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Non-local diffusion and the chemical structure of molecular clouds
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ABSTRACT

We present an application of a non-local turbulent transport model (currently being used to
model transport in magnetically confined laboratory plasmas) to the study of the chemical
structure of a molecular cloud. We consider a ‘toy model’ chemistry with a single molecular
species which is adsorbed/desorbed from grain surfaces. With this idealized chemistry, we are
able to find analytic solutions to both the ‘classical’ turbulent diffusion model as well as to
the non-local transport model. For the turbulent diffusion model, we find that for the turbulent
transport to be important one needs a mixing length comparable to the size of the cloud. On the
other hand, with the non-local transport model we find that the chemistry is already strongly
affected by the turbulent transport for mixing lengths two orders of magnitude smaller than
the cloud size. This model then has the desirable property of being able to mix material over
long distances (compared with the size of a molecular cloud) without requiring an inordinately
large characteristic size for the turbulent eddies.
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1 I N T RO D U C T I O N

In high-density regions of interstellar molecular clouds, atoms and
molecules in the gas freeze out on to the surfaces of dust grains.
This happens on a relatively short time-scale, ∼109/n years, where
n is the total hydrogen nucleon number density (Iglesias 1977;
Rawlings et al. 1992). The molecular ices thus formed are readily
detected spectroscopically through absorption in pure vibrational
lines of the molecules contained within them (e.g. Whittet 2002),
and are mainly H2O (formed by surface hydrogenation of incident
O atoms), CO (formed in the gas phase and frozen out), CO2 (formed
by chemical processing of the ices), along with other minor species.
The radial dependence of ice abundance across dense cores can now
be mapped (Redman et al. 2002) and is shown to increase towards
the centre. The amount of ice requires at least one freefall time to be
deposited.

Although freeze-out is evidently an efficient process, atoms and
molecules are observed to be widely distributed throughout molec-
ular clouds, and mechanisms by which ices are returned to the gas
are necessary (Williams & Hartquist 1984). Local non-thermal pro-
cesses such as heating of grains by the passage of cosmic rays
(Leger, Jura & Omont 1985) or by surface reactions (Willacy &
Williams 1993) may play a role but are dominated by freeze-out.
An idea whose chemical consequences have been widely explored
is that a fluid parcel of gas from the interior of a cloud may through

�E-mail: martinel@nucleares.unam.mx

turbulence driven by stellar winds (Norman & Silk 1980) be trans-
ported to other regions to experience shocks or other means of
desorption (Boland & de Jong 1982; Williams & Hartquist 1984;
Charnley et al. 1988a,b; Chièze & Pineau des Forêts 1989; Chièze,
Pineau des Forêts & Herbst 1991; Nejad et al. 1990). Charnley et al.
(1988b) showed that chemical limit cycles could persist in such
periodic cycling of cloud material. On the basis of observational
studies by Morata, Girart & Estalella (2003, 2005), Garrod et al.
(2005) and Garrod, Williams & Rawlings (2006) have developed a
model in which molecular clouds are considered as ensembles of
transient cores that grow from a low-density background and de-
cay on a time-scale of approximately one million years. This model
has similarities to other cyclic models though the trajectories are
simpler than those of, e.g. Charnley et al. The Garrod et al. (2006)
models produce simulated molecular intensity contour plots that
have closely similar morphologies to those observed.

Xie, Allen & Langer (1995) developed a very different approach
based on turbulent diffusion. In turbulent diffusion models, one mod-
els the transport due to the turbulent motions in terms of an ‘eddy
diffusivity’ D = λcs, where cs is the sound speed and λ is the eddy
size or mixing length. Xie et al. (1995) concluded that in order
to have a turbulent transport that has an important effect on the
chemical structure of a molecular cloud, one needs λ ∼ L, where
L is the characteristic size of the cloud. On the other hand, apply-
ing mixing length turbulence models to laboratory experiments one
finds that λ ∼ 0.01L (with L being the characteristic size of the
flow), see, e.g. Cantó & Raga (1991). This discrepancy between
the mixing length values required by Xie et al. (1995) and the ones
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determined from laboratory experiments is an important problem
in the application of turbulent diffusion models to the chemistry
of molecular clouds. Diffusive models are therefore generally ap-
plied to narrow interfaces between media such as hot tenuous winds
and cold dense clouds (see Rawlings & Hartquist 1997, and refer-
ences therein). Chemical tracers of the interfaces in which turbulent
diffusion occurs can be identified, and may account for chemical
anomalies (e.g. Viti, Natarajan & Williams 2002), but the interfaces
are very thin.

In this paper, we present an application of a different turbu-
lent transport model to the problem of the chemistry of molecu-
lar clouds. The proposed models are based on the use of a class
of integro-differential operators known as fractional derivatives.
del-Castillo-Negrete, Carreras & Lynch (2003) introduced the use of
these operators to model non-local transport in non-linear reaction–
diffusion systems in which the chemistry is described in terms of
a simple autocatalitic reaction. More recently, del-Castillo-Negrete,
Carreras & Lynch (2004, 2005) used these fractional operators to
model anomalous turbulent transport in magnetically confined plas-
mas. These transport models include non-local effects (i.e. the com-
munication between spatially disconnected regions of the flow),
which can simulate the effects of ‘avalanches’ or ‘clumps’ in plasma
turbulence. In a molecular cloud, the non-local nature could be due
to the effects of ‘jets’ which travel considerable distances within the
cloud.

In order to illustrate the properties of this transport model
we apply it to a situation deep inside a molecular cloud
where the chemistry is dominated by freeze-out and desorption,
i.e. where the time-scales for freeze-out (and desorption, if compet-
itive) are shorter than gas-phase chemical time-scales. Therefore, in
this simple approximation we can ignore the many rate equations for
the individual chemical reactions and focus on interactions with the
grain surfaces. With this limitation, we are able to obtain full ana-
lytic solutions which show the interesting properties of the non-local
transport model. A comment on this approximation is in order. It
is well known that the chemical time-scale and the freeze-out time-
scale are comparable in interstellar gas of a density around 104 total
hydrogen per cm3 with canonical parameters (e.g. Williams 2003).
But the main gas-phase chemical reactions affecting CO in molec-
ular clouds ensure that CO maintains a near uniform abundance
relative to hydrogen (the observations tend to show that CO/H2 is
fairly constant at about 10−4). Freeze-out to dust grains therefore
becomes an important loss mechanism, as is frequently observed
(e.g. Redman et al. 2002). Thus, to a first approximation, we are
justified in considering the diffusion model in terms of its influence
on freeze-out.

This paper is organized as follows. In Section 2, we discuss the
adsorption/desorption model for the cloud chemistry, and use it in
a standard, turbulent diffusion transport model. We then study the
properties of the adsorption/desorption model in terms of the non-
local transport operators introduced in del-Castillo-Negrete et al.
(2003). Section 3 is devoted to the study of weak non-locality,
and Section 4 addresses the more general problem of transport in
clouds in the presence of strong non-locality. Finally, in Section 5
we present a summary of our results.

2 A D S O R P T I O N A N D D E S O R P T I O N W I T H I N A

M O L E C U L A R C L O U D

Let us consider the fraction f of molecules of a representative chem-
ical species (which we will take to correspond to CO, the most im-
portant molecule that freezes out in cloud interiors) which is present

in the gas phase (a fraction 1 − f of the molecules would then be
adsorbed on to grain surfaces). The adsorption rate for this species
is given by

R = f ng q, (1)

with

q = S σg c0, (2)

where c0 is the mean thermal velocity of CO, ng is the number
density of grains, S is the sticking coefficient and σ g = πrg

2 is the
geometrical cross-section of the grains. We now assume that we have
S = 1 and rg = 10−5 cm. If we consider the empirically determined
extinction of 1.6 mag per kpc, the number density of grains (with
our assumed rg = 10−5 cm radius) is ng ≈ 10−12n (where n is the
number density of H nuclei). With these values, from equations (1)
and (2) we obtain (in terms of the sound speed cs),

R = f cs

d
, (3)

with

d ≡
(

105 cm−3

n

) (
1017 cm

)
, (4)

being a characteristic length associated with the adsorption process.
In equation (4), we have introduced a typical number density (of H
nuclei) of 105 cm−3 for a dense molecular cloud (Steinacker et al.
2005), and considered that the ratio between the sound speed cs and
the CO thermal velocity is cs/c0 = √

7γ = 3.13 (with γ = 1.4
being the specific heat ratio).

We have also to consider the desorption rate. We assume that
there is a region of the cloud in which CO is fully desorbed; in the
Taurus Molecular Cloud, this is a region up to approximately five
visual magnitudes from the cloud edge (Whittet 2002). We set the
origin of our spatial coordinate system and f = 1 at this position,
and consider only the adsorption process (with the rate given by
equations 3 and 4) in the interior of the cloud.

If we assume a slab geometry for the cloud, the steady, turbulent
diffusion transport problem (see e.g. Xie et al. 1995) then reduces
to solving the equation

D
d2 f
dx2

= R, (5)

where x is the depth into the cloud. In this equation, R is the adsorp-
tion rate coefficient (given by equation 3) and

D ≡ λcs (6)

is the turbulent diffusion coefficient defined in terms of the mixing
length λ and the thermal velocity cs. Combining equations (3), (5)
and (6), one obtains the equation

d2 f
dx2

= f
λd

, (7)

which for constant d (i.e. for a cloud of constant density), and with
the boundary conditions f (0) = 1 and f (x) → 0 for x → ∞ can be
directly integrated to obtain

f (x) = e−x/l , with l =
√

λd. (8)

From equation (8), we see that the fraction f of molecules (of the
chosen, representative species) present in the gas phase decreases
exponentially into the cloud, with an e-folding length l ∝λ1/2 (where
λ is the mixing length of the turbulent diffusion model). In Fig. 1,
we show l as a function of λ for a n = 105 cm−3 mean cloud density
(solid line).
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Figure 1. Penetration length as a function of the mixing length for the
standard diffusion model (solid line) and for three values of the fractional
parameter α.

In order to better understand the implications of this figure, we
consider for example a molecular cloud core with a size of 0.1 pc.
We assume that the region where desorption is negligible is about
half the core size, which in turn is half the distance to the centre, so
that the characteristic length is L ∼ 0.2(0.1 pc) ∼ 6 × 1016 cm. The
cloud density is n = 105 cm−3 (Steinacker et al. 2005). If we have
λ = 0.01L ∼6 × 1014 cm, we obtain an e-folding length l ∼ 7 ×
1015 cm. The effect of the turbulent diffusion is therefore only seen
in the outer 10 per cent or so of the size of the cloud.

If we want the turbulent diffusion to affect all the relevant volume
in the cloud, we need to have l ∼ L ∼ 6 × 1016 cm. From Fig. 1,
we see that this value is reached only for λ ∼ 4 × 1016 ∼ L (in
other words, for a mixing length comparable to the characteristic
size of the cloud). In this way, with our simple analytic model, we
re-obtain the qualitative behaviour of the numerical results of Xie
et al. (1995).

3 N O N - L O C A L T U R BU L E N T T R A N S P O RT

M O D E L

Standard diffusive transport is associated with an underlying
‘microscopic’ Brownian random walk in which particles exhibit
uncorrelated, Gaussian-distributed jumps. In this case, transport is
local, and the particle distribution function is described by an equa-
tion involving second-order derivatives in space of the type of equa-
tion (5). However, if the probability distribution function of jumps
is non-Gaussian (in particular, if it has divergent second-order mo-
ments) the particles exhibit anomalously large displacements known
as Levy flights, transport is non-local, and the particle distribution
is governed by a fractional diffusion equation (see e.g. Metzler &
Klafter 2000, and references therein). For the steady-state situation
we are considering, the equation for f takes the form,

Dα

dα f
dxα

= R, (9)

where 1 < α < 2. Reaction-diffusion equations of this type have
been studied by del-Castillo-Negrete et al. (2003), for the time-
evolution of shock fronts. For our case, we are only interested in the
final steady state. The turbulent fractional diffusion coefficient now
is given by

Dα ≡ λα−1cs. (10)

Combining equations (3), (9) and (10), one obtains the equation

dα f
dxα

= f
λα−1d

. (11)

There are different ways of defining a fractional derivative,
depending on the integration limits of the integral involved. These
derivatives constitute a generalization of standard calculus which
has been used recently in many problems of applied sciences (for
technical aspects of fractional derivatives see Podlubny 1999). We
first solve equation (11) in a simple way that illustrates the effect
of non-local transport. For this, we use for the fractional derivative,
the right-fractional Riemann–Liouville definition of order α (1 <

α < 2), namely, dα f /d xα =x Dα
∞ f , with

x Dα
∞ f = 1

�(2 − α)

d2

dx2

∫ ∞

x

f (t) dt
(t − x)α−1

. (12)

Using the fact that x Dα
∞e−μx = (μ)αe−μx , for μ > 0, we get the

solution of equation (11) with boundary conditions f (0) = 1 and
f (x → ∞) = 0,

f (x) = e−x/l , with l = (
λα−1d

)1/α
. (13)

This exponential decrease of gas-phase molecular fraction f as a
function of depth x into the cloud has an e-folding distance l ∝
λ1−1/α , which, for 1 < α < 2 is shallower than the dependence on the
mixing length λ obtained from the diffusion model (see equation 8).
In Fig. 1, we show l versus λ for a cloud of density n = 105 cm−3

(giving d = 1017 cm, from equation 4), for three different values of
α.

From this figure, we see that, as α decreases, we obtain increas-
ingly larger values of l for λ in the 1014–1017 cm range. In particular,
for the example chosen in Section 2 (i.e. a cloud core with a char-
acteristic size L ∼ 6 × 1016 cm), if we choose a mixing length λ ∼
0.01L ∼ 6 × 1014 cm we can obtain an e-folding distance l ∼ 6 ×
1016 cm ∼ L, when α is between 1.1 and 1.2. In Fig. 2, we show
the characteristic penetration length l as a function of α for three
values of the mixing length λ, where this fact can be seen. We note
that, for λ = 1015 the actual value of α for which l ∼ L is α = 1.12.
Therefore, if the mixing length λ, is to be kept small, as required by
a turbulence model, the use of a non-local transport model with α �
1.12 will be adequate in producing an overall transport that affects
the whole volume of the cloud core.

One can note that in Fig. 1 there is a crossover point at λ =
d = 1017 cm, above which the behaviour is opposite to the one
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Figure 2. Transport penetration length as a function of the fractional pa-
rameter α for three values of the mixing length λ. For λ = 1015, one obtains
the required l = 6 × 1016 when α = 1.12.
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described before, in the sense that the fractional transport reduces
the penetration length. This is due to the fact that for λ >d the
transport scale is dominated by the adsorption length. However, this
region is not relevant to our model since in that case the mixing
length is already larger than the cloud size and thus it does not
represent a realistic turbulent state.

As mentioned above, the fractional diffusion model is physi-
cally related to a transport process in which the particles follow a
random walk with non-Gaussian jump-size probability distribution
functions. The parameter α is related to the distribution of jumps;
for large steps the distribution has a power-law decay that goes as
∼x−(α+1). In general the jump distribution is asymmetric, and in the
extremal case it only exhibits algebraic decay in one direction. This
is the situation for the model we took here, with only the right-
fractional derivative. In this case, Levy flights have only a weak
effect on transport, because the jump distribution does not have an
algebraic tail for x → ∞. Thus, a low value of α is needed in order
to have an important contribution of the non-local transport. Strong
non-locality involves Levy flights in the x → ∞ direction. As dis-
cussed in the next section, this situation is captured by including the
left-fractional derivative in the model.

4 T R A N S P O RT M O D E L W I T H S T RO N G

N O N - L O C A L I T Y

It is important to mention that, in addition to the right-fractional
derivative, one can use the left derivative defined as

a Dα
x = 1

�(2 − α)

d2

dx2

∫ x

a

f (t) dt
(x − t)α−1

, 1 < α < 2, (14)

where a is an arbitrary constant. The most general transport model
should in principle include both, the left and the right derivatives.
These two operators have very different transport properties and in-
cluding both, enriches the physics of the model considerably. In par-
ticular, as discussed in del-Castillo-Negrete et al. (2003), transport
models with only a right (left) diffusion operator describe non-local
transport caused by Levy flight to the left (right) of the domain. The
model discussed in Section 3, assumes that a ‘microscopic’ level
transport is caused by a random walk that is Gaussian to the right
(x → ∞) and Levy to the left (x → 0). In this case, because of
the boundary condition f (0) = 1, the Levy flights do not have an
important effect. In particular, the solution exhibits an exponential
decay similar to the one observed with regular diffusion, but with an
enhanced diffusivity that leads to an increased penetration length.
Intuitively, what is happening in this case is that the Levy flights
are in a direction opposite to the ‘relevant’ transport direction. A
similar situation was observed in del-Castillo-Negrete et al. (2003)
where reaction–diffusion fronts propagating in a direction opposite
to the direction of the Levy flights behave like the usual fronts but
with an enhanced Kolmogorov speed.

Motivated by this discussion we consider here the fractional equa-
tion

c
0 Dα

x f = γ f , (15)

to describe a transport driven by Levy flights using the left-fractional
derivative. Following del-Castillo-Negrete et al. (2003), we have
defined the left spatial fractional derivative in the Caputo sense

c
0 Dα

x f = 0 Dα
x

[
f (x) − f (0) − f ′(0)x

]
= 1

�(2 − α)

∫ x

0

f ′′(t)
(x − t)α−1 dt .

(16)

for 1 < α < 2. Note that in del-Castillo-Negrete et al. (2003), the
term f ′(0)x was not explicitly included because for a front problem
it vanishes identically.

Using the Laplace transforms in space L f = f̂ (s) =∫ ∞
0

e−sx f (x) dx , the solution of equation (15) in s-space is given by

f̂ (s) =
(

sα−1

sα − γ

)
f (0) +

(
sα−2

sα − γ

)
f ′(0). (17)

Introducing the Mittag–Leffler function (Podlubny 1999),

Eαβ (z) =
∞∑

k=0

zk

�(αk + β)
, (18)

the inversion of the Laplace transform yields the solution

f (x) = f (0)Eα1 (γ xα) + f ′(0) x Eα2 (γ xα) . (19)

In addition to the boundary condition at x = 0 the solution must
satisfy the asymptotic condition f → 0 as x → ∞. The asymptotic
behaviour of the Mittag–Leffler function, for z > 0

Eαβ (z) = 1

α
z(1−β)/α exp(z1/α) −

P∑
k=0

z−k

�(β − αk)

+O(|z|−1−P ),

(20)

contains exponentially growing and convergent terms. Using this, an
analysis of the asymptotic behaviour of the solution in equation (19)
implies that to kill the exponential growing terms the condition
f ′(0) = −γ 1/α f (0) must be imposed. This leads to the solution

f (x) = f (0)
[

Eα1

(
γ xα

) − γ 1/αx Eα2

(
γ xα

)]
, (21)

where f (0) = 1 is the boundary condition at x = 0 and as desired,
f (x → ∞) = 0.

From the definition of the Mittag–Leffler function in equation (18)
it follows that E21(z2) = cos h (z) and E22(z2) = (1/z) sin h (z). Using
this in equation (21) we recover, as expected, the solution of the
regular fractional model in the α = 2 case,

f (x) = [
cosh

(√
γ
) − sinh

(√
γ
)] = e−√

γ x . (22)

The transport properties of the left-fractional transport model are
very different from the properties of the right-fractional model and
the standard diffusion model. In particular, compared with the other
models, the left-fractional model is strongly non-local. The most
striking manifestation of this strong non-locality is manifested in
the algebraic decay of the transported grains far from x = 0. In
particular, for x → ∞ the leading term of the asymptotic expansion
of equation (21) gives

f (x) ∼ γ 1−α/α

�(2 − α)

1

xα−1
. (23)

As shown in Figs 3 and 4, this algebraic decaying behaviour is to
be contrasted with the exponential decay exhibited by the right-
fractional model and the standard diffusive model.

To quantify the non-locality, and to compare with the other mod-
els, we define an effective penetration length, leff, by means of the
relationship f (x) = exp (− x/leff). (Clearly, leff = l is constant for the
previous two models.) For the Levy, left-fractional model, it follows
from equation (21) that

leff = −x
{

ln
[

Eα1 (xαγ ) − γ 1/αx Eα2 (xαγ )
]}−1

. (24)

An expansion near x = 0 gives

leff = γ −1/α

[
1 +

(
γ 1/αx

)α−1

�(α + 1)
+ . . .

]
. (25)

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 372, 213–218



Non-local diffusion in molecular clouds 217

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

f

γ1/α
 x

Figure 3. Concentration profile according to the solution in equation (21)
of the left-fractional model in equation (15). The curve at the bottom gives
the profile according to the local diffusive model (α → 2). The rest of the
curves, from bottom to top, correspond to the 1.75, 1.5, 1.25 and 1.1 cases.
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Figure 4. Same as Fig. 4, but in a log–log scale illustrating the algebraic
decay of the concentration profile in the right-fractional model for large
γ 1/α x. The dashed lines correspond to the asymptotic analytical formula in
equation (23).

As expected, in the x → 0 limit we recover the weak non-local pen-
etration length in equation (13) with γ −1 = λα−1 d. This verifies the
intuition that the right-fractional model introduces weak, or ‘short-
length’ non-locality. As observed in Fig. 5, due to the xα−1 scaling
of the first-order correction, the convergence to the weak non-local
result slows down as α → 1. On the opposite end, in the asymptotic
x → ∞ limit,

leff = x
{

ln
[
�(2 − α)(γ 1/αx)α−1

]}−1
. (26)

Fig. 5 illustrates the enhancement of the penetration length due to
Levy flights in the x →∞direction as predicted by the left-fractional
model. This indicates that, as the cloud is penetrated, the influence
of transport is dramatically increased, even for α → 2.

5 C O N C L U S I O N S

We have presented simple analytic considerations about the influ-
ence of turbulent transport on the chemistry of molecular clouds.
We have considered a ‘toy model’ chemistry in which we have a
single molecular species with a gas-phase abundance f (with f =

10
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Figure 5. Effective penetration length in the left-fractional model of equa-
tion (15) according to equation (24). The different curves, from bottom to
top, correspond to the α = 1.75, 1.5, 1.25 and 1.1 cases. By definition, the
α → 2 diffusive limit corresponds to the horizontal line γ 1/α leff = 1.

1 at the surface of the homogeneous, slab cloud), and a rate R of
adsorption on to grains.

If we introduce this idealized chemistry into a turbulent diffusion
model, we find that f falls exponentially with distance into the cloud,
with an e-folding length which depends on the adsorption rate and
on the mixing length λ (see equation 4). We find that for the case
of a dense cloud core, in order for the turbulent diffusion to have an
important effect on the general structure of the cloud chemistry, we
need to have λ comparable to the size of the cloud.

We have then described two non-local turbulent transport models
based on partial spatial derivatives of the order of 1 < α < 2, which
have been used for modelling the role of Levy-flights in reaction–
diffusion systems (del-Castillo-Negrete et al. 2003) and anomalous
turbulent transport in magnetically confined plasmas (del-Castillo-
Negrete et al. 2004, 2005). For our ‘toy model’ chemistry, the first
of the models also leads to an exponential decay of the gas-phase
molecular fraction f as a function of distance into the cloud. How-
ever, with an α = 1.25 value, we find that for mixing lengths λ ∼
0.01L (where L is the characteristic size of the cloud) we already
obtain penetration lengths l ∼ L (see equation 13 and Fig. 1). There-
fore, this non-local transport model produces substantial effects on
the cloud chemistry for mixing length values which are probably
more representative of the sizes of the eddies which form the turbu-
lent structures of molecular clouds. For the second non-local model,
the dominance of large Levy flights produces a striking effect on
the penetration length, making it very large, even for small mixing
lengths, for any value of α between 1 and 2. Our results, then would
indicate that the non-local transport in molecular clouds might be
dominated by internal structures that link quite distant regions.

These encouraging results appear to justify applying the non-
local transport models described in Sections 3 and 4 to a much more
complex chemical network including several species and many re-
actions. However, the semi-empirical nature of this model (a charac-
teristic shared by turbulent diffusion models) will eventually require
a calibration of the model parameters (namely, the order α of the
derivatives and the mixing length λ, see equations 9 and 10). Such
a calibration could be carried out either by comparisons with ob-
servations of real molecular clouds (which is of course a far from
simple proposition) or by comparing the predictions from this model
with numerical simulations which include both the 3D MHD and
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the chemical evolution. As such simulations are not yet available,
this second possibility is also not straightforward.
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