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A B S T R A C T

An operating fusion reactor should have a fuel burning rate nearly constant in order to have a steady power
exhaust. This could be achieved with a control system that monitors the produced power and modifies the fuel
intake accordingly. In this work we develop such a system based on a fuzzy logic controller which adjusts the
external parameters to keep the plasma temperature and density at the design values of a reactor of the char-
acteristics of ITER. The control parameters chosen are the D-T refueling rate, the auxiliary heating power and a
neutral Helium source. We use a fuzzy controller of the Mamdani type that uses a number of membership
functions appropriate to produce a response to parameter deviations that minimizes the response time. The
inference rules are determined in a way to provide stabilization to all initial perturbations of the temperature,
density and alpha particle fraction. The dynamical response of the reactor is simulated with a zero-dimensional
model that uses confinement times provided by the ITER scaling. We show how the system is feedback stabilized
for a large range of parameters comprising±25% around the nominal values. The recovery time after an initial
perturbation from the steady state is within the range of one to tens of seconds depending on the type of initial
perturbations applied, even with a noise term added to the energy confinement time. Furthermore the results of
this Fuzzy Control System are compared with another control system based on neural networks that was pre-
viously developed.

1. Introduction

A thermonuclear fusion reactor will very likely be based on a
magnetically confined plasma with toroidal geometry such as the to-
kamak or the stellarator, since these have produced the best results so
far. The International Thermonuclear Experimental Reactor (ITER)
project actually aims to demonstrate that a large tokamak is able to
sustain a burning plasma producing ten times more energy than the
input energy but still far from ignition. Eventually, a reactor should
operate in an ignited state, where there is no need for external energy
injection and the heating is maintained by the fusion reactions them-
selves. Once a fusion reactor can be built it will be necessary to assure
that the energy output is maintained at a constant level which should be
done with an appropriate control system. Such a system should also be
able to stabilize any disturbances to the nominal operational state that
may arise, in order to avoid disruptions or plasma quenching.

Essentially, what has to be done to achieve a stable, continuous
operation is to control the fusion fuel burn. Several control systems can
be devised. Control theory is growing continuously to this day em-
ploying various advanced mathematics tools, or applying recent artifi-
cial intelligence methods such as machine learning or deep neural

networks. However, it would be desirable to have a controller that is
simple and inexpensive. One possibility is to use two-layered neural
networks as control systems which is what was done in [1,2] for the
same problem addressed here. A simpler alternative is the use of fuzzy
logic which is the approach followed in this work. The physical system
considered is a fusion reactor containing a burning plasma in a sub-
ignited state, meaning that it operates in a marginal state exactly sus-
tained with no external power. For definiteness, the reactor parameters
used are similar to those of ITER. The variables chosen to control the
reactor are the fuel injection and the auxiliary heating power as well a
as a monitored injection of impurities as in [3]. But in order not to
increment the radiation losses by increasing the effective charge, the
injected impurity is Helium.

Fuzzy systems have been applied to different control tasks for ITER
or other systems. For instance, fuzzy logic was used to control the po-
loidal field AC/DC converter in ITER [4] or to estimate the electron
cyclotron heating power deposition [5]. Also fuzzy logic was used to
control the plasma vertical position in the STOR-M tokamak [6]. An-
other use of fuzzy login in the fusion context has been to predict dis-
ruptions on JET [7]. On the other hand the burning rate control in ITER
has been addressed in many works [1–3,8–15] with different control
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systems such as nonlinear Lyapunov analysis [11,15], adaptive control
[10] or neural networks [1,2]. However, to our knowledge, a fuzzy
logic controller has not been used to control the fusion burning rate of a
reactor. Therefore, the aim of the present study is to develop such a
control system in order to evaluate its performance and compare it with
a neural network control system.

In order to simulate the behavior of an ITER-like fusion reactor a
code has been written that simulates the behavior of a “burning
plasma” inside the reactor with a zero-dimensional model, based on a
set of coupled nonlinear differential equations that describe the balance
of D-T (deuterium–tritium) fuel density, alpha particle density and
thermal energy. The reactor model was used previously in references
[1,2,8,9].

Moreover a fuzzy control algorithm was developed that allows to
manage the control variables, which are the D-T fuel feed, alpha par-
ticle source and auxiliary heating power, based on the information of
electron density, fraction of alpha particles and temperature, obtained
from the ITER-like reactor simulator, according to the parameters de-
scribed by International Atomic Energy Agency in reference [16]. The
intention of using a Helium source as an actuator to control the system
is to have an extra degree of freedom that does not contaminate the
plasma. Since it should not modify the energy input substantially, be-
cause that is done with the auxiliary power, the alpha particles are
injected with the thermal energy, i.e. 12 keV. The other reason for
choosing this set of control actuators is to compare with other work that
uses a neural network control system using these control variables [2].

Finally, random perturbations were introduced to the energy con-
finement time( )E of the reactor through a random function with
Gaussian distribution, to simulate uncertainties in the measurements
that feedback the controller, with the purpose of testing the robustness
of the system. The good response under the perturbations indicates that
the reactor-control system has a suitable behavior under conditions of
inherent errors as well as in the ideal time dependent operation.

The paper is organized as follows. In Section 2 the model for the
fusion reactor used in the control system is described. The time beha-
vior towards relaxation is shown, pointing out that the resulting re-
laxation times are quite large and thus they have to be reduced with the
control system. In Section 3 the fuzzy logic controller is presented,
giving first a brief introduction to the ideas and methods of fuzzy logic.
Next, in Section 4 the results of the coupled controlled system are
presented, showing that the performance is quite good in the sense that
the relaxation times are substantially reduced for all of the possible
initial perturbations. Finally, in Section 5 the conclusions are presented.
Since fuzzy inference systems are not familiar to many readers we
present an introductory explanation with an example in Appendix.

2. Fusion reactor plasma model

The plasma in the thermonuclear reactor is described by means of a
set of differential equations in zero dimensions. They represent the
evolution of the state variables characterizing the system which for a
Deuterium-Tritium burning plasma are, the density of D-T ions, the
density of alpha particles and the thermal energy, as in [2]. The plasma
is neutral and completely ionized, with a 50:50 D-T mixture, while the
alpha particles resulting from the nuclear reactions are assumed to give
their energy instantly (within the relevant time-scales) to the plasma
which allows to consider the Helium ashes as thermalized with the
same temperature of the main ions and electrons. A small fraction of
impurities can be allowed which is included through the value of the
effective charge Zeff. It is assumed that the impurities are beryllium,
nickel and tungsten but this information is unimportant for the simu-
lation, we just use an average impurity with ZI=14.7. In the model it is
also assumed that the only energy loss by radiation is bremsstrahlung.

The zero-dimensional equations can be obtained from the fluid

equations by averaging over the whole volume of the reactor as in [17].
In that case the transport losses across the magnetic field are re-
presented by the confinement times for energy, alpha particles and D-T
( , , )E P . Here we assume that τP=3τE and τP=5.5τE, while τE is
given by the ITER-98 scaling:

= I R B n A P0.031 ,E i
0.95 1.92
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where I is the plasma current in MA, R the major radius in meters, B0

the toroidal magnetic field in T, n the electron density in 1019 m−3, Ai

the atomic mass of the main ions, P the injected power in MW, ϵ the
inverse aspect ratio and κ the elongation. With the previous assump-
tions this system is governed by the following coupled nonlinear
equations, representing D-T particle balance, Helium ash balance and
thermal energy density balance, respectively [2]
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Here v is the fusion reaction rate, Qα=3.4MeV the birth energy of
the alphas, v the fusion reaction rate given by [18] and the η and AB

terms are the ohmic heating [19] and bremsstrahlung radiation [20].
The neutrality condition including impurities with density nI is en-
forced: ne= nDT+2nα+ ZInI. The equations are solved for the electron
density ne, the fraction of alphas fα= nα/ne, and the temperature T
following a Runge-Kutta method of fourth order. The explicit form of
the equations that are actually solved can be found in Ref. [2]. Making
the left hand sides equal to zero gives the parameters for steady state
operation; this is the nominal state in which the reactor is expected to
operate. We set the quasi-ignition condition Paux=0 and Sα=0 for this
state which gives for the nominal operation, for ITER parameters, the
values ne= n0= 1020m−3, T= T0= 12 keV, fα≡ nα/ne= f0= 0.09
and a fuel source Sf= S0= 7.464×1018m−3. The other ITER para-
meters used in this study that are always kept constant are, plasma
current I=15MA, toroidal magnetic field B=5.3 T, major radius
R=6.2m, inverse aspect ratio ϵ =2/6.2= 0.323, elongation κ =1.86,
isotopic number Ai=2.5 and plasma volume Vcore=831m3; the main
ion density is ni= nDT= ne−2nα− ZInI, with nI=7×1017m−3 and
ZI=14.7 fixed.

When the system departs from the equilibrium, the variables used to
drive it back to the nominal state are the D-T source (Sf), the alpha
particle source (Sα) and the injected auxiliary heating power (Paux).
These are normalized according to [2],

S S n S S f n P P n Tˆ / , ˆ / , ˆ 2 /3 ,f f 0 0 0 aux aux 0 0 (5)

while the state variables are normalized to their nominal values, using
the notation,

z n n z f f z T T/ , / , / .e1 0 2 0 3 0 (6)

In case there is no control system, keeping the variables (5) to their
nominal values, the solution of Eqs. (2)–(4) for given initial conditions
for the variables (6) provides the time evolution of the reactor towards
the nominal state. This is presented in Fig. 1 for a representative case. It
is seen that the relaxation times required to return all zi variables to one
are of the order of 80 s.
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3. The control system

In the standard logic, it is possible to infer a conclusion out of a
couple of statements based on the truthfulness of them. Furthermore
they can only be true or false as well the conclusion. The concept can be
extended to allow for statements to be only partially true assigning to
them a certain degree of truth. This expands the possibilities of ap-
plicability of logical inference to situations where the variables defining
a system (the statements) cannot be known with certainty so that they
cannot be assigned sharp true or false values. Those cases are studied by
fuzzy logic, which deals with variables that do not have sharp values of
truth but can have different attributes simultaneously with different
weights each. The relationships between the variables, given by some
inference rules, then enable to reach certain decisions. This set of rules
can thus be the basis for a control system. The convenience of using
such a control system depends on the particular task it has to perform.
In the present work a fuzzy logic controller is used to provide the steady
state operation in a tokamak, in order to determine how suitable it is for
this task.

The design of a control system usually involves the application of
rigorous mathematical methods that determine the precise actions
taken to provide the desired operation. On the other hand, the aim of
fuzzy control systems (FCS) is to develop a framework for systems that
are characterized loosely and as such it is more appropriate for solving
real-world problems containing implicit errors. It is based on logical
inferences, decision-making processes and linguistic variables, as means
to formulate the initial problem. The denomination does not mean that
fuzzy logic should be an inexact theory; vagueness and imprecision
could be equally well described with the theory of probability. Actually
it is very important to notice that the mathematical basis of fuzzy logic
is as solid as those of other control theories.

As mentioned above, fuzzy logic works under the concept of logical
variables in a non-binary way, which means that each variable has
some degree of “trueness”. The value of the variables is given by a set of
membership functions, having different shapes according to the known
behavior of the system. The values of variables can belong to different
sets that have some attribute. For instance, if the variable is tempera-
ture, the sets can have the attributes warm, hot, very hot, cool, cold or
very cold. The state of the variable could involve not only one set but a
combination of them, according to the knowledge one has of the state.
Thus, in a wider, sense we could introduce the fuzzy logic as a kind of
blurring of the borders between two or more sets. This allows to in-
corporate common language sentences, such as, in the previous ex-
ample, “a state with temperature that is 50% hot, 25% warm and 25%
very hot”. For this, one uses the so called linguistic variables [22].
These concepts are explained in more detail in Appendix that describes
the ideas of a Fuzzy Inference System using a simple example.

There are two main types of fuzzy inference systems (FIS),

developed by Mamdani and Sugeno. They are especially appropriate for
capturing expert knowledge to design the inference rules, using a more
intuitive language. The two methods differ in the way the crisp output
is generated from fuzzy input. Essentially, the process followed to work
with both FIS is composed by three stages: (1) fuzzification, in which
the sharp variables are converted to fuzzy variables according to a set of
membership functions that are defined to represent the properties of the
system; (2) application of inference rules which determine the behavior
of the system, in order to get the corresponding response; and (3) de-
termination of the output variables which depends on the FIS type. The
Mamdani type uses the defuzzification technique while the Sugeno type
uses a weighted average of the consequences of the rules based on given
functions. The defuzzification is the process to convert the fuzzy in-
ference results into crisp values. The output of the FIS allows to take a
definite action in order to maintain the proper state of the system.
These systems are suitable for dealing with problems that involve the
solution of real-world problems, formulated with words, for which the
output signal returned is a real-world set [21]. Both FIS types have
advantages and disadvantages. Mamdani method is more adequate for
problems formulated with words (human input), but it is computa-
tionally more expensive, while Sugeno type is well suited for mathe-
matical analysis and is thus more efficient.

In this work we use the Mamdani method since the reactor model is
highly nonlinear which is more difficult to handle with the Sugeno
method because it uses linear functions for the output. The three dif-
ferent stages of the proposed FIS are described below (an example is
also given in Appendix).

3.1. Fuzzification of input variables

The input and output variables must be fuzzified giving a range of
gradual membership to the different possible values, usually between
zero and one. Each of the possible states for a variable is represented by
a “membership function”. It is important to notice that membership
functions can take different shapes such as triangular, sigmoidal,
Gaussian, etc., depending on the expected properties of the variable
particular state. Both input and output variables are associated to
membership functions; they are related through a set of inference rules
that determine the possible values for the output. Subsequently the
output variables are defuzzificated by an algorithm that transforms
from fuzzy states to sharp values.

The input signals in a control system are generally provided by
sensors or some other experimental measurement in the form of a
number or a set of numbers. The incoming information to the system is
well defined as a single point on the set of values for the input, it is a
sharp signal. On the other hand, a fuzzy system has to work with fuzzy
variables, so the signals are transformed to fuzzy signals by means of a
set of membership functions that are blended, with a specific “weight”
or level of truthfulness for each one. To translate from sharp signal to
fuzzy signal, first of all the membership functions of each variable are
carefully defined, both in range and shape including all real possibilities
according to the upper and lower limits of the system. Then, according
to the value of the signal a degree of membership is assigned for each
function.

This procedure was followed for the input variables which are the
electron density, the alpha particle fraction and the temperature, as
well as for the output variables, namely, the D-T fuel source, the alpha
particle source and the auxiliary heating power (with the respective
normalizations of Eq. (5)). For each one, a set of membership functions
is chosen. Fig. 2 shows the shape and the bounds selected in this FCS for
the membership functions of the variables. The first plot contains the
input variables (the membership functions for the three variables have
the same shape and limits) for which the range of values is centered at
one, extending from zero to two, according to the assigned normal-
ization. The second plot represents the output variables, taken between
−1 and 1 as limits; the functions have all the same shape but differ

Fig. 1. Evolution of the state variables for an initial perturbation given by
z1= 1.05, z2= 0.89, z3= 0.89, maintaining the control variables at their
nominal values. Response time is about 80 s.
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from those for the input variables. Notice that the values of the control
variables obtained from these functions could be positive or negative,
although the actual values of S Sˆ , ˆf and P̂aux cannot be negative since
they represent sources. This condition will be imposed later on. The
chosen form of the membership functions is based on having a simple
functional form that also contains the expected behavior for the vari-
ables. For the central functions corresponding to EQuilibrium, they are
centered at zero since one expects to have no variation when the
variable is already in equilibrium and the width is narrow in order to
have small departures from there. For the others there is a gradual in-
crease in the degree of membership until a reasonable value is reached
for being considered fully characterized by that value. There is not a
unique way to achieve this but the good performance of the FIS vali-
dates the choice.

Using these membership functions we can explain how a variable is
fuzzified in a FIS. In Fig. 2 the variable is divided in and defined by the
three states EQ, S and H, meaning that the variable is in EQuilibrium, or
has a Small or High value, respectively. Each one is represented by a
membership function defined between 0 and 1. On the horizontal axis
one locates the sharp value of the variable. When, for instance, the
input value is 1.05, the membership functions EQ and H will be laun-
ched as 30% EQ and 5% H, triggering corresponding actions on each
space. Although it is still just one single variable, it is now defined by
two different co-existing functions, with different degrees of truthful-
ness; furthermore, each one of these respectively activates the related
actions on output variables with different values and shapes through
the “inference rules”. The values chosen in our FIS for the input vari-
ables are S, EQ and H, while for the output variables they are re-
presented by the membership functions: DOWN, ZERO or UP, meaning
that the control variable is decreased DOWN, stays at zero or is raised
UP. Notice that in actuality the reduction cannot be so as to produce
negative values since particle sources and auxiliary heating power can
only add mass and energy to the system. But this restriction will be
imposed outside the FIS.

3.2. Inference rules

Usually the inference rules of the system are obtained by the ex-
perience and knowledge of an expert. They determine the concrete
actions to be taken based on “logic” statements, equivalent to the tra-
ditional syllogisms. Here, they were deduced following the observed
trends of the system, as obtained by following the system response to

the variation of each one of the input and output variables in Eqs.
(2)–(4) that govern the deterministic evolution of the system.

The inference rules are the intermediate step of Mamdani FIS
(whenever an initial fuzzification and a final defuzzification of the
signals is applied). It is the step where fuzzy input variables are related
to fuzzy output variables, whose relationship emerges with a meaning
that incorporates the dynamics of the system. It allows the self-reg-
ulation process, indirect measurements or even forecasting depending
on the problem one is dealing with. It is important to have a reliable set
of rules since this is the most important part of the control system.

According to model equations (2)–(4) for the system evolution of
the zero-dimensional reactor, a solution can be found for different in-
itial conditions, thus providing a way to determine the response of the
system to given initial perturbations from the equilibrium state. When
all the variables have their nominal values, which for the normalized
state variables (z1, z2, z3) is one and Sf= S0, Sα= Paux=0, the system
stays in the same state. Any variation from this initial condition pro-
duces a response in time as displayed, for example, in Fig. 1. By mod-
ifying the vales of the control variables one can determine how the state
variables respond. Doing this for all possible types of initial perturba-
tions in the variables, we can obtain a set of relations based on the
observed trends, for the normalized variables, given in the following
table. For instance, in the solution for the system evolution, when Sα
was reduced from its current value, it was found that the density was
reduced (dne/dt < 0) as well as the alpha fraction (dfα/dt < 0) while
the temperature was raised (dT/dt > 0); then a rule for decreasing the
variable z1 when it is high, or increasing z3 when it is small has to be to
decrease Sα (rule VI) and also if z2 is high it is reduced by reducing Sα
(rule IX). The combination of all possible variations produces the full
set of rules and this substitutes the information from an expert.

I. If (z3 is H) then (Ŝf is Up)(Ŝa is zero)(P̂aux is Down)
II. If (z1 is S) and (z2 is S) then (Ŝ is Up)
III. If (z2 is H) then (Ŝf is Up)
IV. If (z1 is EQ) or (z2 is EQ) then (P̂aux is zero)
V. If (z1 is EQ) and (z3 is H) then (P̂aux is Down)
VI. If (z1 is H) or (z3 is S) then (Ŝf is Down)(Ŝ is Down)(P̂aux is zero)
VII. If (z2 is S) then (Ŝf is Down)(Ŝ is zero)(P̂aux is zero)
VIII. If (z2 is EQ) and (z3 is H) then (P̂aux is Down)
IX. If (z2 is H) then (Ŝ is Down)(P̂aux is Up)
X. If (z2 is H) or (z3 is H) then (Ŝf is Up)
XI. If (z1 is S) then (Ŝf is Up)(Ŝ is Up)(P̂aux is Up)
XII. If (z1 is EQ) and (z2 is EQ) and (z3 is EQ) then (Ŝf is zero)(Ŝ is zero)(P̂aux is

zero)

Notice that the last rule is an obvious solution of the system and is
the goal for the system once it has reached the complete equilibrium: it
will not move from that state at the subsequent times. It means that
when the system achieves the nominal state for z1, z2 and z3, the D-T
source, alpha particle source and auxiliary heating power should stay
constant, to avoid disturbing the system.

3.3. Defuzzification of output variables

The result of the process of applying the inference rules is a fuzzy
output set. However, every control task should imply the existence of a
crisp value at the fuzzy controller output. Defuzzification is the pro-
cedure to extract a crisp output value from fuzzy outputs. There are
different methods to achieve defuzzification. However, a crisp output is
frequently achieved using the center of area (COA) principle, which is
based on the following expression and is the one adopted in this work,

Fig. 2. Membership functions for state variables which include three states (top
panel) and for control variables which have three states centered on zero
(bottom panel).
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where uFC(χk, yk) represents the crisp value of the fuzzy controller
output, ui ∈ U is a discrete element of an output fuzzy set, and μu(χk, yk,
ui) is its membership function” [23].

In summary, defuzzification mainly consists of determining a pre-
cise return value obtained from a set of fuzzy output values. The results
of the complete FIS can be visualized in surface plots that represent the
value of each of the output variables as function of the input variables.
Fig. 3 shows the surface plots for the three output variables as functions
of two of the input variables maintaining the third constant (equal to
one). This gives the crisp values of the output variables after the three
steps of the FIS have been applied, for given values of the input vari-
ables z1, z2, z3.

4. Performance of the control system

The implementation of the FIS in our control system is done in such
a way that the instantaneous values of the control variables Sf, Sα and
Paux are updated by the FIS output at every time step according to

= + = =S S n S S S P Pˆ / ˆ , ˆ ˆ , ˆ ˆf f0 0 ,FIS ,FIS aux aux,FIS

where the sub-labels FIS mean the output from the fuzzy system.
The control system described above is coupled to the actual physical

system which in this work is simulated by the model presented in
Section 2. As mentioned before, the idea is to control the operation of a
fusion reactor to stay at a nearly steady state. The goal is to maintain
the system operating at the nominal levels, so that any departure from
the nominal operation state should be restored in as short a time as
possible. In our simulations the state variables coming out of the reactor
model are input to the FCS which gives the control variables as output

and these are used as input to the reactor model. In this way the new
state variables are obtained, which should be closer to the nominal
operation state. The process is iterated until the nominal state is
reached.

The behavior of the reactor is critically determined by the measure
of transport losses which in our model is given by the energy confine-
ment time for which we used the ITER scaling, given in Eq. (1). We will
show that continuous variations of τE can lead to unsteady operation of
the reactor. In applying the FIS to the fusion reactor it is necessary to
take into account that the control mechanisms consist of particle and
energy sources and therefore their values cannot be negative, since that
would imply extracting particles or energy. We assume this cannot be
done since it would need sophisticated physical processes (in case it
could be implemented). Therefore, if the result of the fuzzy control
system is negative it is set to zero.

< =
< =

< =

S S
S S
P P

If ˆ 0 then ˆ 0
If ˆ 0 then ˆ 0
If ˆ 0 then ˆ 0

f f

aux aux (8)

The performance of the FIS as a part of the control mechanism is
tested in the following way: When all plasma variables have the values
of the nominal operation state the control system does not take any
action and the reactor stays in this state. Then, a perturbation is applied
in the form of a variation of the initial value for the state variables z1, z2
and z3. The response of the FCS is to adjust the control variables S Sˆ , ˆf
and P̂aux to try to take this changes back to zero. This process is dyna-
mical and takes place in a short time compared to the time it would take
the system alone to return to its equilibrium state, as was the case of
Fig. 1. We have taken the initial perturbations within the range±25%
in our simulations since these are reasonable variations that could be
expected during the actual operation. Many different initial values were

Fig. 3. Surface plots for the fuzzy inference system giving the normalized output variables as function of a pair of the normalized input variables (z1≡ ne/n0, z2≡ fα/
f0, z3≡ T/T0) when the third variables is fixed to one.
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tested within this range to compare the behavior and in all of them the
control system works well.

In Fig. 4 one can see the behavior for two different initial pertur-
bations when the reactor is controlled by the FIS. The upper plots show
how the state variables return to the nominal values (zi=1) while the
lower plots present how the control variables had to be adjusted to
achieve the task. For the initial conditions of the right hand side dia-
grams there is a rapid damping and stabilization of the initial pertur-
bation, taking about one second. Notice that the fuel source remains
finite at =Ŝ 0.074f after the nominal state has been reached. This is to
be expected because in order to stay in the nominal state the equili-
brium value Sf= S0 in needed (recall that for this state

= =S S nˆ / 0.07464f 0 0 ). On the other hand, the initial perturbation on the
left hand side seems to be damped in two different steps, an initial fast
one followed by a slower relaxation, which takes a longer time to reach
an equilibrium state, of the order of 10 s. For this case the initial per-
turbations were of different sizes, as opposed to the right-hand-side case
which had± 0.05 for all variables, with the purpose of comparison.

From these illustrations it is clear that the response time of the
controller will depend on the type of initial perturbation varying from
less than one second to tens of seconds for the more difficult initial
conditions. Some perturbations are more easy to neutralize than others,
due to the limited effect the control actions have on the state variables.
For instance, since there is no way to directly cool the reactor, an initial
perturbation that rises the temperature is harder to overcome than one
that reduces the temperature. After testing all possible combinations of
initial perturbations to the state variables one can classify them ac-
cording to the easiness of being canceled. This is presented in Table 1,
where the range of relaxation times together with the average

relaxation time is presented for all the possible cases. The finite range of
τR is due to the fact that the decay time depends also on the amplitude
of the perturbation and different amplitudes were tested in generating
the table, i.e. for each entry of the table, many different sizes of initial
perturbations were used that satisfy the corresponding condition. The
criterion used to quantitatively determine the time of relaxation was
that this is the time at which the three variables enter the band
zi=1 ±0.001. It can be appreciated that the most difficult combina-
tions to stabilize are those for which all the initial values are larger than
one. This is because the control actions cannot simultaneously reduce
the three state variables and therefore the system has first to thermalize
(cool down) on its own, in order to lower the fusion power, which in
turn reduces the temperature. This process takes longer times, which
are comparable to the natural relaxation seen in Fig. 1.

5. Robustness test

The information provided to the controller comes from the mea-
surements of the state variables which have always a degree of un-
certainty. These in turn are used in the determination of τE which is
used in the reactor model. Therefore, there could be a certain level of
indetermination when the model is applied to a real setting. This could
lead to a failure of the control system if it is not robust enough to these
variations.

In order to simulate the noisy measurement environment or an
uncertain scaling law of the energy confinement time τE (since this is
empirical), we added some level of noise to τE. Each time step, the
confinement time is multiplied by a random variable which has a
Gaussian distribution function with a standard deviation of
0.04× τELMy. Here τELMy is a slightly different scaling law (given below)
for the energy confinement time. The reason for choosing this one is to
test the effect of modifying the confinement scaling on the system re-
sponse, which is also a way of probing the robustness of the controller.
It is worth mentioning that the value 0.04 for the deviations was se-
lected because for larger values the FCS cannot return the state vari-
ables to their nominal values. For the larger fluctuations there is a re-
laxation but to values slightly different from zi=1.

This methodology to test for robustness was also used in a previous
work that used an artificial neural network controller for a fusion re-
actor [2]. In a similar way, the mean value of the energy confinement
time was taken to be the instantaneous value of τELMy. Therefore, it is
possible to compare the results and the behavior between this FIS and
the artificial neural network as control systems. The expression for
τELMy is associated with the H-mode operation with ELMs, which is
slightly degraded respect to the ELM-free operation [24]

= I B P n R k M0.291 .ELMy
0.9 0.2

net
0.66 0.4 2.03 0.19 0.92 0.2 (9)

Here Pnet= Vcore(Pα+ Pohm+ Paux− Prad) includes all power sources
and sinks and Vcore is the plasma volume.

The result of including the noise is presented in Fig. 5 for a given
initial perturbation. It is interesting to notice the strong influence that
small noisy fluctuations, introduced by the energy confinement time τE,
have on the system evolution. The dotted lines represent the response of
the system without a controller. This noise is enough to prevent the
system from returning to the nominal state without the FCS, thus the
plasma does not relax to the equilibrium values, no matter how much
time is elapsed. On the other hand, the continuous lines show that the
FCS allows the damping of all initial perturbations in the electron
density z1= ne/n0, helium fraction z2= fα/f0 and temperature z3= T/
T0, even after relatively large initial perturbations. This shows the
control system is quite robust when it is subject to variations not con-
templated in the original design.

Fig. 6 shows two other examples of relaxation with noise that re-
inforce the assertion about the robustness of the system. In the left-hand
side of Fig. 6 one can compare the performance with noise with that

Fig. 4. Evolution of the system after an initial perturbation with two different
initial conditions without any noise. Left-hand side: z1= 0.96, z2= 0.92,
z3= 0.98 and right-hand side z1= 0.95, z2= 0.95, z3= 1.05.

Table 1
Relaxation time, τR, range and average for the different combinations of initial
values for the perturbations of the state variables zi.

Case z1 z2 z3 Average τR Min–Max τR (s)

I. > 1 >1 >1 41.1 34–48
II. > 1 >1 <1 31.2 24–39
III. > 1 <1 >1 32.8 23–40
IV. > 1 <1 <1 13.5 3.5—28
V. < 1 >1 >1 15.3 5.7–30
VI. < 1 >1 <1 11.5 9–14
VII. < 1 <1 >1 9.9 0.5–22
VIII. < 1 <1 <1 11.8 9–18
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with no noise, since it has exactly the same initial conditions as the
right-hand side plot in Fig. 4. It can be appreciated that there is almost
no difference for this fast-relaxing case. In general, this happens for all
the different types of initial perturbations, and in some cases the re-
laxation time is even shorter when noise is included. For the case shown
in the right-hand side, all initial perturbations are negative and the
presence of noise does not give the fast initial evolution seen in
Fig. 4left but the relaxed state is reached in about the same time. Ap-
parently, the reason for a faster convergence in some cases is that the
fluctuations may push the system in the right direction and once the
states closer to equilibrium are reached the controller maintains them

there and continues the evolution, arriving at the nominal state in
shorter times.

In order to compare the results of the FIS with those obtained with
an artificial neural network we show in Fig. 7 two cases simulated with
the same conditions as those in Fig. 7 of [2]. For these cases the re-
laxation times are shorter for the fuzzy controller, being 5 s and 8 s,
while for the neural network they were 8 s and 15 s, respectively. For
the cases we tested, it turns out that the FIS is faster than the times
obtained when a neural network controller is used, which is always of
the order of around ten or more seconds [2]. In this respect, it is worth
mentioning that in several studies with FIS it has been found that it
performs better than other traditional control systems like PID [6] or PI
[4].

Fig. 5. (a) Response to an initial perturbation of the state variables given by z1= 1.03, z2= 1.08, z3= 0.95, with added noise without control system (dotted lines)
and with the action of the FCS (continuous lines). (b) Random variation of the energy confinement time normalized to the nominal confinement time: τE/τE0 and (c)
evolution of the control variables, showing no fluctuations.

Fig. 6. Evolution of the system after an initial perturbation with two different
initial conditions and a noise signal within τe. Left side: z1= 0.95, z2= 0.95,
z3= 1.05 and right side: z1= 0.95, z2= 0.94, z3= 0.93. The energy confine-
ment time varies with z1 and Paux according to = +z f P1.77 (1 )/ ˆE 1

0.4
net
0.66, where f

is the random function and = +P P P P n Tˆ ( )/3net aux oh rad 0 0, thus it evolves in a
way of the type shown in Fig. 5(b).

Fig. 7. Evolution of the system for two initial perturbations with different in-
itial conditions corresponding to the examples of Ref. [2] (Fig. 7) including
noisy fluctuations to τE. Left-hand side: z1= 0.8, z2= 0.9, z3= 1.15 and right-
hand side: z1= 0.82, z2= 1.07, z3= 0.82.
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6. Summary and conclusions

The stabilization of burn conditions for an ITER-like fusion reactor
is properly controlled by a fuzzy logic system of the Mamdani type with
a set of inference rules properly obtained from the evolution equations
of the dynamical system. The reactor is simulated with a zero-dimen-
sional model for the burning plasma in which the transport losses are
incorporated through the energy confinement time given by the ITER-
98 scaling. It is coupled to the fuzzy controller in a way that the elec-
tron density, alpha particle fraction and temperature in the plasma are
fed into the controller as input, whose output (the fuel and alpha par-
ticle sources and the auxiliary heating power) then provides the actions
to be taken to maintain the reactor operating in a quasi-steady state.
The critical points in designing the FIS are the determination of the
membership functions and of the inference rules. The former are chosen
with the criterion of simplicity but also delimiting the ranges to well
established limits, while the latter are obtained from analyzing the
evolution response of the equations to all possible variations of the
control variables. The coupled system provides a stable operation for
initial perturbations within the range±25% about the nominal state.
Furthermore, the system developed is also capable of balancing the
variables when random disturbances are introduced in τE to simulate
uncertainties in the system. Introduction of noisy fluctuations on τE
maintains the good performance under the action of the control vari-
ables Ŝf , Ŝ and P̂aux. An interesting result is that some cases with noise
converge a little faster than without noise because the fluctuations may
take the system closer to equilibrium and the controller continues from
there.

When comparing the FCS and an artificial neural network control
system with the same initial conditions, similar responses are obtained
in time evolution, although the FCS responds somewhat faster for some
initial perturbations. This is in line with previous findings where a FIS
works better than traditional control systems like PID [6] or PI [4]. It is
important to recall that each method, both artificial neural network and
FCS, follow different procedures to arrive at the nominal state, thus
control variables are activated in different ways for each case. But, al-
though they all achieve the goal of damping the initial perturbations,
the FCS is quite easier to implement since it does not need to go over a
long training process. In that sense we claim that it is better to use a
fuzzy controller.

In conclusion, the work presented gives the following results:

1. The use of a FCS has shown to provide a good relaxation against
initial perturbations in temperature, density of electrons and ions
and alpha particles in reasonable times.

2. The efficiency of FCS is dependent on the initial relationship be-
tween variables, which means it is more efficient to control initial
perturbations when they cool the plasma below the nominal state
than when they heat it up over the nominal state, because there are
not many possible cooling mechanisms. Sometimes, the convergence
rate is slower because the control is not enough to take the system
back to the nominal operation and then it evolves at the natural rate
(the one with no control system). For some perturbations there is an
initial fast evolution during which the three state variables get to-
gether and then they proceed at a slower pace all at once.

3. The FCS advantages are to have a short response time and easy
operational implementation on the electronic systems of the ex-
periments. Furthermore, data saved over long time operation allows
to develop better updates to improve the system and its results.

4. When there are fluctuations on energy confinement time ( )E the FCS
still returns the three state variables to their nominal states, showing
the robustness of the system to small uncertainties.

It is clear that the validity of the results presented here is restricted
to the range of applicability of the model used. Being a 0D model it is
just a first approximation to the global behavior of the reactor. A more
appropriate description would be to go to higher dimensions although
this introduces important complications. Staying within our model, we
should validate the results of our simulations with experimental results
but this is not possible because there are none for ITER or use a com-
putational database. Of course there are very sophisticated simulations
of ITER we could use, but to consider them is not needed since it is
enough for our purposes to be able to reproduce the nominal state of
operation as attractor states. However, a natural next step is to use a 1D
model.
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Appendix A

Fuzzy Inference Systems. A fuzzy logic inference system (FIS) is the basic unit of a fuzzy controller It based on the premises of fuzzy logic which is a
computational paradigm that is based on how humans think. It describes the world in imprecise terms, in a way similar to how our brain takes in
information (e.g. temperature is hot, speed is fast), and responds with precise actions. Fuzzy logic is in fact, a precise problem-solving methodology,
able to simultaneously handle numerical data and linguistic knowledge. As opposed to traditional logic, a statement in fuzzy logic can assume any
real value between 0 and 1, representing the degree to which an element belongs to a given set. A FIS has the capability of making decisions working
with fuzzy variables. It uses the inference rules of the type “if … then”, along with connectors “or” or “and” for taking actions.

Although the FIS works with fuzzy variables, when it is used as a controller the input and output of variables have crisp values. Therefore at the
entrance and exit of the FIS there has to be a unit to convert from crisp to fuzzy (fuzzification) and then from fuzzy to crisp (defuzzification). At the

Fig. 8. Structure of a FIS.
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core there is a unit for decision making which is the main part. This unit makes use of a set of inference rules and of a database which is expressed in
terms of membership functions of fuzzy sets. The structure of a FIS is represented in Fig. 8. There are two methods that are usually used to carry out
the task in a FIS: Mamdani and Sugeno. The Mamdani method is the one used here and is based on setting membership functions for the values of
each of the input and output variables. In addition, the set of inference rules has to be established using some kind of expert information. Once this is
established the inference process proceeds according to the following steps: (1) The crisp input is converted to fuzzy values using the input
membership functions; (2) establish the rule strength by combining the fuzzified inputs according to the inference rules; (3) determine the con-
sequent of each rule by combining the rule strength and the output membership function; (4) combine all the consequents to obtain the fuzzy output
distribution which is then defuzzified to get the crisp output.

On the other hand, the Sugeno method is characterized by giving the output in terms of a mathematical function. It has the format: IF x is A and y
is B THEN z= f(x,y), where A and B are fuzzy sets in the input and z is the crisp output as given by the function f(x, y). Then, for this method the
inputs are first made fuzzy with the membership functions and then the rules are applied obtaining at the same time the crisp output. In this case
there are more adjustable parameters through the functions.

As an example of the Mamdani system let us consider a case consisting of bodies of different sizes having different temperatures, which have to be
classified as coolants or heaters and the ability to handle them. The input fuzzy sets are SIZE with linguistic values {small, medium, large} and
TEMPERATURE with linguistic values {hot, warm, cool, cold}. The output fuzzy sets are COOLANT with values {good, fair, bad} and MANEUV-
ERABILITY with values {easy, hard}. Each set value has a membership function that defines how to assign the associated quality to given numerical
values. One of the most common functions is the triangular which could be used to define the temperature ranges in the way shown in Fig. 9. Also,
semi-trapezoidal functions can be used for the end values. For instance, for a temperature 20, there is 0.1 weight of cool, 0.5 weight of warm and 0.1
weight of hot, while for a size of 30 the weights are 0.4 for medium and 0.4 for small. Out of the whole set of rules (usually given as a look-up table
with the two or more entries, that in our case are size and temperature) those that are satisfied are activated and produce values for the output, as
shown also in Fig. 9. Two possibly activated rules presented here are: IF Temp is Hot AND Size is Medium THEN Coolant is Good and the other IF
Temp is Warm AND Size is Large THEN Coolant is Fair. Finally, there is a defuzzification method, here the center of area (COA), to get a final value
for the output z from the fuzzy distribution. The COA is a way of taking an average value based on the area under the distribution, but other ways of
“averaging” are possible. A similar analysis should be done for other output variables like the maneuverability.
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