compared with the 
HIBP measurements, we can make an appraisal of the role of 
NC transport regarding radial electric fields. The main results 

of the comparison between experimental measurements and 
theoretical modeling are captured in figures 6 and 7. Figure 6 
shows that both experimental and theoretical Er-profiles 
approach negative values as the density increases from the 
lowest values; in particular, a dip in Er begins to develop near 
the edge (ρ∼ 0.8) when n rises, prior to becoming negative 
(also seen in figure  9). This is systematic behavior in TJ-II 
plasmas that we find well described by the models. However, 
on the quantitative side, we find that the experimental data 
yields stronger fields than the models, in particular for 
extreme LDHT and HDLT cases. This is apparent in figure 7 
for the central potential: the crossing to negative values seems 
reasonably well represented by the models but the high (low) 
potentials at low (high) density are in general underestimated. 
On the other hand, kinetic computations tend to have larger 
electric fields at intermediate densities but the values are 
susceptible to change when the n and T profiles are slightly 
modified. In this respect we must remember the simplifi-
cations of NC models that leave out some effects. In TJ-II, 
there are significant populations of supra-thermal electrons in 
LDHT conditions [38–40]. Furthermore, a low density transi-
tion to better particle confinement has been identified with the 
establishment of negative electric fields near the edge and the 
drastic drop of high energy (>20 keV) radiation from brehm-
sstrahlung [41]. Therefore, the presence of fast electrons and 
ECH pump-out effects are likely candidates for explaining 
why the plasma electric potential presents higher φ 0( ) than the 
models where these effects are not accounted for. In the case 
of high density plasmas, DKES calculations which consider 
magnetic geometry in more detail also yield lower electric 
fields than measured. It has been argued that this is due to 
non-local effects related to large-width banana orbits for the 
ions in TJ-II plasmas [42, 43]. This fact might be more general 
according to a recent benchmarking effort between numerical 
NC calculations and experimental data [10]. In general, then, 
the semi-analytical models behave quite like the kinetic com-
putations and other numerical results based on Monte Carlo.

Figure 9. (a) Er profiles from algebraic model and (b) φ profiles for three density model profiles LDHT (blue), IDT (red) and HDLT 
(black) in figures 3(b) and 4, also showing the experimental profiles from HIBP for three densities for comparison, marked with 
symbols [17].

Figure 10. (a) Er profiles from the algebraic model and for three 
density model profiles LDHT (blue), IDT (red) and HDLT (black) 
shown in figure 5.
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Comparing the Er profiles from the three NC models for 
experimental profiles (see figure 6) we notice a general agree-
ment among them, with the Beidler and Kovrizhnykh models 
giving quite similar results—and reasonably close to the 
experimental data—and the Shaing model yielding smaller 
values of the electric field and plasma potential in extreme 
density cases. The DKES results are in better agreement 
with Beidler’s model, which is not surprising given that this 
comes from analytical fits to DKES calculations. This consist-
ency among models together with the fair comparison with 
the experiment indicates the robustness of the main assump-
tions of NC transport, which is remarkable in the complicated 
geometry of the TJ-II stellarator. We point out that the experi-
mental Er-profiles can be better matched using ρhε ( ) as a ‘fit-
ting function’. However, the purpose of this work does not 
require finding a ‘best fit’ but just reasonably good behavior.

Once the NC models have been found to be a candidate 
for representing the radial electric field, we turn to the inter-
pretation of some general properties of TJ-II plasmas. The 
transition from the LDHT regime to the IDT regime in TJ-II 
plasmas is characterized by a change in plasma rotation that 
gives rise to an ×E B-flow shearing layer near the edge; in 
particular, the rotation velocity reverses where the electric 
field changes sign. We analyze this fact in terms of the plasma 
collisionality. In figure  11(a) the collisionality profiles are 
plotted for six cases of model profiles (equation (1)) from the 
LDHT to the HDLT regimes, and as one can see they behave 
differently; near the center they increase with ρ for low n and 
decrease for high n. However, the radial position where the 
electric field changes sign, which is marked with the lines, 
always falls within a limited collisionality range. The region 
marked with a pair of same-type lines contains the radii for Er 
inversion for all density regimes for a given NC model. This 
region is different for each model and it can be quite large but 
the corresponding collisionality range is comparatively small 
and of similar order for all models: for the Kovrizhnykh model 

ν< <0.002 * 0.004, for Shaing’s ν< <0.0033 * 0.0177 and 
for Beidler’s ν< <0.012 * 0.018. The same pattern is observed 
when the experimental profiles are used for the calculation 
of Er; the ν* profiles are shown in figure 11(b), but for these 
less regular profiles the results are not clear-cut, since some 
HDLT cases present marginal sign reversals. Excluding these 
non-standard cases, the collisionality range for sign reversal is 
seen to fall on a limited band: ν< <0.005 * 0.017, consistent 
with the previous cases. This means that for all profile types, 
when the collisionality exceeds a certain value, trapped elec-
trons become less important than circulating ions and there is 
a transition from the electron to the ion root.

The agreement of the algebraic model with the semi-ana-
lytical models and the DKES results seen in figure 7 points 
again to the robustness of neoclassical particle fluxes in pre-
dicting electric fields. There is also a qualitative agreement 
for the profiles as it is clear by comparing figures 9 and 6. 
Therefore, we can use the algebraic formulation to study in 
more detail the passage from the LDHT regime to the IDT.

When a low density ECRH plasma in TJ-II evolves to a 
higher density via external gas puffing, the plasma rotation 
starts changing sign near the edge but inside the plasma [20]. 

To analyze this behavior, first we must note that for a given 
Er, the electron and ion fluxes change with collisionality at 
different rates, thus, as shown above, the collision frequency 
should determine when and where the electric field transits 
from the electron root to the ion root. The plasma regions with 
larger collisionality should reach the ion root first. A typical 
observation is that the collisionality in low density plasmas 
shows a maximum around ρ = 0.8–0.9 as seen in figure 11 
which is the same region in which Er changes sign. Thus, we 
hypothesize that the collisionality maximum is what deter-
mines the radius of the Er inversion.

This hypothesis seems to be supported by simulations of 
TJ-II discharge #15585 (see figure 1(a)), shown in figure 12 
presenting the profile evolution of (a) the radial electric field 
and (b) the collisionality. For this simulation, ECE data has 
been used to build the evolving Te-profile, while the density 
profiles have been constructed using a typical low density 
shape re-scaled to give the known line density. The collision-
ality shows a maximum near ρ = 0.8, which is the radial loca-
tion where a dip in ρEr( ) develops and eventually becomes 
negative.

Figure 11. (a) Collisionality profiles for six model profiles ranging 
from low density (bottom curve) to high density (top curve), 
showing that the radial position range where Er changes sign 
corresponds to a narrow range in collisionality that depends on the 
NC model used. Radial ranges for each model are marked with a 
pair of same-type lines which are mapped to the corresponding 
collision range by the appropriate density regime ( <E 0r  to the 
right of the lines). (b) Collisionality profiles for the plasma profiles 
in figure 2, showing the collisionality range encompassing all 
densities, where Er changes sign.
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In order to prove this conjecture using the algebraic model 
it is convenient to express the asymmetric diffusion coeffi-
cients of Kovrizhnykh’s algebraic model in terms of the col-
lisionality. These coefficients are used in section 3.3 in terms 
of plasma density and temperatures, which follow from the 
monoenergetic coefficients when averaged over the thermal 
distributions. But, using the typical dependence of the colli-

sion frequency with density and temperature (ν ∼ n T/j j
3/2), the 

particle fluxes can be cast in terms of a normalized collision 
frequency, ν ν≡ a e0  (and then ν µ ν= a t t1/ /i e i0

3/2( )( ) ), as
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have the correct dependencies  ∼ν and  ∼1/ν for low and high 
ν, respectively and they reach a maximum value at a cer-
tain collisionality. These forms are useful for analyzing the 
behavior with collision frequency.

The ambipolarity condition Γ = Γi
AS

e
AS gives the equa-

tion  for the radial electric field equation  (8), but now the  
coefficients are functions of collisionality. Therefore, the 
roots for the electric field νV ( ) are functions of ν. From  
the experiment, one should expect that, for low densities, νV ( ) 
is a decreasing function. In order to test this, we can com-
pute νVd /d  by writing equation (8) as ν =F V , 0( )  and using 

ν ν= − ∂ ∂ ∂ ∂V F F Vd /d / / /( ) ( ). The result is,
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with = +′ ′l n n b T T/ /j j j j. When ν<Vd /d 0 the radial electric 
field drops as ν increases. This may lead to the creation of a 
minimum in the ρEr( ) profile where there is a maximum in the 

collisionality profile ν ρ( ). We have checked that νVd /d 0⩽  for 
all the sets of profiles considered here. This is also expected 
by inspecting equation  (10) since the only term with posi-
tive contribution when V  >  0 goes like −te

7/2 which is small 
for LDHT discharges. Therefore, one would expect to find a 
correlation between the maxima of ν ρ( ) and minima of ρEr( ) 
based on the relation ρ ν ν ρ∂ ∂ = ∂ ∂V V/ d /d /( ) (which holds 
if ν is the dominant dependence of V), as long as ν≠Vd /d 0. 
The minimum in Er is where it eventually reaches zero which 
could explain the behavior in figure 12, coincident with the 
collisionality maximum.

As a check for the validity of the collisionality depend-
encies introduced in equations  (9) we have computed 

ρ∂ ∆ = ∂ ∆∂ + ∂ ∆∂ν ρ ν νTT jj  (with ∆ = Γ − Γi e) directly from 
the full density and temperature dependencies of Kovrizhnykh, 
and compared it with ∂ ∆ν  computed from equation (9), with 
the result that the radial profiles ρ∂ ∆ν ( ) obtained using the 
model profiles are practically the same for the two methods. 
This means the assumed collisionality dependencies are 
appropriate and also implies that the convolution of the mono-
energetic coefficients with the thermal distributions preserves 
the fundamental collisional dependencies.

The algebraic fluxes of equation  (9) can also be used to 
explain the saturation of the electric field value for high densi-
ties, i.e. the ion root does not grow when higher densities are 
reached. By looking at the function ν∆( ), it is noticed that 
∆ → 0 as ν→ ∞. So, by virtue of equation (4) it implies that 
the electric field does not change when the density (and hence 
the collisionality) increases at high enough densities.

It is interesting to analyze the equilibrium point for =E 0r  
from the point of view of rotation dynamics. In [44] it is shown 
that the transition from the electron to the ion root occurs in a 
poloidal rotation shear layer, where Er can be obtained from 
a diffusion equation which may be interpreted as a balance 
between the non-ambipolar flux Γ − Γe Z i i e( ) and a viscous 
particle flux, driven by a poloidal viscous force,
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Figure 12. (a) Simulated evolution of a plasma from the LDHT to the IDT regimes where the line density evolves as in a TJ-II discharge 
#15585 (see figure 1(a)). The evolution of the radial electric field according to Kovrizhnykh’s semi-analytical model showing that it 
becomes zero at ρ≈ 0.7. (b) Corresponding collisionality has a maximum at the same position and increases with time since density 
increases and the electron temperature decreases.
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where η̂ is a viscosity coefficient. From here we see that an 
ambipolar equilibrium ( Γ = ΓZ i i e) can be reached at a point 
with ρ< 1 for vanishing Er, when the ρEr( ) profile has a min-
imum (i.e. =′E 0r ) there, as in the left panel of figure 12. In 
this case Γ = 0vis , which means that the viscous stress van-
ishes at the point where the poloidal rotation starts to change 
direction. A similar result is found based on numerical calcu-
lations [46].

Finally, we turn to the problem of the formation of trans-
port barriers in non-axisymmetric devices from the neoclas-
sical viewpoint. In such devices the L-H transition happens 
at different rates, possibly due to the fact that transport bar-
riers can develop inside the plasma (instead of right at the 
plasma edge, as is normally the case in tokamaks) where neo-
classical fluxes are not negligible in comparison with their 
anomalous counterpart. Assuming the paradigm of turbulence 
quenching due to the establishment of sheared electric drifts, 
it is in order to ask whether the neoclassical electric field can 
provide a positive feedback loop for the establishment of a 
robust transport barrier. In other words, will the neoclassical 
Er respond to the increasing gradients developing a stronger 
shearing rate in the ×E B flows? This would give a positive 
feedback mechanism of the kind studied, e.g. in [47], where 
the increasing pressure gradient intensifies the shearing rate 
that, in turn, eases a further increment of the pressure gradient. 
The models used in this paper provide such positive feedback 
indeed. As an example, figure 13 shows a calculation using 
Kovrizhnykh’s semi-analytical model where a stronger ′Er 
is found just after the L-H transition in TJ-II [2]. A deeper 
well in the Er profile—and hence a stronger shearing rate—
develops if the profiles are allowed to evolve under the action 
of a transport barrier, indicating that the neoclassical Er can 
help in the process or, eventually, become the dominant feed-
back mechanism.

6. Conclusions

The results of calculations of the Er field from the framework 
of neoclassical transport theory have been compared with 
experimental measurements of the plasma potential obtained 

with HIBP diagnostics in the TJ-II stellarator, using simplified 
models and kinetic calculations based on DKES. We show that 
the simple models are good enough to reproduce the radial elec-
tric field, when compared with the full DKES results and with 
the experimental data. Different collisionality regimes were 
analyzed with three analytical models which in general terms 
yield Er profiles in agreement with the experiment, indicating 
that neoclassical theory is one of candidates for explaining the 
experimental data partly based on the present analysis.

From the comparison of analytical results with those 
obtained from the three models considered for the neoclas-
sical fluxes, it is noted that the Kovrizhnykh and Beidler 
models are more adequate for modeling non-axisymmetric 
NC transport in TJ-II plasmas. The Beidler model is also in 
good agreement with the DKES results. The qualitative agree-
ment with experimental Er profiles is remarkable considering 
that a simple magnetic geometry with a single helical har-
monic was assumed for the models. The helical ripple can be 
adjusted to improve the fits with experimental data. Actual Er 
values from DKES are quite sensitive to small variations of Tj 
and n profiles, especially near the plasma edge.

The good performance of the analytical NC model in pre-
dicting Er was exploited to explain the observation that the 
positive Er profile reaches zero at a point inside the plasma 
edge in going from LDHT to IDT regimes. It was shown 
that this occurs where the collision frequency profile has a 
maximum. It is seen from the analyzed discharge data that 
the collisionality maximum approximately coincides with the 
maximum in the pressure gradient which would explain why 
in [20] the velocity shear layer was identified with the max-
imum density gradient.

The transition from the electron to the ion root is found 
to occur for a certain narrow range of collisionality which 
points to a threshold collisionality as the cause for the transi-
tion. The implication of this is that the right amount of colli-
sions, which destroy the trapped particle orbits that produce 
large electron losses, are responsible for the appearance of 
the ion root.

The NC model also provides support for the idea that 
an improved confinement mode can be maintained by the 
increased sheared ×E B flows.
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