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In this work we study the transport and confinement properties of runaway electrons (RE) in presence of
magnetic fields with perturbations producing different levels of stochasticity. We use KORC [L. Carbajal et
al., Phys. Plasmas 24, 042512 (2017); D. del-Castillo-Negrete et al., Phys. Plasmas 25, 056104 (2018)] for
simulating the full-orbit (FO) and guiding-center (GC) dynamics of RE in perturbed magnetic fields that
exhibit magnetic islands. We extend previous works on this problem [A. Wingen et al., Nucl. Fusion 46, 941
(2006); V. A. Izzo et al., Nucl. Fusion 51, 063032 (2011); G. Papp et al., Nucl. Fusion 51, 043004 (2011); V.
Izzo and P. Parks, Phys. Plasmas 24, 060705 (2017); C. Sommariva et al., Nucl. Fusion 58, 016043 (2018)]
by studying in detail full-orbit effects on the RE dynamics. We quantify FO effects on RE transport by
performing one-to-one comparisons between FO and GC simulations. It is found that, for the magnetic field
configurations considered, GC simulations predict twice the RE losses of FO simulations for 1 MeV, and four
times the RE losses of FO simulations for 25 MeV. Similarly, we show how different GC and FO dynamics
of RE moving around magnetic islands can be, especially in the scenario where the RE Larmor radius is of
the order of the size of the magnetic island. We also study the role of rotation of the magnetic islands on
RE confinement, we find that low-frequency toroidal rotation has no observable effect on RE transport in
the cases considered. These results shed some light into the potential of avoidance or mitigation mechanisms
based on magnetic perturbations.

PACS numbers: 52.20.Dq, 52.25.Fi, 52.55.-s, 52.65.-y, 28.52.-s, 89.30.Jj, 52.55.Fa, 02.50.Ey

I. INTRODUCTION

The avoidance and mitigation of relativistic runaway
electrons (RE) with energies of several MeV in magnetic
confined fusion plasmas is necessary for the safe oper-
ation of future fusion reactors such as ITER1. During
the past years, important advances in the RE mitigation
strategies have been made using massive gas injection2,3

and shattered pellet injection4,5 of impurities to miti-
gate RE using collisional processes. More recently, the
use of kinetic instabilities to deconfine RE during the
RE plateau6–9 has been proposed. These advances have
been made possible due to the joint efforts of experimen-
tal, theoretical and numerical studies.
In this work, we perform a numerical study of the

confinement of RE in perturbed toroidal magnetic fields
with various levels of stochasticity driven by overlap-
ping of magnetic islands. For low-energy particles, it is
known that transport in stochastic fields can be multi-
scale10, spanning fast timescales where drifts dominate
to slow timescales where particles diffuse following mag-
netic field lines. Although RE transport in stochastic
magnetic fields might also exhibit multi-scale phenom-
ena, we restrict our study to timescales of up to ∼ 1
ms, where collisional and synchrotron radiation losses ef-
fects do not significantly modify the RE dynamics. The
study of RE dynamics during the thermal and current
quench is out of the scope of the present work, since
this would require the inclusion of collisional, radiation
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losses, and self-consistent electric field effects as well as
the complex dynamics of the magnetic fields (see Fig. 3 of
Ref. 11 or Fig. 6 of Ref. 12). Numerical results reported in
Ref. 11 are used to construct an analytical model of a per-
turbed magnetic field that includes MHD-like modes in
the equilibrium magnetic field of Refs. 13 and 14. We use
KORC13–15 for following the full-orbit (FO) and guiding-
center (GC) dynamics of RE in these perturbed magnetic
fields.
Previous numerical studies have analyzed the role of

perturbed toroidal magnetic fields on the GC dynamics
and confinement of RE11,14,16–18. In agreement with ex-
periments, these studies concluded that relatively low-
energy RE tend to be less confined than high-energy
RE, this due to drift orbit effects in toroidal geome-
try, which was predicted in early theoretical studies19.
Other studies of RE transport in perturbed magnetic
fields include Ref. 20, where the authors investigated fi-
nite Larmor radius (FLR) effects on RE dynamics evolv-
ing in micro-turbulence through gyro-kinetic simulations
in non-toroidal geometries. In this work the authors also
find a reduction in RE transport as the RE energy in-
creases; however, the effect of toroidal geometry is not
included. In Ref. 21, the authors studied radial trans-
port driven by magnetic field stochasticity using an orbit-
averaged model for the RE dynamics in toroidal geome-
tries. This was done by coupling an advection-diffusion
model for the radial transport of RE to the orbit-averaged
model. In this advection-diffusion model, the transport
coefficients were estimated through Monte-Carlo simu-
lations. More recently, the first FO simulations of RE
in perturbed, time-dependent MHD toroidal magnetic
fields12 studied the formation and confinement of RE. In
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this study it was found that drift orbit effects and parallel
transport along open magnetic field lines are responsible
for most of the observations on the RE confinement, but
a detailed analysis of FO effects for various populations of
RE with different energies and pitch angles and different
magnetic perturbation amplitudes was not done.
In the present work, we extend previous studies on

RE confinement11,12,16–18 by studying FO effects on RE
transport in perturbed toroidal magnetic fields with dif-
ferent levels of stochasticity. We perform one-to-one com-
parisons of FO and GC simulations to quantitatively
assess when both models for the RE dynamics predict
similar RE transport, and when FO effects need to be
taken into account. We find that FO effects, in par-
ticular FLR effects, enhances the confinement of RE in
stochastic toroidal magnetic fields with respect to GC
simulations, reducing RE losses by a factor of two for 1
MeV RE nd by one-third for 25 MeV. Our results are in
agreement with the trends observed in experiments and
answer a long-standing question on the full-orbit effects
on RE confinement.
The rest of the paper is organized as follows: in Sec. II

presents the analytical model for the perturbed magnetic
field that is used in our KORC simulations of RE. Also,
we present the case studies of the perturbed magnetic
field used through this work. In Sec. III we present the
plasma parameters considered in this study. In Sec. IV
we present the estimate of the variation in our calcu-
lations of the number of confined RE due to the finite
number of particles in the simulation. Then, in Sec. V
we study the RE dynamics in the presence of a single
magnetic islands when rL is varied. A one-to-one com-
parison between FO and GC simulations is done. It is
in Sec. VI that we include both, the full-orbit effects and
stochasticity on the RE confinement. A detailed com-
parison between FO and GC simulations is made here to
identify scenarios where FO need to be included. Finally,
in Sec. VII we study of RE transport when FO effects,
magnetic field stochasticity and the effect of toroidal ro-
tation are included at the same time. We study the dy-
namics of RE around magnetic islands, and investigate
the joint effect of rotation and stochasticity on low- and
high- energy RE confinement. In Sec. VIII we present a
discussion on our results.

II. MAGNETIC FIELD MODEL

The model of the magnetic field used in all the simu-
lations reported in this manuscript is a generalization of
the analytical field of Refs. 13 and 15, corresponding to a
magnetic field of nested circular, toroidal magnetic flux
surfaces, which in toroidal coordinates is given by:

B(r, θ) = Bζ(r, θ)êζ +Bθ(r, θ)êθ. (1)

where Bζ(r, θ) = Bo/(1+η cos θ) is the toroidal magnetic
field, η = r/R0 is the inverse aspect ratio, R0 is the major

radius at the magnetic axis, B0 is the toroidal magnetic
field at R0, and Bθ(r) = κηB0/[q(r)(1 + η cos θ)] is the

poloidal magnetic field. Here κ = Ĵp · êζ with Ĵp the
unit vector in the direction of the toroidal plasma current
density. q(r) is the safety factor, given by:

q(r) = q0

(

1 +
r2

ε2

)

. (2)

The constant ε is obtained from the values of q0 and q(r)
at the plasma edge r = a. The coordinates (r, θ, ζ) are de-
fined as x = (R0 + r cos θ) sin ζ, y = (R0 + r cos θ) cos ζ,
and z = r sin θ, where (x, y, z) are the Cartesian coordi-
nates. In these coordinates, r denotes the minor radius, θ
the poloidal angle, and ζ the toroidal angle. Note that in
this right-handed toroidal coordinate system, the toroidal
angle ζ rotates clockwise, that is, it is anti-parallel to the
azimuthal angle, φ = π/2− ζ, of the standard cylindrical
coordinate system.
The magnetic field of Eq. (1) is perturbed by including

MHD-like modes22,23. The perturbation to the magnetic
field is written in the following form:

δB =
∑

mn

δBmn =
∑

mn

∇×Amn , (3)

where Amn = α̃mn(r, θ, ζ)R0B(r, θ), B(r, θ) is the equi-
librium magnetic field of Eq. (1), and the subscripts m
and n refer to the poloidal and toroidal numbers of a
given mode, respectively. The form of δB ensures that
the resulting magnetic field is divergence free, and the
inclusion of B(r, θ) in Amn allows us to include pertur-
bations along and across the local magnetic field22. The
function α̃mn(r, θ, ζ) is given by:

α̃mn(r, θ, ζ) = αmn(r) cosϕmn ,

αmn(r) = ǫmnf(r)g(r)h(r) ,

f(r) =
1

2

[

1− tanh

(

r − a

lmn

)]

,

g(r) =

(

r

r∗mn

)m

,

h(r) = exp

[

− (r − rmn)
2

2σ2
mn

+
(r∗mn − rmn)

2

2σ2
mn

]

,

(4)

where ǫmn is a constant, ϕmn = κmθ−nζ+ω∗
mn−ωmnt is

the phase of the (m,n) mode, ωmn is the toroidal rotation
frequency of the mode, t is the time, ω∗

mn is an arbitrary

initial phase of the mode, r∗mn = ε
√

m/nq0 − 1 is the
radial position of the mode, rmn = r∗mn − mσ2

mn/r
∗
mn,

σmn is the width of the mode amplitude, and lmn is the
decay rate at the edge of the amplitude of the mode.
Following22 and references therein, we can calculate

the half-width of the magnetic island that produces a
(m,n) mode as follows:
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δrmn ≈
√

4q(r∗mn)b(r
∗
mn)R0

nq′(r∗mn)
, (5)

where q(r∗mn) and q′(r∗mn) are the safety factor and its
derivative at the resonance position r∗mn, respectively,
and b(r) = ǫmnκmR0αmn(r

∗
mn)/r

∗
mn.

In the cases where toroidal rotation of the perturbation
modes is included (ωmn 6= 0), the following inductive
electric field is expected to occur:

E = −
∑

m,n

∂Amn

∂t
. (6)

As it will be shown below, although this inductive electric
field can be relatively large in some cases, its net effect
on the RE energy is not significant with respect to the
cases where no rotation is included. Also, mode rotation
modifies the orbits mostly along the θ direction, but not
radially.
Now, we describe the cases of perturbed magnetic fields

that will be used through the the manuscript. In all cases,
we use the parameters of the equilibrium magnetic field
of Eq. (1) with the parameters of Sec. III, and no rotation
is included unless otherwise specified.

• Case 0: We include only one mode, m = 2. Its
amplitude is set to ǫ21 = 6.5×10−6. This generates
a magnetic island with half-width of δr21 ≈ 0.01 m,
see Eq. (5), and maximum amplitudes |δB21/B0| ≈
1× 10−4. The decay rate l21 is set to 0.005 m. σ21

is set to 0.02 m.

• Case 1: The amplitudes ǫmn of Eq. (4) are ǫ21 =
6.5 × 10−6, ǫ31 = 5.5 × 10−6, ǫ41 = 5.0 × 10−6,
ǫ51 = 4.5×10−6, and ǫ61 = 4.0×10−6. These ampli-
tudes generate magnetic islands with half-width of
δrmn ≈ 0.01 m for all modes, see Eq. (5), and with
maximum amplitudes of the magnetic field pertur-
bations of |δBmn/B0| ≈ 1 × 10−4. The decay rate
lmn is set to 0.005 m for all modes, this gives a
fast and smooth drop of any δBmn at the plasma
edge r = a. σmn is set to 0.02 m for all modes. In
Fig. 1(a) and (b) we show αmn and Poincaré sec-
tions of 1 eV electrons, which approximately follow
magnetic field lines.

• Case 2: The amplitudes ǫmn are ten times larger
than those of Case 1, these amplitudes generate
magnetic islands with half-width δrmn ≈ 0.034
m for all modes. The maximum amplitude of
|δBmn/B0| ≈ 1 × 10−3. The rest of the mode pa-
rameters are the same of Case 1. In Fig. 1(e) we
can see significant overlap of αmn, which generate
broad regions of stochastic regions in particle or-
bits, see Fig. 1(d). Only for r < 0.15 m we observe
robust, formed magnetic surfaces.
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FIG. 1. Mode amplitude and Poincaré sections of low-energy
electrons. Panel a): radial amplitude αmn for the modes of
Case 1. The vertical dashed lines show r∗mn of Eq. (4). Panel
b): Poincaré sections of 1 eV electron orbits streaming along
the perturbed magnetic field of Case 1. These low energy
electrons approximately follow magnetic field lines. The re-
sulting magnetic islands are highlighted with the same color
of their corresponding αmn in panel (a). Panel c): same as
panel (a) for Case 2. Panel d): same as panel (b) for Case 2.

A useful parameter to be used to estimate the stochas-
ticity in the magnetic field is the Chirikov parameter24:

Sm1m2
=

δrm1n + δrm2n

|r∗m1n − r∗m2n|
, (7)

where δrm1n and δrm2n are the half-width of Eq. (5) for
modes with m = m1 and m = m2, respectively. r∗m1n

and r∗m2n are the corresponding radial positions of the
modes. In Fig. 2 we show Sm1m2

for the cases described
above. In this figure, the vertical magenta lines show
the radial position of the modes r∗mn. According to this
criterion, if for two adjacent islands S > 1, then there
are no integrable orbits between the islands. That is, all
the orbits in that region are chaotic. It is known that
this parameter underestimates the level of stochasticity
in the magnetic field, but still provides a good relative
measure of stochasticity between the cases studied in this
work. From the Poincaré sections of low-energy electrons
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FIG. 2. Chirikov parameter for stochasticity in regions be-
tween magnetic islands. The vertical magenta lines show the
radial position of the modes m = 2 to m = 6.

of Fig. 1(d), we observe stochastic regions between the
modes of Case 2 for which S ≥ 0.8.

The Chirikov parameter of Eq. (7) proves to be useful
to estimate the stochasticity of the magnetic field and
particle orbits when these do no depart greatly from the
magnetic field lines, that is, when the particles have low
energies and small pitch angles. However, when ener-
getic particles are considered, their orbits depart from
the magnetic field lines. In this scenario an heuristic ex-
tension of Sm1m2

for particle orbits might be proposed:

Ŝm1m2
=

δrm1n + δrm2n + 2rL
|r∗m1n − r∗m2n|

. (8)

Here, rL is the characteristic Larmor radius of the parti-
cle under study. This extension of the Chirikov parame-
ter accounts for both overlapping of magnetic islands (as
observed by the particle orbits) and the interaction of the
particle orbit (through rL) with two adjacent islands. As

for Sm1m2
, Ŝm1m2

> 1 would mean that stochastic orbits
of energetic particles (which now depart from magnetic
field lines) are expected between resonances m1 and m2.
An increase in energy and pitch-angle of the RE will pro-
duce larger rL values, which in turn make Ŝm1m2

larger

than Sm1m2
, that is, Ŝm1m2

would predict even more
stochasticity of RE orbits for high-energy, large pitch-
angle RE. As it will be shown in Sec. VI, this is not
the case. In fact, FO effects are found to suppress RE
losses (with respect to GC orbits following approximately
magnetic field lines). One could try to improve the es-
timate of Eq. (8) by including the shift of the position
of the modes r∗mn by taking into account the RE orbits
shifts (see Sec. III.A.1 of Ref. 14), but these latter are
approximately the same for all RE around two adjacent
perturbations; therefore, this effect would be cancelled in
the difference r∗m1n − r∗m2n.

III. PLASMA PARAMETERS

The plasma parameters used in this work correspond
to those of a typical medium-size tokamak (e.g. DIII-
D), that is, toroidal magnetic field B0 = 2 T, major
radius R0 = 1.5 m, plasma radius a = 0.5 m, q0 = 1,
qa = 7, which corresponds to a plasma current Ip ∼ 250
kA11. The direction of the toroidal magnetic field Bζ is
along the toroidal direction êζ , while the plasma current
density Jp is anti-parallel to êζ , therefore κ = −1 in
Bθ(r, θ) of Eq. (1). This configuration causes a drift of
the RE towards the low-field side (LFS).

The parameters of the magnetic perturbations δBmn

are chosen so that the widths of the magnetic islands that
they produce are the same for all the (m,n) modes. This
choice allows us to control island overlapping, and thus
the level of stochasticity of the magnetic field, in a simple
way. In all the simulations reported in this manuscript,
unless stated otherwise, we include modes with n = 1 and
m = 2, 3, 4, 5, and 6. These modes are the ones observed
to dominate in MHD simulations of rapid shutdown of
DIII-D limited plasmas11, and are included in our ana-
lytical model of the perturbed magnetic field. The ampli-
tude of each mode is specified in Sec. II, and are chosen so
that various degrees of island overlapping are obtained.
For simplicity, ω∗

mn is set to zero for all the modes in the
simulations, arbitrary random values can be used but we
do not expect to observe a significant effect on the RE
transport. When plasma rotation is included (ωmn 6= 0),
we set the toroidal rotation to f = 50 kHz, which is
equivalent to an angular frequency of ωmn = 300 kHz.
This rotation frequency is inferred from the rotation of
blobs of synchrotron radiation emitted by RE measured
in the TEXTOR tokamak25, which is a typical medium-
size tokamak for which information about toroidal rota-
tion frequency could be found in the literature. As it
was shown in Ref. 14, these blobs of synchrotron radia-
tion are due to RE trapped in magnetic islands. We note
that this value of ωmn is not representative of all the sce-
narios where RE occur in rotation perturbed magnetic
fields, but it is a value that can be found in the literature
for a medium-size tokamak where RE with several MeV
were observed25.

Regarding the parameters of the simulated RE, their
initial energy distributions correspond to mono-energetic
and mono-pitch-angle distribution functions f(E , θ) =
δ(E −E0)δ(ϑ−ϑ0)/ sin θ, with E0 ranging from 1 MeV to
25 MeV, as specified in each case. The values of ϑ0 are
specified in each case. The factor 1/ sin θ in f(E , θ) is for
normalization purposes. Here, cosϑ = p‖/p with p and
p‖ the momentum of the simulated RE and its parallel
component along the local magnetic field, respectively.

In all the simulations reported in this manuscript, we
do not include collisions or synchrotron radiation losses.
This is because in the time scales considered (t . 1 ms)
these effects have little effect on the RE dynamics14.
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IV. STATISTICAL CONVERGENCE OF KORC

SIMULATIONS

Our KORC simulations, which follow RE orbits in dif-
ferent magnetic fields, are Monte Carlo (MC) simula-
tions that provide estimates of various quantities, e.g.
the number of confined RE, N , after some time t given
an initial condition and magnetic field at t = 0. One of
the issues when using MC simulations is the amount of
“noise” introduced in the calculation of bulk quantities
of the plasma due to the finite number of particles used
in the simulation26. This issue is of particular concern
when small variations in bulk plasma quantities are ob-
served and we want to know whether these are due to
some physical effect, or simply due to “noise” in our sim-
ulation. In all our simulations We take this into account
as explained below.
In Fig. 3 we show the number of confined, full-orbit

25 MeV RE in the magnetic field of Eq. (1) after 0.1 ms
(filled markers). We set the number of simulation parti-
cles Nsim to 1,000, 10,000, 100,000, and 500,000 in the
simulations reported in this figure. The initial condition
for these simulations is the same, the 25 MeV RE are uni-
formly distributed in a torus of radius 0.3 m centered at
the magnetic axisR0. The initial mono-pitch angle distri-
bution of the RE is that all RE have a finite ϑ0 = 40◦, in
such order to allow RE to cross magnetic field surfaces,
which determines the RE confinement to some degree.
We include a set of modes δBmn in the magnetic field
that corresponds to Case 1 of Sec. II. As it can be seen,
the number of confined RE, which has been normalized
to Nsim, shows some fluctuations around N/Nsim = 66%
for different simulations with different Nsim. This is ex-
pected, since N is a MC estimate that depends on Nsim.
Following Ref. 26, we can calculate the standard error
ǫN in the computation of N due to the finite number of
particles in the MC simulation as follows:

ǫN =
σN√
Nsim

,

σ2
N =

∫ ∫

(n(v,x)− 〈n(v,x)〉)2 p(v,x)d3xd3v .

(9)

Here, σN is the variance of the MC estimate of N , n(v,x)
is the number of particles with initial position x and ve-
locity v, p(v,x) is the probability density function that
a RE with initial position x and velocity v remains con-
fined by the end of the simulation. The average 〈·〉 repre-
sents the ensemble average over all particles in the sim-
ulation. The integral of Eq. (9) is calculated numeri-
cally, the toroidal geometry of the problem is taken into
account by using toroidal coordinates. Here, p(v,x) is
calculated numerically by binning the initial position in
phase space of those RE that by the end of the simula-
tion remain confined. In Fig. 3 we show the estimate of
N with filled markers and N ± ǫN with error bars. As
expected, the confidence interval N±ǫN for a given value

10 2 10 3 10 4 10 5 10 6
64.5

65

65.5

66

66.5

67

67.5

68

FIG. 3. Monte Carlo estimate of the number of confined 25
MeV RE in a perturbed magnetic field, N . The MC estimate
of N is shown with filled markers for different values of Nsim.
The confidence interval N ± ǫN is shown with error bars. We
set Nsim to 1,000, 10,000, 100,000, and 500,000 in these four
simulations. The structure of δBmn corresponds to Case 1 of
Sec. II.

of Nsim is within or it overlaps the confidence interval for
smaller Nsim. This shows how the MC estimate N con-
verges asNsim increases, and allows us to identify when a
variation of a bulk plasma quantity is due to MC “noise”
or due to some physical process.

V. RE TRANSPORT IN THE PRESENCE OF

MAGNETIC ISLANDS

In this section we study the dynamics of RE around a
magnetic island when its energy and pitch-angle are var-
ied, and therefore its Larmor radius is changed. For this,
it is useful to use the characteristic RE Larmor radius
rL = v⊥/Ωe to compare the length scales of the gyro-
motion of the RE with the length scales of the magnetic
field, that is, the half-width of the magnetic islands of
Eq. (5). Here, v⊥ and Ωe = eB0/γme are the perpendic-
ular velocity and relativistic cyclotron frequency of RE.
In Fig. 4 we show the RE Larmor radius for various values
of their pitch angle ϑ as function of their kinetic energy
E0 (dashed lines). The solid horizontal lines in this figure
show the values of the half-width of the magnetic islands
produced in each case described in Sec. II. This figure
thus allows us to see the relationship between rL and
δrmn for various magnetic field and RE parameters.

We investigate the full-orbit effects on the RE dynam-
ics in perturbed fields by performing a one-to-one com-
parison between FO and GC simulations of 10 MeV RE
in the perturbed magnetic field of Case 0 varying their
initial pitch-angle, which is equivalent to vary their char-
acteristic Larmor radius and magnetic moment, see Ap-
pendix. A. In Fig. 5(a) we show a close-up of the islands
of the (m,n) = (2, 1) mode in the Poincaré sections of
1 eV electrons in the magnetic field of Case 0. These
low-energy electrons approximately follow magnetic field
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FIG. 4. Runaway electron Larmor radius rL for various pitch
angles ϑ as function of their energy E0. The horizontal solid
lines show the half-width of the islands of the perturbed mag-
netic fields of Cases 0, 1 and 2.

lines. An electron orbit confined within the magnetic is-
land is highlighted in red, and two orbits approximately
following unperturbed magnetic field lines are highlighted
in black. In Fig. 5(b) we show Poincaré sections of orbits
of three FO 10 MeV RE moving in the magnetic field of
Case 0. Their initial pitch-angle is ϑ0 = 0◦, these RE
have been followed by approximately 300 µs. We notice
that due to the spatial variation of the magnetic field,
the pitch angle of these RE varies along their orbits, e.g.
see Fig. 5 of Ref. 15, and therefore their rL varies, too.
This variation of ϑ increases with energy and with the
initial pitch angle ϑ0. The Poincaré sections of panel (b)
seem distorted with respect to those of panel (a) due to
the drifts of the RE orbits, but island-like structures and
well-formed closed surfaces described by RE orbits are
clearly visible. We highlight in red and black the RE
orbits with the same initial positions than those high-
lighted in panel (a). In panel (c) of the same figure we
show the corresponding Poincaré sections of 10 MeV RE
orbits with initial pitch angle of ϑ0 = 40◦, their initial
positions are the same as for panel (b), the only differ-
ence in this simulation is that we effectively increased the
initial RE Larmor radius. For 10 MeV RE with ϑ0 = 40◦

the characteristic Larmor radius in the simulated mag-
netic field is rL ≈ 0.011 m (black star in Fig 4), this
means rL ∼ δr21. We highlight in red the orbit with
the same initial position than the red orbits of panels (a)
and (b). As it can be seen from Fig 5(c), the red orbit no
longer remain confined, this became untrapped, explor-
ing thick radial regions of the plasma without restrictions
along the poloidal direction θ. This behaviour of explor-
ing thick radial regions of the plasma without restric-
tions along θ is the typical behaviour for high-energy RE
with large rL moving in unperturbed magnetic field lines
(highlighted in black). In this sense, we find that when
rL & rmn, the orbits of the simulated FO RE are similar

to those of RE moving in unperturbed magnetic fields,
averaging the effects of the magnetic perturbation. Only
when rL < rmn, FO orbits initially well confined within a
magnetic island remain trapped within island-like struc-
tures. It is important to mention that the existence of
thick radial regions described by the RE orbits on these
Poincaré sections is due to their finite rL, not because
the orbits are stochastic.
In Fig. 5(d) we show a one-to-one comparison between

Poincaré sections of FO (red dots showing orbits of panel
(b)) and GC (blue dots) orbits of 10 MeV RE with ϑ0 =
0◦. As it can be seen, for this energy and pitch-angle
FO and GC orbits are practically the same. The initial
conditions in both FO and GC simulations are identical.
We perform the same one-to-one comparison between FO
(same as panel (c)) and GC orbits of 10 MeV RE with
ϑ0 = 40◦ in Fig. 5(e). Now, a striking difference is found:
GC orbits describe shifted, well-defined flux surfaces and
a trapped orbit in the magnetic island, while FO orbits
explore thick radial regions showing no confinement due
to the magnetic island. As suspected, GC simulations
can not capture FLR effects that cause RE to become
untrapped from the magnetic islands. In Fig. 5(f) we
compare the GC orbits of panels (d) and (e), as it can be
seen, the only visible effect from varying the pitch-angle
(magnetic moment) is to modify the size of the island
described by GC orbits.
We also study the dynamics of FO 25 MeV RE orbits

with ϑ0 = 0◦ and ϑ0 = 15◦ in Fig. 5(g) and (h), respec-
tively. As before, the red and black highlighted orbits
correspond to the highlighted orbits of Fig. 5(a). The
effect of increasing the initial pitch-angle to ϑ0 = 15◦ is
to make rL ∼ δr21 (black circle in Fig. 4). As for the case
of FO 10 MeV RE, when the Larmor radius is similar to
the half-width of the magnetic island, the RE that were
initially confined within the island for small pitch-angles,
become untrapped, exploring thick radial regions of the
plasma. Fig. 5(i) and (j) show the corresponding compar-
ison between FO (red dots) and GC (blue dots) orbits.
Once more, GC orbits predict regular RE orbits similar
to RE with small pitch-angles (panels (g) and (i)), while
FO orbits exhibit a more complex dynamics of RE that
become untrapped once that rL ∼ δr21.

VI. EFFECT OF STOCHASTICITY ON RE

TRANSPORT

A good understanding of RE confinement in perturbed
magnetic fields is of particular interest if instabilities are
to be used as a mechanism for avoidance or mitigation of
RE in current and future tokamak experiments9. In this
section we study the effect of magnetic field stochasticity
on RE confinement. We simulate FO and GC RE with
different energies in magnetic fields with different levels
of stochasticity and measure the variations on the RE
confinement.
First, we study the fast-timescale RE transport driven
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FIG. 5. Poincaré sections of RE orbits in the perturbed magnetic field of Case 0. Panel a): Poincaré sections of 1 eV electron
orbits streaming along the perturbed magnetic field. One orbit confined within the magnetic island of the (m,n) = (2, 1) mode
is highlighted in red. Two other non-confined orbits are highlighted in black. Panel b): Poincaré sections of three FO 10 MeV
electrons orbits with the same initial spatial condition and pitch-angle (ϑ0 = 0◦) as those highlighted in panel (a). The orbits
look distorted due to the large drifts of the RE. For comparison, we show with gray small dots the Poincaré sections of panel
(a). Panel c) Same as panel (b), but for 10 MeV RE with ϑ0 = 40◦. Their Larmor radius is so that rL ∼ δr21, see star in
Fig. 4. Panel d): Comparison between the FO (red dots) and GC (blue dots) Poincaré sections of 10 MeV RE with ϑ0 = 0◦.
The initial condition of GC particles are equivalent to that of FO particles, see Appendix A for details. Panel e): Same as panel
(d) for 10 MeV with ϑ0 = 40◦. Panel d): Comparison of GC 10 MeV RE orbits with ϑ = 0◦ (orange) and ϑ = 40◦ (green).
Panel g): Same as panel (b) for 25 MeV. Panel h): Same as panel (c) for 25 MeV with ϑ = 15◦. Their Larmor radius is so that
rL ∼ δr21, see circle in Fig. 4. Panel i): Same as panel (d) for 25 MeV. Panel j): Same as panel (e) for 25 MeV with ϑ = 15◦.

by drifts in non-perturbed magnetic fields, that is,
prompt RE losses that occur within t ∼ 1 µs . We com-
pare FO and GC simulations to show how full-orbit ef-
fects can modify the RE confinement in these scenarios.
Then, we repeat the analysis including the perturbations
of Case 1 and 2 of Sec. II to measure the change in RE
confinement with respect to prompt losses.

A. Runaways prompt losses in non-perturbed magnetic

fields

We start by studying fast-timescale RE transport due
to orbit drifts and FO effects. For this, we evolve ensem-
bles of RE in the non-perturbed magnetic field of Eq. (1).

Initially, the RE are uniformly distributed in a torus of
radius r = a, centered at the magnetic axis R0. Here, a
is the radius of the plasma of Eq. (2). We use five values
for the initial pitch-angle of the simulated RE, ϑ0 = 5◦,
10◦, 20◦, 30◦, and 40◦. The initial gyro-phases of the FO
RE are random. The initial energies of the RE are set to
E0 = 1 MeV, 10 MeV, and 25 MeV. The simulation time
is set to 0.4 ms for 1 MeV RE and to 1 ms for 10 MeV and
25 MeV RE. The shorter simulation time for 1 MeV RE is
due to computational constrains. However, prompt losses
occur in a time scale of about t ∼ 1µs. After this short
timescale we observe that the number of confined RE
after promtp losses NPL has reached a saturated value.
Here, we say that a RE is confined if it is within the last
closed flux surface (LCFS) at r = a. To have a better
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idea about the timescales involved in the problem, RE
perform a toroidal transit in approximately 3 × 10−8 s,
the bounce period or poloidal transit time around q = 2
is 8 × 10−8, the fast gyro-period of 1 MeV RE is about
5 × 10−11 and 9 × 10−10 for 25 MeV RE. The number
of simulated particles is set to Nsim = 100, 000, and the
MC standard error of NPL/Nsim is ǫNPL/Nsim

∼ 0.25 %.

In Fig. 6 we show NPL as a fraction of the number
of simulated RE Nsim by the end of each simulation for
three sets of initial conditions for FO and GC simulations:
blue and grey circles show NPL/Nsim for FO and GC
simulations of 1 MeV RE. Red and grey squares in Fig. 6
show NPL/Nsim for FO and GC 10 MeV RE. Similarly,
green and grey stars show NPL/Nsim for FO and GC
25 MeV, respectively. As it can be seen, prompt losses
increase with increasing values of E0 and ϑ0. NPL/Nsim

decreases, from around 90% for 1 MeV RE to about 40%
for 25 MeV RE, respectively. This is consistent with the
idea that by increasing the energy of the RE the ∇B
drift (∼ v2⊥B × ∇B), and curvature drifts (∼ v2‖B ×
R in vacuum fields) increase, too. A larger drift allows
RE to cross more magnetic surfaces along their orbits
(e.g. Fig. 5(b) and (g)), and eventually leave the plasma.
GC simulations also predict the same energy and pitch-
angle dependence of NPL, but is less visible than for FO
simulations. Notice the drop in NPL as we increase the
initial pitch angle ϑ0 from 5◦ to 40◦ in FO simulations.
This weak dependence of NPL on the pitch-angle might
be because the ∇B drift and curvature drifts tend to
compensate for their effects on RE confinement when ϑ0

increases: the ∇B drift effects becoming stronger with
increasing ϑ0, while curvature drift effects weaken with
increasing ϑ0.

The differences in the values of NPL between FO and
GC simulations are explained to a good degree by FLR
effects. In Fig. 7(a) we show the initial position on the
poloidal plane of the FO RE with ϑ0 = 40◦ of Fig. 6
that remained confined by the end of the simulation.
Grey dots represent 1 MeV RE, and blue and orange
dots represent 10 MeV and 25 MeV RE, respectively.
Colored dots overlap, meaning that we find blue dots
behind the orange dots, and grey dots behind the or-
ange and blue dots. As mentioned before, as the RE
energy is increased the drifts become larger, shifting
the RE orbits towards the LFS. We can find quantita-
tively where the differences in NPL between FO and GC
simulations arise by binning the positions of the RE of
Fig. 7(a) for FO and GC simulations, NFO

PL (R,Z) and
NGC

PL (R,Z) respectively, and then calculating the differ-
ence NFO

PL (R,Z)−NGC
PL (R,Z). This is shown in Fig. 7(b)

for 10 MeV RE. Similar results are found for 1 MeV and
25 MeV RE. We observe some fluctuations of about ±30
particles per bin in the central region spanned by the
blue dots in panel (a). These fluctuations are MC fluc-
tuations due to the small differences between the initial
spatial conditions in the FO and GC simulations. Larger
values of NFO

PL (R,Z)−NGC
PL (R,Z) ∼ −100 particles per

bin, are found at the edge of the region spanned by the
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FIG. 6. Number of confined RE NPL in the non-perturbed
magnetic field of Eq. (1). The blue and grey circles show NPL

as a fraction of Nsim for FO and GC 1 MeV RE by the end of
the simulation. Red and black squares show the correspond-
ing NPL for FO and GC 10 MeV RE. Green and grey stars
show the corresponding NPL for FO and GC 25 MeV RE.
Prompt losses increase (NPL decreases) as we increase the
RE energy, this due to drift orbit effects. FO and GC simula-
tions show good agreement for small pitch angles. FO effects
start to be noticeable at large energies and large pitch-angles.
The number of simulated particles is set to Nsim = 100, 000,
and the MC standard error of NPL/Nsim is ǫNPL/Nsim

∼ 0.25
%.

blue dots in panel (a). These negative values represent
RE that remain confined in the GC simulations, but are
lost in FO simulations when crossing the LCFS (thick
black circle) due to their FLR.
Summarizing, RE prompt losses in non-perturbed

magnetic fields are mainly due to ∇B and curvature
drifts that occur in fast timescales of about 1 mus. These
prompt losses increase as we increase the RE energy and
pitch-angle. In general, GC and FO simulations show a
good agreement in trends and values, showing small dif-
ferences in the RE confinement near the LCFS caused by
FLR effects.

B. Effects of magnetic field stochasticity on RE

confinement

We now study the confinement properties of RE in the
perturbed magnetic fields of Sec. II. The RE initial en-
ergies, pitch-angles, spatial conditions, gyro-phases, and
simulation times are the same as in the simulations of
Sec. VIA. It is only Nsim that is varied as reported in
each case.
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FIG. 7. Panel a): Initial position on the RZ plane of sim-
ulated RE that remained confined by the end of FO simu-
lations of Fig. 6. The initial pitch-angle is ϑ0 = 40◦ for all
cases. Grey dots represent 1 MeV RE, and blue and orange
dots represent 10 MeV and 25 RE, respectively. Colored dots
overlap, meaning that we find blue dots behind the orange
dots, and grey dots behind the orange and blue dots. Panel
b): computed values of NFO

PL (R,Z)−NGC
PL (R,Z) as explained

in the main text. The number of simulation particles is set
to Nsim = 10, 000 for 1 MeV RE, and Nsim = 100, 000 for 10
MeV and 25 MeV RE.

In order to isolate and quantitatively measure the ef-
fect of magnetic stochasticity on RE confinement, we de-
fine the RE loss coefficient LRE as follows:

LRE(NPL, N) = 100×
(

NPL −N

NPL

)

. (10)

Here, NPL is the number of confined particles that
remained confined by the end of the simulations of
Sec. VIA for a given energy and pitch-angle, and N is
the number of RE that remain confined by the end of
the new simulations with perturbed magnetic fields. The
MC standard error of LRE is approximated as ǫLRE

≈
|LRE(NPL, N + ǫN ) − LRE(NPL, N)|. In Fig, 8(a) we
show the time evolution of the number of confined 1 MeV

RE , N/Nsim, in the simulation with the perturbed mag-
netic field of Case 1. Solid (dashed) lines show N/Nsim

vs. time for FO (GC) RE with various ϑ0. The number
of simulated particles was set to Nsim = 1, 000 for these
simulations, thus the MC standard error in N/Nsim is
ǫN/Nsim

∼ 2%, see Fig. 3. As it can be seen from this
figure, at early times there is a drop in N/Nsim due to
prompt losses, after this the number of confined RE re-
main unchanged for both FO and GC simulations. Simi-
larly, in Fig, 8(b) we show the time evolution of N/Nsim

for the simulations using the perturbed magnetic field
of Case 2, that is, the magnetic field with wide stochas-
tic regions. The number of simulated particles is set to
Nsim = 10, 000. This time, N/Nsim does not saturate af-
ter the rapid prompt losses at early times, showing larger
RE losses in the case of GC simulations. Fig. 8(c) and (d)
show the corresponding time evolution for 25 MeV evolv-
ing in the perturbed magnetic fields of Case 1 (panel (c))
and Case 2 (panel (d)). The qualitative behaviour is the
same as for the simulations of 1 MeV RE, but prompt
losses are larger as showed in Sec. VIA.

In Fig. 9 we now isolate the effect of magnetic stochas-
ticity by computing LRE at the end of the simulations of
Fig. 8. We observe no further RE losses (LRE ≈ 0) with
respect to prompt losses for both FO and GC simulations
of 1 MeV in the magnetic fields of Case 1. However, for
simulations using the magnetic field of Case 2 we observe
LRE ∼ 30% for FO simulations, and LRE ∼ 60% for GC
simulations. We note that these RE losses occur in a fi-
nite time (t = 0.4 ms), and might look different in very
long times. However, these long time scales are not in
the scope of the present work. In a similar way, FO and
GC simulations of 25 MeV RE in the magnetic field of
Case 1 show no further losses with respect to prompt
losses. It is for the stochastic fields of Case 2 that we
observe few particle losses LRE ∼ 8% for FO RE with
ϑ0 = 5◦ and 10◦ and no further losses (within error bars)
for larger ϑ0. On the other hand, GC simulations predict
large losses in this case for all pitch-angles, LRE ∼ 30%.
As in the case of 1 MeV RE, these RE losses occur in a
finite time (t = 1 ms), and might look different in very
long time scales. These results have been corroborated
by reducing the time step by one order of magnitude in
the GC simulations, this provides better convergence and
energy conservation, see Appendix A. In order to inves-
tigate the cause of these differences between FO and GC
simulations we analyze the density profiles of simulated
particles in each case, this is shown in Fig. 10 for 1 MeV
RE and in Fig. 11 for 25 MeV. We calculate these density
profiles on the RZ plane, N(R,Z), by binning the posi-
tion of the RE at the end of each simulation. In Fig. 10(a)
we show N(R,Z) for FO 1 MeV RE with ϑ0 = 40◦ and
Fig. 10(b) shows N(R,Z) for the corresponding GC sim-
ulation. Clearly, the main difference in N(R,Z) between
FO and GC simulations is found for the plasma region
with r ≥ 0.325 m, which corresponds to the stochastic re-
gion where modes m = 3 to m = 6 overlap (see Fig. 1(c)
and (d)). For guidance, Fig. 10(c) shows Poincaré sec-
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FIG. 8. Number of confined particles N as function of time.
Panel a): Number of confined particles N as a fraction of
Nsim for FO (solid lines) and GC (dash-dot lines) 1 MeV RE.
Various values of ϑ0 are shown. Both FO and GC simulations
do not show losses after the fast prompt losses at the begin-
ning of the simulations, t ∼ 1µs. Panel b): Same as panel (a)
for 1 MeV RE evolving in the magnetic fields of Case 2. A
slow decay of N is observed for both FO and GC simulations.
However, more RE are lost in GC simulations. Panel c): Same
as panel (a) for 25 MeV. No RE losses are observed after the
prompt losses at t ∼ 1µs. Panel d): Same as panel (c) for 25
MeV evolving in the magnetic field of Case 2. While FO sim-
ulations do not show RE losses after the prompt losses, GC
simulations show relatively, large RE losses occurring during
the entire simulation.

tions of 1 MeV RE with ϑ0 = 0◦, we highlight islands
m = 2 in blue, m = 3 in yellow and m = 4 in green. We
note that these are not magnetic islands, but island-like
structures described by RE orbits. The magenta bold
circle has a radius of r = 0.325 m, and approximately
separates the regions where FO and GC shows similar
results (inner region), and large differences in N(R,Z)
(outer region). Similar results are found for other initial
pitch-angles. The LCFS is highlighted with a bold grey
circle at r = a in all panels.

In the same way, In Fig. 11(a) we show N(R,Z)
for a FO simulation of 25 MeV RE with ϑ0 = 40◦,
and N(R,Z) for the corresponding GC simulation in
Fig. 11(b). The bold magenta circle, centered at R =
1.64 and having a radius r = 0.25 roughly separates the
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FIG. 9. RE losses due to stochasticity of the magnetic field.
Panel a): RE loss coefficient of Eq. (10) for 1 MeV FO (red
markers) and GC (blue markers) RE simulated in the per-
turbed magnetic fields of Case 1 (◦ markers) and Case 2
(× markers). No RE losses are observed after the prompt
losses (LRE ∼ 0) for the perturbed magnetic field of Case 1.
In contrast, for the perturbed magnetic field of Case 2, the
stochasticity of the magnetic field produces considerable RE
losses. GC simulations show almost two times the RE losses
(LRE ∼ 60 %) predicted by FO simulations (LRE ∼ 30 %).
We have used Nsim = 1, 000 for FO and GC simulations of
RE in the magnetic fields of Case 1, and Nsim = 10, 000 for
FO and GC simulations using the magnetic field of Case 2.
We show ǫLRE

with error bars for some simulations. Panel b):
Same as panel (a) for 25 MeV RE. In this case, FO and GC
simulations show no RE losses in the magnetic field of Case 1.
For RE evolving in the fields of Case 2 only GC simulations
show RE losses due to the stochastic fields of Case 2 (blue
crosses). In all these simulations Nsim = 10, 000.

regions where FO and GC simulations show similar re-
sults (inner region), and differente results (outer region).
As for the case of 1 MeV, this circle seems to lay be-
tween the islands with m = 3 and m = 4. We note that
these are not magnetic islands, but island-like structures
described by RE orbits. In Fig. 11(c) we show Poincaré
sections of 25 MeV RE with ϑ0 = 0◦, we highlight the
island with m = 2 in blue, m = 3 in yellow, and m = 4
in green.

From our analysis, we observe that GC and FO simu-
lations predict basically the same prompt losses in non-
perturbed magnetic fields. However, GC simulations pre-
dict more RE losses than FO simulations using stochas-
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FIG. 10. RE density profiles on the RZ plane of simulated 1 MeV RE. Panel a): A binning of the position on the RZ plane
number of simulated FO RE in the magnetic fields of Case 2 at t = 0.4 ms, see Fig. 8(b). The pitch-angle of these RE is
ϑ = 40◦. The grey bold circle shows the LCFS at r = a. The magenta circle is centered at the magnetic axis (R0) and with
radius r = 0.325 m, shows the region between the modes m = 3 and m = 4, where stochasticity of the magnetic field is
predicted by the Chirikov parameter (Fig. 2). Panel b): Same as panel (a) for the corresponding GC simulation of 1 MeV RE
at t = 0.4 ms. The main difference between the FO and GC simulation is observed for r > 0.325 m, which corresponds to the
stochastic region of the magnetic field of Case 2. Panel c): Poincare sections of 1 MeV RE with ϑ0 = 0◦. We highlight the
islands seen by RE orbits corresponding to m = 2, 3, and 4.
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FIG. 11. RE density profiles on the RZ plane of simulated 25 MeV RE. Panel a): Same as panel (a) of Fig. 10 for 25 MeV at
t = 1 ms. The magenta circle in this case is centered at R = 1.64 and has a radius of r = 0.25 m. Panel b): Same as panel
(b) of Fig. 10 for GC 25 MeV at t = 1 ms. Panel c): Poincaré sections of FO 25 MeV RE orbits with ϑ0 = 0◦. Only a small
stochastic region is observed beyond the m = 3 structure shown by the RE orbits (yellow dots).

tic magnetic fields. For the first time this difference is
quantified. GC simulations doubles the value of LRE of
FO simulations of 1 MeV RE, while LRE is almost four
times larger for GC simulations of 25 MeV RE with re-
spect to the corresponding FO simulations. As reported
in Refs. 11 and 12, GC orbits resemble the structure of
the magnetic field, following stochastic orbits that even-
tually leave the plasma. We find that FO effects delay

these losses, see Fig. 8(b) and (d), enhancing RE confine-
ment. Possibly, the same FO effects observed in Sec. V
might produce this delay.

Regarding the relationship between the Chirikov pa-
rameter Sm1m2

of Eq. (7) and its heuristic extension

Ŝm1m2
of Eq. (8) with the RE confinement studied in

this section: we observe that Sm1m2
is a good indicator

of the trends in LRE , that is, when Sm1m2
> 1 we observe
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LRE > 0 for both FO and GC simulations. The heuris-
tic extension of the Chirikov parameter Ŝm1m2

does not
seem to hold, actually it shows the opposite trend of FO
simulations. Therefore, the ansatz of RE with a finite rL
interacting with two adjacent magnetic islands does not
hold for the scenarios studied in this work. This suggests
that a more detailed derivation of the Chirikov param-
eter for RE orbits is needed. We anticipate that such
derivation might require to solve the complex dynamics
of RE orbits in the 6-D phase space to find the position
of the island-like structures described by the orbits and
see when they overlap. We also note that FO effects can
make it challenging to find such island-like structures.

VII. EFFECT OF TOROIDAL ROTATION ON RE

TRANSPORT

Finally, we study the effect of toroidal rotation of
δBmn on RE confinement. The occurrence of low-
frequency MHD-like modes has been observed in experi-
ments and simulations of tokamak plasmas where RE are
present11,25. Despite the fact that we can set the rota-
tion frequency of δBmn to arbitrary values, we will focus
our study to the low-frequency cases since our analyti-
cal model for δBmn captures well the general structure
of low-frequency MHD-like modes, but not necessarily
the structure of high-frequency modes such as whistler
waves, where wave-particle interactions might occur6–8.
In all the simulations of this section we set the toroidal

rotation frequency to f = 50 kHz, which corresponds to
an angular rotation frequency ωmn ∼ 300 kHz, produc-
ing an inductive electric field with maximum amplitude
of up to E ≈ 6 V/m. For the plasma parameters used
in this work, the relativistic electron cyclotron frequency
is ΩRE ∼ 10 GHz, and the bounce frequency of the RE
at q = 2 is ωb ∼ 100 MHz. These frequencies are much
larger than ωmn. We note that this value of ωmn is not
representative of all the scenarios where RE occur in ro-
tation perturbed magnetic fields, but it is a value that
can be found in the literature for a medium-size tokamak
where RE with several MeV were observed25.
Since in Sec. VIB it was shown that FO effects are im-

portant in the study of RE transport in perturbed mag-
netic fields, we only use FO simulations in this section.

A. RE transport in the presence of a rotating magnetic

island

First, we repeat the analysis of Sec. V of the RE dy-
namics around the magnetic island of Case 0, but this
time adding toroidal rotation and the resulting inductive
electric field of Eq. (6). In Fig. 12(a) we show Poincaré
sections of 1 eV electron orbits along the perturbed mag-
netic field of Case 0. We also show the toroidal compo-
nent of the inductive electric field of Eq. (8) at t = 0. As
it can be seen, there are intense regions of |Eζ | ≈ 6 V/m

within the magnetic islands. In all our simulations, the
radial Er and poloidal Eθ components of E are about
two orders of magnitude smaller than Eζ . Fig. 12(b)
shows Poincaré sections of FO 10 MeV RE with ϑ0 = 0◦.
These Poincaré sections are calculated in the lab-

oratory frame of reference, as in the case of non-

rotating magnetic fields. The simulation time is set
to t = 300 µs. As in the case with no rotation, RE
orbits show distorted with respect to magnetic field sur-
faces, this due to particle drifts. RE initially not trapped
in the island (black dots) do not show a visible differ-
ence with respect to the case with no rotation. How-
ever, the RE orbit initially trapped in the magnetic island
(red dots) seems to be transported within the island, co-
rotating clockwise on the poloidal plane. Fig. 12(c) shows
the corresponding Poincaré sections of FO 10 MeV with
ϑ0 = 40◦, so that rL ∼ δr21. These Poincaré sections

are calculated in the laboratory frame of refer-

ence. As in the simulations with no rotation, RE or-
bits explore thick radial regions of the plasma, not being
trapped by the magnetic island, see Fig. 5(c). In these
simulations the mean energy of the RE remains almost
constant, with small fluctuations of up to 100 keV. This is
due to the relatively high bounce frequency of these RE,
that averages the effects of the regions of large positive
and negative electric fields, c.f. Fig. 12(a).

B. Effect of toroidal rotation on RE confinement in

stochastic magnetic fields

Now, we study the effect of toroidal rotation on RE
confinement in the stochastic fields of Case 2. We per-
form two FO simulations of RE with initial energy of 1
MeV and 25 MeV. The initial spatial condition, gyro-
phases, and pitch-angles are the same as in the simu-
lations of Sec. VIA, that is, the RE are uniformly dis-
tributed in a torus of radius r = a, centered at the mag-
netic axis R0. We use five values for the initial pitch-
angle of the simulated RE, ϑ0 = 5◦, 10◦, 20◦, 30◦, and
40◦. The initial gyro-phases of the FO RE are random.
The simulation time is set to t = 0.1 ms in both simula-
tions.

As in Sec. VIB, we compute LRE by the end of each
simulation. In Fig. 13(a) we show LRE with filled ma-
genta squares for the simulation of 1 MeV RE. For com-
parison, we also show the corresponding LRE at t = 0.1
ms for the simulation with no rotation (green stars) of
Fig. 9(a). No difference between simulations with and
without rotation is found. Similarly, in Fig. 13(b) we
show LRE for the simulation of 25 MeV with rotation
(filled magneta squares) and without rotation (green
starts). As for 1 MeV RE, we do not observe any ef-
fect of rotation on RE confinement. The same qualita-
tive results are found if the toroidal rotation is set to be
counter-clockwise (ωmn = −300 kHz).
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FIG. 12. Poincaré sections of RE in the perturbed, rotat-
ing magnetic field of Case 1. Panel a): Poincaré sections
of 1 eV electrons streaming along the perturbed magnetic
field. One orbit confined within the magnetic island of the
(m,n) = (2, 1) mode is highlighted in red. The toroidal com-
ponent of the inductive electric field at t = 0 is shown, too.
Panel b): Poincaré sections of 10 MeV electrons with initial
ϑ0 = 0◦. The red orbit, corresponding to the same initial
position as the red orbit of panel (a), still shows a topology
of a distorted island that moves along the poloidal direction
as function of time. Non-confined orbits (black dots) do not
show any difference with respect to non-rotating fields, e.g.
Fig. 5(b). Panel c): same as panel (b), but for 10 MeV elec-
trons with ϑ0 = 40◦. For these RE rL ∼ δr21. Their orbits
resemble those of RE in non-rotating fields, see Fig. 5(c).

VIII. DISCUSSION

In this work we studied the dynamics of full-orbit (FO)
and guiding-center (GC) runaway electrons with various
energies and pitch-angles evolving in perturbed magnetic
fields. We used KORC for simulating FO and GC RE in
the equilibrium magnetic field of Refs. 14 and 15 that
include MHD-like modes22,23. Despite the fact that our
analytical model for the magnetic field is simple, it cap-
tures most of the important effects on the RE dynamics
evolving in toroidal configurations. No collisional effects
or radiation losses were included in our simulations, since
these effects have little effect on RE dynamics in the stud-
ied time scales (t ∼ 1 ms).

Our study sheds new light into the confinement and
transport of RE in perturbed magnetic fields that exhibit
stochasticity. This is of particular importance for the
generation of avoidance and/or mitigation mechanisms
of RE in current and future tokamak experiments.

In Sec. V we studied RE transport in the presence of
a magnetic island. We performed FO and GC simula-
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FIG. 13. RE losses due to toroidal rotation of the magnetic
perturbations of Case 2. Panel a): LRE for FO 1 MeV RE
with ϑ0 = 5◦, 10◦, 20◦, 30◦, and ϑ = 40◦. he green stars
(magenta solid squares) show LRE for the simulation without
(with) rotation. The simulation parameters are the same as in
the simulations of Fig. 6, the simulation time is set to t = 0.1
ms. No RE losses are observed with respect to non-rotating
perturbed fields. Panel b): same as panel (a) for 25 MeV. As
for 1 MeV RE, no losses are observed due to toroidal rotation.

tions of RE evolving in the magnetic field of Case 0. FO
and GC simulations showed that despite the fact that
RE have large orbit drifts, RE orbits display island-like
structures that resemble magnetic islands when the RE
Larmor radius is small. When rL became comparable to
the half-width of the magnetic island δr, FO simulations
showed that RE initially trapped within the island-like
structures became untrapped, exploring thick radial re-
gions of the plasma in the same way as RE moving in
non-perturbed magnetic fields do. Contrary, GC sim-
ulations continued to predict trapped RE orbits within
island-like structures. This suggest that FO effects cause
the averaging of magnetic perturbations when rL ∼ δr.

In Sec. VI we studied the confinement of low-energy (1
MeV) and high-energy (25 MeV) RE in stochastic mag-
netic fields. In order to separate fast-timescale trans-
port (prompt losses) driven mainly by drift orbit ef-
fects from relatively long-timescale (t ∼ 1 ms) transport
due to magnetic field stochasticity, we first calculated
prompt losses of RE in non-perturbed magnetic fields,
see Sec. VIA. In general, both FO and GC simulations
predicted similar prompt losses, see Fig. 6. Then, we
included magnetic perturbations in our FO and GC sim-
ulations to measure the RE losses with respect to prompt
losses, LRE of Eq. (10). Both FO and GC simulations
exhibited less particle losses for high-energy RE than for
low-energy RE, see Fig. 9. This trends have been ob-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
3
5
5
8
8



14

served experimentally and in previous numerical studies
following GC particles11,16–18. However, our one-to-one
comparison between FO and GC simulations allowed us
to quantitatively measure FO effects on these scenarios:
it is found that GC predictions of LRE are twice the
predictions of FO simulations for 1 MeV RE, and four
times those of FO simulations for 25 MeV RE. One pos-
sible explanation for this is that FO effects might gyro-
average magnetic field stochasticity, delaying RE losses,
while as suggested in Refs. 11 and 12, GC orbits fol-
low more closely magnetic field lines, allowing the RE
to leave the plasma more quickly as they follow open
field lines. Comparison of density profiles on the RZ
plane, confirmed that the main differences between FO
and GC simulations arise in the stochastic regions of the
magnetic field, see Figs. 10 and 11. Regarding the re-
lationship between magnetic field stochasticity predicted
by the Chirikov parameter Sm1m2

and RE transport, we
found that Sm1m2

is a good indicator of the trends in
LRE , that is, when Sm1m2

> 1 we observed LRE > 0 for
both FO and GC simulations. On the other hand, the
heuristic extension of the Chirikov parameter Ŝm1m2

does
not seem to hold, showing opposite trends with respect
to FO simulations, that is, Ŝm1m2

becoming larger as rL
increases, while LRE decreases for FO simulations with
larger rL. We note that the observed RE transport in
stochastic magnetic fields occur in a finite time (t ∼ 1),
and might look different in very long times (t ≫ 1 ms).
However, the latter time scales are not in the scope of
the present work.

Finally, in Sec. VII we studied RE transport including
FO effects, magnetic field stochasticity and toroidal ro-
tation. For the scenarios considered in this work we do
not see important differences between simulations with
and without rotation. We found that RE with rL < δr
are transported within magnetic islands as they rotate,
see Fig. 12(b). On the other hand, RE with rL ∼ δr
behave similar to RE moving in magnetic fields with-
out rotation. FO simulations of RE evolving in rotating,
stochastic magnetic fields did not exhibit differences with
respect to simulations with no rotation, see Fig. 13. The
mean RE energy remained practically unchanged in these
simulations. This, due to the rapid averaging of the pos-
itive and negatives regions of the electric field as the RE
stream along the magnetic field. Only fluctuations of up
to 100 keV in the RE energy are observed.

It is important to mention that studying RE trans-
port in scenarios relevant to the thermal and/or current
quench in disrupting plasmas are out of the scope of this
work. A consistent study in those scenarios would require
the inclusion of the exact mode structure of the mag-
netic perturbations, as well as other effects as the plasma
shape, impurities, radiation losses, and self-consistent
electric fields.

Our results answer the long-standing question of when
FO effects need to be included when studying RE trans-
port in perturbed toroidal magnetic fields, and quantify
the difference between FO and GC predictions of RE

losses in stochastic magnetic fields.
Future work might include the use of external magnetic

fields from reconstructions and/or numerical simulations
that contains the exact mode structure in plasmas where
avoidance or mitigation mechanisms are to be developed.
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Appendix A: KORC’s Guiding-Center Solver

We follow guiding-center (GC) RE in KORC using the
the relativistic Hamiltonian GC model of Ref. 27, which
was used in Ref. 12, too. The GC equations of motion
for a particle of charge q and mass m are given by:

dx

dt
=

p‖

mγGC

B∗

B∗
‖

+E
∗ × b

B∗
‖

, (A1)

dp‖

dt
= qE∗ · B

∗

B∗
‖

, (A2)

where p‖ = γGCmv · b is the parallel component of the
particle’s momentum, v is the particle’s velocity, b is the
unitary vector along the magnetic field at the particle’s

position, γGC =
√

1 + 2µB/mc2 + p2‖/(mc)2 is the GC

relativistic factor, µ = γ2
GCmv2⊥/2B is the magnetic mo-

ment of the particle, v⊥ is the perpendicular component
of the particles velocity, and B is the intensity of the
magnetic field at the particle’s position. Eqs. (A1) and
(A2) use the effective electric and magnetic fields given
by:

B
∗ = B +

p‖

q
∇× b , (A3)

E
∗ = E − 1

q

[

mc2∇γGC − p‖
db

dt

]

. (A4)

In our simulations, B refers either to the equilibrium
magnetic field B(r, θ) or to the perturbed magnetic field
B(r, θ) + δB(r, θ, ζ).
In KORC, we solve the set of Eqs. (A1)–(A4) us-

ing the adaptive stepsize Runge–Kutta, Dormand–Prince
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method28. In RE simulations where the energy and
toroidal momentum is conserved (non-perturbed mag-
netic field case), we track these quantities and chose the
initial time step that will give good conservation proper-
ties. Using the Lagrangian of Eq. (6.19) of Ref. 27 and
the equilibrium magnetic field of Eq. (1) we obtain the
GC toroidal moment of the particles:

pζ = −qκε2B0

2q0
log

(

1 +
r2

ε2

)

+ p‖ (R0 + r cos(ϑ)) bζ ,

(A5)
where bζ is the toroidal component of the unitary vector
along the magnetic field at the particle’s position. The
energy of the GC particles is defined as E = γGCmc2.
In Fig. 14 we show the conservation of energy defined as
∆E = 100 × 〈(E(t = 0)− E(t))/E(t = 0)〉, with E(t = 0)
the initial energy of the RE. The average 〈·〉 in ∆E is
the ensemble average over all confined RE in the simula-
tion. Similarly, we show the conservation of pζ defined as
∆pζ = 100×〈(pζ(t = 0)− pζ(t))/pζ(t = 0)〉. The simula-
tion in this figure is a 1 ms simulation of 1 MeV RE with
five initial pitch-angles ϑ0 = 5◦, 10◦, 20◦, 30◦, and 40◦.
The number of simulated particles is Nsim = 10, 000,
and the initial spatial condition of the GC RE is uniform
in a torus of radius r = a, centered at R0, see Sec. II
for details. The initial time step is set to ∆t = τRE ,
where τRE = 2π/ΩRE is the relativistic gyro-period,
ΩRE = eB0/γme. As it can be seen from Fig. 14,
∆E ∼ ±10−8 %, while ∆pζ ∼ ±10−7 % This good
conservation of the magnetic moment prevent spurious
radial transport of RE that occurs when pζ is not well
conserved. In all the GC simulations reported in this
manuscript, we have chosen the initial time step so that
we obtain similar conservation properties.
In Fig.15 we show a one-to-one comparison between

FO and GC orbits of RE with initial energy E0 = 1 MeV,
10 MeV, and 25 MeV moving in the equilibrium magnetic
field of Eq. (1). Blue (red) lines show FO (GC) orbits.
The initial pitch-angle of these RE is set to ϑ0 = 40◦.
The magnetic moment µ of the GC particles is calculated
using the magnetic field at the initial particle’s position.
The initial gyro-phase of the FO particles is random. Ini-
tially, the GC relativistic factor is set to the value of the
actual, FO relativistic factor, γGC = γ. As it can be
seen, the agreement between FO and GC orbits is quite
good, with small differences due to the initial random
gyro-phase of the FO particles.
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FIG. 14. Energy and toroidal momentum conservation of
KORC’s GC solver in a 1 ms simulation of 1 MeV RE with
five initial pitch-angles ϑ0 = 5◦, 10◦, 20◦, 30◦, and 40◦. The
number of simulated particles is Nsim = 10, 000, and the ini-
tial spatial condition of the GC RE is uniform in a torus of
radius r = a, centered at R0. The initial time step is set to
∆t = τRE.
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show FO (GC) orbits. The initial pitch-angle of all particles
is ϑ0 = 40◦. The thick black line shows the LCFS, and the
magenta cross the position of the magnetic axis.
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