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ABSTRACT

Turbulent transport in a magnetized plasma of the kind found in tokamaks is modeled by a 2D wave spectrum that allows reduction to a
symplectic map. The properties of particle transport when chaos sets in are analyzed in various circumstances including finite Larmor radius
(FLR) effects and a background plasma flow. For large wave amplitudes, regular particle orbits become chaotic, which represents a type of
Lagrangian turbulence. When chaos becomes global, it leads to the loss of particle confinement. Poloidal flows tend to decrease the chaos in
some regions, and they can give rise to the formation of transport barriers. FLR effects not only reduce chaos but also give rise to non-local
behavior. Thus, when the particles have a thermal distribution of Larmor radii, a non-Gaussian particle distribution function in space is
obtained. However, the transport preserves its diffusive scaling when there is no flow. Previous results about the dependence of the diffusion
coefficient with amplitude are re-derived analytically and numerically taking into account FLR effects. In the presence of general poloidal
flows, the transport has to be described by a two-step map. They modify the nature of transport in the direction of the flow from diffusive to
ballistic to super-ballistic, depending on the type of flow. The transverse transport, in turn, shows suppression of the oscillations with wave
amplitude that are present in the absence of flow. When the plasma flow varies linearly with radius, the transport can be studied with a similar
single-step map, and the transverse diffusion coefficient is reduced while parallel transport can become super-ballistic. For non-monotonic
flows, there are accelerating modes that can produce ballistic-like particles while the bulk of the particles behaves diffusively.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144037

Drift wave turbulence is thought to be responsible for anoma-
lous transport in magnetized plasmas, but its study is compli-
cated. Simple models have been developed that describe particle
motion in the wave fields that can be reduced to the use of
mappings. They can describe weak turbulence transport. In this
way, some properties of transport can be studied based on the
chaotic nature of the maps. The presence of transport barri-
ers often seen in plasmas can be identified with the resilience
of Kolmogorov-Arnold-Moser (KAM) surfaces in the transition
to chaos, which occurs when there is a sheared background
flow present. In this work, we study the statistical properties of
the maps in various circumstances that include no flow, mono-
tonic, and non-monotonic shear flow. The effect of a finite
Larmor radius (FLR) is explored both for a fixed radius and
for a thermal distribution of Larmor radii. We focus on the
type of transport resulting in each case being diffusive, super-
diffusive, ballistic, or even super-ballistic. Also, we describe the
probability distribution functions (PDFs) in each situation find-
ing that, as a rule, they become non-Gaussian when there is a

thermal distribution of FLR with high temperature. The PDF has
exponentially decaying tails which tells us that non-local fea-
tures are introduced. Our study includes analytical derivations of
results as well as numerical computations which agree quite well
and help to understand the nature of the phenomena involved.

I. INTRODUCTION

Transport in magnetically confined plasmas due to turbulence
is a very complex process, which is usually studied with numeri-
cal codes based on gyro-kinetic models or particle-in-cell methods.
However, an important insight can be gained with simpler mod-
els that analyze the interaction of particles with a certain wave
spectrum representing the turbulent fluctuations, which are usu-
ally due to unstable drift waves. The resulting cross field particle
transport is what determines the plasma confinement time in fusion
experiments. The wave–particle interaction for a test particle, which
does not affect the background fields, can be used as an indicator
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of what plasma particles will experience in this turbulent field.
For electrostatic turbulence in a magnetized plasma, the gyrating
charged particles would experience a drift dominated mostly by the
E × B velocity. Thus, the particle motion to the lowest order can
be described using the guiding center approximation if the electric
fields produced by the electrostatic turbulence are given. With this
description, the particle trajectories can be studied using a Hamil-
tonian approach once the spectrum of drift waves is provided.1,2

Naturally, the type of wave spectrum is determinant for the resulting
particle trajectories.

In fusion experiments, the presence of macroscopic plasma
flows is quite common, and this effect can be incorporated by intro-
ducing also large-scale electric fields perpendicular to the B field
and the flow direction. In particular, in toroidal configurations, a
radial electric field gives rise to the poloidal flows that are usually
observed. When the flow has a radial shear, it is known to have
a stabilizing effect on turbulence. Thus, using the E × B approach,
the simultaneous action of waves and flows can be studied. A very
simple case of wave–particle interaction studied using this approach
was undertaken in Refs. 3 and 4, where just two waves with differ-
ent phase velocities were considered in the presence of a poloidal
zonal flow. This can retain the basic nonlinearities and allows study-
ing the conditions for the establishment of global chaos identified
with turbulent transport.

When the particle Larmor radius is not small compared to the
characteristic plasma scales, the guiding center approximation is not
good enough since the fields that the particles feel can be quite differ-
ent from those at the center of the orbit. This problem can be solved
by taking an average over the gyro-orbit finite Larmor radius. It
has been shown that inclusion of finite Larmor radius effects (FLR)
in this way gives rise to reduction of the chaotic transport region,4

which implies that high energy particles (like the fusion reaction
products), which have large Larmor radii, would be lost at a slower
rate than thermal particles.

The Hamiltonian model has been used previously in various
studies in plasmas and fluids,1,5 providing an understanding of the
basic physical processes. The main feature is that wave–particle
interactions give rise to deterministic chaos of the particle orbits
(interpreted as Lagrangian turbulence), but, this chaos can be sub-
stantially modified by sheared flows as observed for instance in
geostrophic fluids, as studied in Ref. 5, which considered the zonal
flows concentrated in latitude leading to suppression of cross-flow
transport. In the Hamiltonian description, the transport suppression
is identified with a surface in phase-space that is resilient to chaos
located around the maximum of the velocity profile where the shear
vanishes (the so-called shearless curve).2 This is also called a trans-
port barrier and remains unbroken until the wave amplitude is large
enough. Zonal flows in fusion plasmas usually refer to a more com-
plex process involving self-generated flows by the turbulence itself,
but here we consider that a zonal flow is simply a given radially local-
ized poloidal flow and independent of poloidal and toroidal angles
since we do not deal with a self-consistent study. Thus, a poloidal
velocity profile with a non-monotonic radial variation is identified
with a zonal flow.

The specific type of wave spectrum considered here is such that
the equations of motion can be reduced to an iterative mapping. It
contains an infinite number of waves in two dimensions propagating

in the poloidal direction with a uniform distribution of discrete fre-
quencies. This in some sense generalizes the two-wave spectrum
studied previously.4 In the absence of flows, this particular choice
of waves was used to derive a symplectic mapping in Ref. 1 and
show the resulting chaotic transport. The statistical properties of an
ensemble of particles governed by the map followed for a period
of time lead to derive a diffusion coefficient that is proportional
to the square of the wave amplitude. FLR effects were included
in Ref. 2 showing that under certain conditions the transport can
become non-diffusive. In this work, we show that when macroscopic
flows are included, particle orbits have to be described in general
by two-step maps. In the language of mapping theory, monotonic
flows produce twist maps while non-monotonic flows give rise to
non-twist maps.

The aim of the present paper is to extend the study of the prop-
erties of the Karney map6 reported previously1,7 to cases including
FLR and two types of plasma flows, monotonic and non-monotonic.
We focus on the statistical properties of chaotic transport, when
regular orbits are destroyed. We show that taking a thermal distri-
bution of Larmor radii gives rise to particle distribution functions
(PDF) that are non-Gaussian, not only for the cases without flow2

but also when a flow of any kind is present. We also find that the
oscillatory dependence of the diffusion coefficient D with the wave
amplitude A7 around the quasilinear value is preserved for localized
non-monotonic flows, but it gets smoothed out for the unlimited
monotonic flow. In addition, the oscillations get translated to the
dependence with Larmor radius acquiring a double oscillation.

The paper is organized as follows. In Sec. II, the test particle
model used is described in the E × B approximation and the correc-
tions due to FLR are introduced. The representation of the waves is
described leading to the iterative mapping for the particle evolution.
The properties of the map without macroscopic flow are described in
Sec. III noting that the effect of FLR is to reduce the chaotic regions
in the particle trajectories and to create non-Gaussian PDF when
Larmor radii have a Maxwellian distribution. Then, in Sec. IV, a
macroscopic poloidal flow is included giving rise to a two-step map;
its properties are studied first for a flow that is linearly increasing
in the radial direction. FLR effects are introduced and the statisti-
cal behavior is analyzed for transport in both directions. Also, the
effect of a thermal distribution of particles is described; it is noted
that the transport parallel to the flow can become super-ballistic,
but it becomes only super-diffusive when the velocity is kept finite
at large distances (as for a radially limited flow). Section IV B ana-
lyzes the effect of a non-monotonic flow that has a maximum at a
given radial position. For a flow with a Gaussian radial profile, the
transport in radial and poloidal directions is studied. Here, the FLR
gyro-averaging has to be done numerically as well as the inclusion of
a thermal distribution of Larmor radii. Finally, the conclusions and
a discussion of results are presented in Sec. V.

II. TEST PARTICLE MODEL

The E × B guiding center velocity for a particle in a magnetized
plasma gives the lowest order motion in the presence of electrostatic
fields, which can be large-scale quasistatic or small scale fluctuating.
The equations of motion provide the time evolution equation for the
guiding center position as
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dr

dt
= E × B

B2
.

Taking the uniform magnetic field as an approximation (the toroidal
field in a tokamak, for instance), B = B0ẑ, we can focus on the
perpendicular motion since the velocity along the field is constant.
Then, r = (x, y) is the test particle guiding center position in 2D,
where x can be identified with the radial coordinate and y with the
poloidal coordinate. In terms of the electrostatic potential defined by
E = −∇φ(x, y, t), the equation has the structure of a Hamiltonian
dynamical system with H = φ,

dx

dt
= −∂φ

∂y
,

dy

dt
= ∂φ

∂x
, (1)

where x and y are the canonically conjugate variables.
The approximation of zero Larmor radius is not good for ener-

getic particles since the fields the particle samples in an orbit can
be quite different from those at the guiding center. Finite Larmor
radius (FLR) is taken into account by averaging the equations over
the gyro-orbit,

dx

dt
= −

〈

∂φ

∂y

〉

θ

,
dy

dt
=

〈

∂φ

∂x

〉

θ

(2)

where the average, for the Larmor radius ρ, is defined as

〈9〉θ ≡ 1

2π

∫ 2π

0

9
(

x + ρ cos θ , y + ρ sin θ
)

dθ . (3)

Following the approach in Ref. 2, the wave spectrum is assumed
to have a wide distribution with an infinite number of waves having
the same wavenumber and amplitude A, given by

φ = A

∞
∑

n=−∞
cos(x + θn) cos(y + θn − nt). (4)

Using the identity for the Fourier representation of the delta func-
tion,

∑∞
n=−∞ cos(nt) = 2π

∑∞
m=−∞ δ(t − 2πm), the equations of

motion in terms of the new variables x± = x ± y reduce to1

dx+

dt
= −2πA

∞
∑

m=−∞
sin(x−)δ(t − 2πm),

dx−

dt
= 2πA

∞
∑

m=−∞
sin(x+)δ(t − (2m + 1)π).

This can be expressed as a two-step map

x+(t+2m) = x+(t−2m) − 2πA sin(x−(t−2m)),

x−(t+2m) = x−(t−2m),

(5)

x+(t+2m+1) = x+(t−2m+1),

x−(t+2m+1) = x−(t−2m+1) + 2πA sin(x+(t+2m+1)),

where t±2m denote time at 2mπ just before (−) and just after (+) the
delta-function jump. This map first produces a displacement along
the line x − y = const. and in the second step it displaces along the
line x + y = const. Identifying t+2m with t−2m+1, it can be reduced to a
one-step map

xn+1
+ = xn

+ − 2πA sin(xn
−),

xn+1
− = xn

− + 2πA sin(xn+1
+ ).

Notice that this iterative map is exact and totally equivalent to
solving the differential equations since no discretization has been
applied.

After gyro-averaging, it takes the form

xn+1
+ = xn

+ − 2πAJ0(
√

2ρ) sin(xn
−),

(6)

xn+1
− = xn

− + 2πAJ0(
√

2ρ) sin(xn+1
+ ),

where J0(x) is the Bessel function of zero order.
The map (6) was found in Ref. 6, and it has been already studied

in detail in Ref. 2. Here, we only present the phase-space structure of
the particle orbits for reference. Figure 1 shows the orbits with prac-
tically no chaos for a low amplitude wave A = 0.01 and ρ = 0, then

FIG. 1. Phase-space diagram for the particle orbits with A = −0.01, ρ = 0 (left), A = −0.55, ρ = 0 (middle), and A = −0.55, ρ = 0.9 (right).
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when chaos is prevalent for A = 0.55 and still ρ = 0 and, finally, the
chaos reduction effect of FLR for A = 0.55, ρ = 0.9. The later prop-
erty implies that particles with larger Larmor radius are less chaotic
and are thus better confined.

III. TRANSPORT WITH NO PLASMA FLOW

To study particle transport an ensemble of particles is initial-
ized in a small region centered at x = y = 0. It is followed in time
and the moments of the particle distribution are taken in order to
analyze the type of transport that results. When the wave ampli-
tude is kept small, there is practically no transport since particles
stay is closed orbits. As A increases chaos becomes more extended
and the particles experience diffusion. For the validity of statistical
analysis, the phase space has to be chaotic globally which typically
happens for A ≥ 1. This was shown in Ref. 2. The transport is diffu-
sive because the variance of the distribution function scales linearly
with time: σ 2 = 〈x2〉 ∼ t. The proportionality constant is the diffu-
sion coefficient, which can be computed analytically and is given by
the so-called quasilinear diffusion coefficient1

D = π 2A2/2 ≡ Dql. (7)

In deriving this expression, it is assumed that there is no correlation
between successive iterations. This has the characteristic A2 scaling
and can be tested numerically by fitting D vs A2 with a straight line.
The diffusive nature of transport is also verified numerically by fit-
ting a straight line to σ 2 vs t. It is known8 that corrections to Dql due
to correlations between successive steps produce oscillations with A,
which, in this case, are given by7

D = π 2A2/2(1 + 2J0(2πA) + 0(A−1)). (8)

The numerical check of this expression is presented in Fig. 2. Explor-
ing other statistical properties of the transport one finds that the
particle distribution function (PDF) for a given time is a Gaussian
whose width increases linearly with time. This is true for both x and
y directions since the map is symmetrical in these variables; then,
Dx = Dy = D.

FIG. 2. Oscillations in the diffusion coefficient with wave amplitude A.

Now, when FLR effects are included by applying the map of
Eq. (6), similar results are obtained just making the substitution

2πA → A(ρ) = 2πAJ0(/
√

2ρ). This implies that the diffusion coef-
ficient presents oscillations with ρ due to the Bessel function. The
quasilinear value is Dρql = π 2A2J2

0(
√

2ρ), while the complete diffu-
sion coefficient Dρ corresponding to Eq. (8) has a double oscillation.
This is corroborated by the numerical results as shown in Fig. 3
where the agreement is very good.

Since in a plasma the particles have different velocities, given
by a distribution function, the Larmor radii of the particle ensem-
ble should also not be the same for all particles. Then, we can take
the initial ρ with a distribution which for a thermal plasma is a
Maxwellian. Given that we are following the dynamics in the plane
perpendicular to the magnetic field the radii distribution is a 2D
Maxwellian

fth(ρ) =
(

2ρ/ρ2
th

)

exp
[

−(ρ/ρth)
2
]

. (9)

When this initial distribution is taken there are two interesting
effects. The transport is still diffusive [i.e., σ 2 ∼ t] with a diffusion
coefficient that has practically no oscillations and the PDF is not
necessarily Gaussian, but it can have long tails that decay expo-
nentially for large x. The latter is an indication that the transport
is non-local. The diffusion coefficient can be obtained analytically
using a probability distribution given by the average of the Gaussian

PDFs, fρ(x, t) = (4πDρ t)−1/2e−x2/4Dρ t weighted by the distribution
of Larmor radii, Eq. (9),

P(x, t) =
∫ ∞

0

fth(ρ)fρ(x, t)dρ. (10)

The variance is obtained by taking the second moment of P(x, t),
which follows the scaling σ 2 ∼ t, and the proportionality constant is
the diffusion coefficient, which is found to be

〈D〉 = Dql

[

e−ρ2
th I0(ρ

2
th)

+
∫ ∞

0

4ρ

ρ2
th

e
−

(

ρ
ρth

)2

J2
0(

√
2ρ)J0(2πAJ0(

√
2ρ))dρ

]

. (11)

FIG. 3. Oscillations in the diffusion coefficient with Larmor radius ρ.
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FIG. 4. Thermally averaged diffusion coefficient for amplitude A = 10 normal-
ized to the 0th order value, D0 ≡ Dql , compared with numerical values. The
quasilinear approximation, in red, fits well the results for all but the lowest values
of ρth.

The first term is actually the thermal average of the quasilinear dif-
fusion coefficient 〈Dρql〉. In Fig. 4, this expression is plotted together
with the results of numerical simulations. The quasilinear ther-
mal coefficient is also plotted for comparison. It can be seen that
the match is very good even for the quasilinear estimate, differing
only for very small thermal radius. An interesting feature is that
〈Dρ〉 decreases with ρth, which implies that hotter plasmas have less
diffusion than cooler plasmas.

The PDF of Eq. (10) can be shown to have a non-Gaussian
dependence for large ρth. In particular, it has the asymptotic limits

P(ξ , ρth → 0) = 1√
2π

e−ξ2/2, (12)

P(ξ , ρth � 1) ≈ a

2
e−a|ξ |, (13)

where ξ = x/
√

2〈D〉t is a self-similarity variable and a is a function
of ρth. In terms of the variable ξ , the PDF turns out to be self-similar,

P(x, t) = 1√
2〈D〉t

Gρth
(ξ), (14)

where Gρth
is a function determined by the thermal Larmor radius.

These properties are presented in Fig. 5, where PDFs for different
times and wave amplitudes collapse to the same function which,
in turn, changes from a Gaussian to another having exponential
tails for large ρth. Thus, transport in a thermal hot plasma has the
interesting property of being diffusive but non-local.

IV. PRESENCE OF POLOIDAL FLOWS

When a macroscopic poloidal flow along y is included the
potential φ has to be modified by adding a function of x, φ0(x)
representing a radial electric field (i.e., replace φ(x, y) → φ0(x)
+ φ(x, y)). It turns out that in this case, the two-step map [Eq. (5)]

cannot be reduced to a one-step map in general. The resulting
two-step map is

x
n+ 1

2
− = xn

− − π�(xn),

x
n+ 1

2
+ = xn

+ − 2πAJ0

(√
2ρ

)

sin

(

x
n+ 1

2
−

)

+ π�(xn),

xn+1
+ = x

n+ 1
2

+ + π�
(

xn+ 1
2

)

,

xn+1
− = x

n+ 1
2

− + 2πAJ0

(√
2ρ

)

sin
(

xn+1
+

)

− π�
(

xn+ 1
2

)

,

(15)

where �(x) = φ′
0(x) is the gyroaveraged flow velocity profile.

Depending on the type of function chosen for �(x), the map can
have different properties. In particular, when �(x) is a mono-
tonic function it produces a twist map, while for a non-monotonic
function the result is a non-twist map.

A. Linear shear flow

When �(x) is linear the map (15) has a non-zero Jaco-
bian everywhere which implies that this is a twist map. Writing
�(x) = Cx the strength of the shear flow is measured by C. A sim-
pler one-step map can be proposed when the flow is linear in x,2

although it is not strictly derived from the integration of the equa-
tions of motion. However, it can be used to derive some properties
of transport analytically. It is actually an implicit map but when
converted to an explicit mapping, it takes the form2

xn+1
+ = xn

+ − 2πAJ0

(√
2ρ

)

sin(xn
−) + C

2

(

xn
+ + xn

−
)

,

(16)

xn+1
− = 1

1 + C/2

[

xn
− + 2πAJ0

(√
2ρ

)

sin
(

xn+1
+

)

− C

2
xn+1

+

]

.

The phase-space structure for this one-step map has been discussed
in Ref. 2. With the flow, the first thing to notice is that closed orbits
are mostly stretched to form open orbits. These streamlines actually
play the role of invariant tori in the Hamiltonian system. They start
to break up as the amplitude A increases giving way to chaos and
the most robust of the torii act as transport barriers. In the two-step
map, the phase-space looks a little different, but it has essentially the
same properties.

In the presence of flow, the symmetry in x and y is broken and
the transport in each direction has to be considered separately. It
is clear that transport along the flow direction is not hindered by
transport barriers and particles can always be moving along the y
direction. However, transport along the x direction is only impor-
tant when there are no transport barriers anymore. Here, we will not
focus on how the barriers break up, which was considered in Ref. 9
but assume the condition of global chaos is fulfilled when transport
in the x direction is studied.

1. Transport in x direction

In order to describe the type of transport involved, we com-
puted the variance of the ensemble of particles as function of time
(or equivalently, the iteration number n), and the result is fitted by a
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FIG. 5. PDF in linear and semi-log scales showing the transition from Gaussian to exponential decay when ρth is increased from 0.1 to 10. Plots for different values of A and
time (number of iterations n) show the self-similar behavior, in agreement with theoretical prediction.

power law

σ 2
x = Txn

γx . (17)

As before, the simulation starts an ensemble of particles (4000 in this
case) in a small square of size 10−5 around a hyperbolic point and
is evolved for 5000 iterations. In order to have a statistically repre-
sentative database, in computing Eq. (17), A was made to vary over
600 values uniformly distributed. It was found that γx = 1.0 ± 0.01
meaning that the transport is diffusive. Thus, the coefficient Tx is the
diffusion coefficient Dx but in this case, when taken as a function of
the wave amplitude it does not show the oscillations observed with-
out flow. It rather approximately follows the quasilinear scaling as
seen in Fig. 6. It is apparent that the flow has the effect of almost
vanishing the correlations between successive steps and smoothing
the function Dx(A). Regarding the PDF, it is still a Gaussian as in the
case with no flow.

The diffusion associated with this system is not easy to study
analytically with the two-step map but using the similar one-step
map an analytical expression can be derived2 for the modified
quasilinear diffusion coefficient

Dx(ρ) = 1

2(1 + C/2)2

(

πAJ0

(√
2ρ

))2

, (18)

which shows that diffusion is reduced by the flow. This is expected
to be different for the two-step map but the effect of transport
reduction would be the same.

a. FLR effects. The process of gyro-averaging the equations pro-
duces similar effects on the transport along the x direction as in the
case with no flow, in particular, the oscillations of Dx with ρ. Allow-
ing now for a thermal distribution of Larmor radii, the result is to
produce a non-Gaussian PDF for large ρth, as in the case without
flow, as was shown in Ref. 2. In addition, the PDF is self-similar in
the same way as in the case with no flow, according to Eq. (14).

2. Transport in the y direction

For this case, transport is in the same direction as the flow
and, therefore, it is very much affected by it. Following the same
procedure to fit the variance to
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FIG. 6. Diffusion coefficient in the x direction for a linear flowwithC = 1 spanning
all x range as a function of A. It almost follows the quasilinear value (red line) and
does not show oscillations as it was the case when no flow was present, which is
shown by the green line.

σ 2
y = Tyn

γy . (19)

It is now found that γy = 3.01 ± 0.01, which means that the trans-
port is super-ballistic. As explained in Ref. 2, this is due to the
combined effect of diffusion in the x direction with the almost bal-
listic motion along y whose velocity is ever increasing with x. So,
particles that manage to diffuse in x to distant positions are the
ones that dominate the transport and give rise to the super-ballistic
scaling. In order to have a better understanding of this effect and
compute the variance to the lowest order, we can study a simplified
map that preserves the essential features and is more tractable. This
considers diffusion in the x direction and a linear flow in the y direc-
tion, i.e., the diffusion in y is not included. Thus, we consider the
map

xn+1 = xn + χn, (20)

yn+1 = yn + 2πCxn, (21)

where χn is a random variable with normal distribution centered at
zero and standard deviation σ . One can show that the variance of y
for this map after n iterations is

〈y2〉 = 4π 2C2σ 2 n(n + 1)(2n + 1)

6
→ 4π 2C2σ 2

3
n3, (22)

for large n. Therefore, this gives directly the super-ballistic scaling
mentioned above.

For the x direction, it is straightforward to show that 〈x2〉
= σ 2n and, thus, the corresponding diffusion coefficient would be
Dx = 〈x2〉/2n = σ 2/2. Since we know that Dx = π 2A2/2, this gives
a relationship between σ and A which, when substituted in Eq. (22)
for the variance, gives

σ 2
y ≡ 〈y2〉 = 4π 4C2A2

3
n3. (23)

FIG. 7. Super-ballistic transport coefficient as a function of A for velocity shear
values C = 1, 2, 3, 4, 5.

This gives a transport coefficient for super-ballistic (not diffusive)
transport, Ty1 to first order, according to Eq. (19),

Ty1 = 4π 4C2A2

3
. (24)

In Fig. 7, we plot this coefficient against A for five values of the veloc-
ity C = 1, 2, 3, 4, 5 and compare with the corresponding simulations
to check its accuracy, noting the good fit. Now, if the diffusive trans-
port in the y direction that was ignored in this simplified map is
added, it would contribute an extra term to σ 2

y , leading to

σ 2
y = 2Dyn + Ty1n

3, (25)

this is clearly dominated by the second term for large times leading
to the super-ballistic transport that is observed.

There is also a self-similarity property for the PDF, which is a
Gaussian function whose width varies as t3/2

P(y, t) = 1
√

2πTy1t3
e−ξ2/2, (26)

with the self-similar variable ξ = y/
√

Ty1t3. With this variable all the
PDFs collapse to the same normal distribution.

At this point, it is relevant to notice that the linear velocity pro-
file is not physical since the velocity tends to infinity as |x| → ∞
and, therefore, the super-ballistic scaling is not realistic. A more nat-
ural velocity profile is to put a bound at some position where the
velocity stops growing and beyond that it stays constant, that is,

�(x) = Cx, |x| < M; �(x) = ∓CM, x ≶ ∓M.

For this velocity profile, the resulting scaling is intermediate between
ballistic and diffusive (i.e., super-diffusive) having 1 < γy < 2. This
is because a constant flow produces a ballistic transport, meaning
σ 2

y ∼ n2, while the confined linear flow has a slower contribu-

tion. Combining this with the diffusion produced by the waves the
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FIG. 8. Transport coefficient for a thermal distribution of Larmor radii as a function
of A for ρth = 1 showing a quadratic dependence. The increase of the shear flow
also produces an approximate quadratic increment in the value of Ty .

variance would be

σ 2
y = 2Dyn + Tybn

2. (27)

As particles reach the constant flow region, they will be transported
ballistically with the corresponding constant velocity so that, if it is
large enough, the scaling would be dominated by the ballistic term.
Thus, the wider the shear region (|x| < M) the larger the velocity
and the more ballistic the transport will be (γy ≈ 2), for a fixed time
and fixed C. Also, for a given shear width, following the transport for
a long enough time the scaling will be ballistic which is the dominant
term.

a. FLR effects in y transport. Gyro-averaging over the Larmor
radius does not change the properties described for zero Larmor

FIG. 9. Diffusion coefficient in x direction as a function ofA for a Gaussian velocity
profile.

FIG. 10. Bifurcation of the Gaussian velocity profile seen by particles when
gyro-averaging as ρ is increased.

radius, the sole effect being the replacement A → AJ0(
√

2ρ). This
means the transport is super-ballistic for unbounded flow and bal-
listic for bounded flow and with a transport coefficient that depends
on the Larmor radius as Ty ∼ J2

0(
√

2ρ). The PDF remains a Gaus-
sian with the same self-similarity property [see Eq. (26)]. Only when
a thermal distribution for Larmor radii is assumed, the PDF is mod-
ified to a non-Gaussian function as it was the case with no flow. This
effect is most noticeable for large thermal Larmor radius ρth since for
ρth � 1 the PDF is very close to a Gaussian. This has been shown in
Fig. 13 of Ref. 2. The self-similarity for super-ballistic transport is
now expressed as

P(y, t) = 1
√

Tyt3/2
Gρth

(y/
√

Tyt
3/2). (28)

The transport coefficient Ty defined in Eq. (19), after gyro-averaging
and for a thermal distribution of the gyro-radius has a dependence
on A and C which is shown in Fig. 8. As compared to the fixed ρ

case of Eq. (24), the quadratic dependence on A is preserved, as seen
by the lines with slope 2 in this log–log plot, as well as the approx-
imately quadratic dependence on C. Thus, the scaling for Ty1 given
in Eq. (24) still holds after a thermal distribution of ρ is applied. The
analytical expression can be shown to be

Ty1 = 4π 4C2A2

3
e−ρ2

th I0(ρ
2
th). (29)

This indicates that large gradients in the flow are effective in increas-
ing the super-ballistic transport rate in y direction in a thermal
plasma but it is suppressed by the increase in the temperature.

B. Localized shear flow

We now consider a different type of background flow, namely
a profile that is mostly localized to a plasma region of x and conse-
quently is non-monotonic. This can be used to model zonal flows
which in plasmas and fluids are known to reduce the transport cre-
ating transport barriers.3 The resulting map is non-twist because at
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FIG. 11. Scaling exponent for transport in x direction which indicates that
transport is diffusive, except for few ρ values.

the velocity maximum the velocity derivative (shear) vanishes which
violates the twist condition. The shearless curve is quite robust to
break up and therefore acts as a transport barrier. Rather than look-
ing at the properties of these transport barriers, we focus here on
the statistical properties of transport when global chaos is already
established.

1. Gaussian velocity profile

We choose a Gaussian profile to study the transport in non-
monotonic velocity shear flows. Thus, we consider

�(x) = C exp(−x2/2σ 2
�) (30)

in the two-step mapping represented by Eq. (15) before gyro-
averaging. A particular feature, in contrast with the linear flow, is

that there is a net matter displacement along y because �(x) is
always positive.

2. Transport in the x direction

As in the previous case, the transport in the x direction is diffu-
sive, and it is affected by the flow in the y direction by decorrelating
the interactions between successive iterations that give rise to the
oscillations of the diffusion coefficient Dx as a function of A. How-
ever, this affects only the region where the flow is localized, so that
when the particles diffuse to large x this effect will be impercepti-
ble. Then, one can compute the diffusion coefficient Dx with the
result shown in Fig. 9. It is clear that the behavior is very similar
to that in Fig. 2 with no flow, confirming that the effect on suppress-
ing the oscillations of the localized flow is negligible. Nevertheless,
a distinct feature of Dx in this case is the spikes that appear at five
specific points in the range A < 10. These are produced when there
are periodic trajectories with ballistic behavior around stable fixed
points with some period. Actually, they are known as accelerating

modes, defined by the condition x
n+j
± = xn

± + 2πm± where j is the
periodicity of the mode and m± are integers. It can be shown that for
m± = 0, the period-2 accelerating points of the map without flow,
Eq. (6), satisfy the condition

πA sin(xn
+) = −xn

− + πn+; πA sin(xn
−) = −xn

+ + πn−. (31)

This expression can be used to numerically obtain the posi-
tion of the accelerating modes. In the presence of the unidirectional
flow, these points are carried away ballistically, which is reflected in
the high values of Dx although Dx as a diffusion coefficient loses its
meaning.

The PDF for x is Gaussian and self-similar as in the other cases.

a. FLR effects. An important feature that results when gyro-
averaging the Gaussian flow is a bifurcation event that switches the
flow seen by the particles from having one maximum to having two

FIG. 12. Gyro-averaged diffusion coefficient for transport in x for Gaussian flows of same strength [= Cσ�] (a) narrow (C = 100, σ� = 1) and (b) wide (C = 10, σ� = 10).
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FIG. 13. Normalized diffusion coefficient for transport in x for a thermal plasma with Gaussian flow as a function of the thermal Larmor radius: (a) for a single case with
A = 10, σ� = 10,m = 10 and (b) for different parameters of the Gaussian and the waves.

maxima as the Larmor radius is increased. This can be appreciated
in Fig. 10 for the parameters C = 100, σ� = 1. The same bifurca-
tion was noticed in Refs. 4 and 10 for a sech2

(x) velocity profile.
This implies a change in the orbit topology (phase space) for ρ > ρc,
where ρc is the bifurcation value. In the case of Fig. 10, it is 1.77.

Unfortunately, for the Gaussian flow, it is not possible to obtain
the gyro-averaging analytically, and it can only be done numeri-
cally. In order to first determine if the transport is diffusive, a large
number of simulations was performed and they were adjusted to the
scaling of Eq. (17). It was found that γx = 1 except for a few especial
ρ values, probably arising from the accelerating modes (see Fig. 11).
With this information we can compute the diffusion coefficient. It
turns out that the oscillations in Dxρ as function of the Larmor radius
are still preserved in this case. This is shown in Fig. 12. As in the

FIG. 14. Mean displacement in y produced by the simplified Gaussian map as a
function of time for different parameter values.

case before gyro-averaging, the spikes, presumably also due to accel-
erating modes, are seen too, which means that all the features are
preserved when FLR effects are included. Of course, the exact results
would depend on the properties of the Gaussian flow through the
parameters σ� and C, but for flows of the same strength, which we
define as the area under the Gaussian, proportional to the product
Cσ�, the function Dxρ(ρ) is the same, which is shown in this figure
too. Although there is no analytic expression to compare with, the
fit to the expression with no flow is quite good still, as seen in the
figure.

Now, turning to the case of a thermal distribution of ρ, the sit-
uation is more difficult to understand since the superposition of all
the Larmor radii with their own singularities produces a complex
mixing. The results of the numerical simulations are shown in

FIG. 15. Diffusion coefficient in y for a Gaussian shear flow, showing oscillations
and a large increase for small A.
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FIG. 16. Scaling exponent for gyro-averaged y transport when A = 10 for Gaussian flows with parameters (a) C = 10, σ� = 10, (b) C = 1, σ� = 100.

Fig. 13. Despite the mixing and wide spreading in the values of
〈Dxρ〉, there is a clear underlying lower bound of the same type of the
one obtained without flow in Fig. 4. Therefore, we can say that the
thermal average still produces transport coefficients that on average
decrease with ρth even in the presence of a zonal flow, but they have
a wider range of possible values.

The probability distribution function for x transport can be
obtained from Eq. (10). As expected, the same results as with no flow
are obtained since the flow affects only the y transport. That is, the
PDF is nearly Gaussian for small ρth but has an exponential decay
for large ρth.

FIG. 17. Diffusion coefficient in y for gyro-averaged map as a function of ρ for a
wide and a narrow Gaussian velocity profiles. It shows singularities at points given

by the zeroes of J0(
√
2ρ). Comparison with analytical Dy without gyro-averaging

is shown to give a fairly good match.

3. Transport in the y direction

It is expected that the localized flow would affect more the
transport in the y direction. In fact, this flow produces a net dis-
placement of an initially static ensemble of particles. The average
displacement can be estimated as follows. The flow has width σ�

and a velocity of order C. On the other hand, the particle distri-

bution in x has the Gaussian form 1√
2πσ

e−x2/2σ 2
with the diffusive

behavior σ 2 = 2Dxn. Then, the fraction of particles that are subject

to the action of the flow is of order δN/N ≈ σ�/
√

2πσ and the flow
strength they feel is of order C. The average position of all the parti-
cles changes in one step by δ〈y〉 = CδN/N = C σ�√

4πDxn
which scales

with time as n−1/2. The mean displacement at time n can be found
integrating over time up to step n. Thus, one finds 〈y〉 ≈ C σ�√

πDx

√
n.

This scales now like
√

n. A more accurate value, obtained from a
simplified mapping like the that in Eq. (21) but for a Gaussian flow,
gives for n � 1,

〈y〉 = π
√

8Cσ�√
Dx

√
n. (32)

In Fig. 14, this expression is compared with numerical results for dif-
ferent values of the velocity C and it shows that the match is almost
perfect.

With the same simplified mapping, it is possible to find the
variance 〈y2〉, which results to be linear in time n, so transport is
diffusive and the diffusion coefficient is

Dy = Dx + 2π 2C2σ 2
�

Dx

(π − 2). (33)

This is shown in Fig. 15 compared with numerical simulations
for several parameters of the flow. It shows an interesting non-
monotonic dependence with A in addition to the oscillations: it
grows for both large and small A. The increase in Dy as A gets
smaller, as well as the increase of 〈y〉, is due to the fact that the spread
of the particle population in x is reduced, leading to a larger parti-
cle fraction feeling the localized flow. However, one should be aware
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FIG. 18. Scaling exponent for thermally distributed particle y transport for Gaus-
sian flows with different parameters and two wave amplitudes. A transition is
observed for all cases.

that the result breaks down for very small A when the x variance
drops below the flux width. In that case, all particles are dragged by
the flow and no further increase would occur.

a. FLR effects in y transport. Since the gyro-averaging cannot be
done analytically, all the results are again numerical when including
FLR effects. The first thing to determine is the nature of transport
in the presence of FLR. Fitting the simulations to the scaling for the
variance of Eq. (19), it was found that the exponent varies as ρ is
changed in the way of Fig. 16. One can see that it is close to 1 most
of the times, and it presents the singularities already noticed in the
transport in x related to accelerating modes. There are four singular
values of ρ in this range, around which the transport is not diffu-
sive but for the rest a diffusion coefficient can be computed. The
behavior is the same for the two Gaussian profiles presented: wide
(C = 10, σ� = 10) and narrow (C = 1, σ� = 100).

The diffusion coefficient obtained for the same cases is pre-
sented in Fig. 17. As we already know the transport around the
four singular points in Fig. 16 is not diffusive, and hence, the large
values seen here are meaningless. The figure compares the results
for the two Gaussian widths, and they are quite similar. Also, they
are compared with the analytical expression for the y transport in
Eq. (33) obtained without FLR effects and the match is surprisingly
good. This is an indication that the diffusion is not much affected by
the gyro-average. It is also apparent from here that the singularities

come from the zeros of the Bessel function J0(
√

2ρ) that appears in
the denominator of Dy.

Now, we turn to the case of a thermal distribution of Larmor
radii. We already know that when there is no flow, the thermal aver-
age modifies the properties of the PDF but the scaling with time
stays diffusive. In order to find out whether or not the localized flow
changes, the transport scaling, we computed the exponent γy for this
case and plotted it as a function of the thermal gyro-radius in Fig. 18.
This plot contains the results for different Gaussian shapes and wave

FIG. 19. Diffusion coefficient in y for thermal distribution of particles for the same
parameters of Fig. 18.

amplitudes and for all of them there is the interesting property of a
transition in the value of γy from one to γy > 1. When the ampli-
tude is A = 10, the transition is at about the same value of ρth ≈ 0.5
for all the profiles, jumping to γy ≈ 1.9. The transport becomes very
super-diffusive nearing the ballistic scaling, as a result of the flow.
However, for the large wave amplitude A = 100, the transition is
retarded and γy does not grow so fast; the transport is not so super-
diffusive. This is due to the increased chaos, which tends to lessen
the effect of the background flow.

The diffusion coefficient for a thermal distribution can be seen
in Fig. 19 as a function of the thermal Larmor radius. The same tran-
sition observed for γy is evident here, although this is to be expected
because for non-diffusive transport, the diffusion coefficient loses its
meaning and, when computed, gives large values.

Finally, it is of interest to know whether the particle distribu-
tion function type is affected by the thermally distributed Larmor
radii in the same way as in the case without flow. This time, since
there is a net particle displacement, the centroid of the PDF should
have a displacement as time evolves, which scales as

√
t, according

to Eq. (32). Also, the net flow in the positive y direction would break
the symmetry leading to larger particle accumulation on the right
side of the peak than on the left side. This can be appreciated in
Fig. 20 where the PDF in the y direction is shown for both small
(< 1) and large (> 1) ρth. Panel (a) depicts the PDF relative to the
centroid position for the normalized variable y/σ� for ρth < 1 and
shows a slight displacement of the centroid relative to the maximum
implying a longer tail on the right hand side of the peak, while panel
(b) illustrates that for ρth > 1, the longer right tails are more evident.
It also shows that for the later times (more iterations) the PDF gets
wider and shorter when ρth is large, which would be expected from
a net directed flow. The plots show that for small ρth there is almost
no dependence on ρth while for larger ρth the PDF has a larger asym-
metry and shows the presence of some ballistic particles. These are
the smaller peaks on the right hand tail, corresponding to different
velocities. In Fig. 20(a), a slight non-Gaussian shape can be noticed
(the Gaussian is shown for comparison).

Chaos 33, 053102 (2023); doi: 10.1063/5.0144037 33, 053102-12

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0144037/17230308/053102_1_5.0144037.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 20. PDF for localized flow for varying thermal Larmor radius and time (iterations) when ρth < 1 (a) and ρth > 1 (b). The time evolution shows the net displacement of
the centroid of the PDF and the left–right asymmetry, primarily for large ρth in (b). Here, A = 10 and C = 10.

On the other hand, for large ρth, departure from Gaussianity is
not so easy to identify due to the intrinsic large asymmetry. In order
to have a better appreciation of the PDF features, we take advantage
of the fact found before that the PDF has self-similar properties and
those depend on the type of transport. So, for diffusive transport, the
self-similar relation of the type in Eq. (14) applies, while for ballistic
transport, one would expect a self-similarity scaling of the type

P(x, t) = 1
√

Tyt
Gρth

(y/
√

Tyt). (34)

Thus, in Fig. 21, we plot normalized PDFs in log-scale for the two
cases: diffusive in (a) and ballistic in (b). It is clear from panel (a)
that the PDFs for all times collapse to a single self-similar function

except for the far tails that correspond to the ballistic particles. It is
also evident that the fall-off of the distribution tend to straight lines
on both sides implying an exponential decay of the tails as opposed
to the Gaussian tails. Then, for ρth > 1, the non-Gaussian PDF prop-
erty is preserved from the case with no flow. In panel (b), one can
see that the ballistic scaling fits the spikes on the tails, for all times,
confirming the ballistic nature of these particles.

V. SUMMARY AND CONCLUSIONS

Turbulent transport in magnetized plasmas due to a discrete
spectrum of drift waves in two dimensions can be studied as the
chaotic transport in a symplectic mapping. We used Cartesian coor-
dinates in 2D, but it can be applied to a tokamak plasma in the

FIG. 21. PDF in the log scale for non-monotonic flow for various times nit using (a) the self-similar diffusive scaling
√
nitP vs y/

√
nit and (b) the self-similar ballistic scaling

tP vs y/t, for the parameters A = 10,C = 10, ρth = 10.
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poloidal plane identifying the radial and poloidal coordinates with
x and y axes, respectively. Inclusion of poloidal sheared flows has
the effect of yielding a twist map if the flow is monotonic and a non-
twist map when it is non-monotonic. The chosen wave spectrum
has been used previously in Ref. 1 to study the phase-space orbits
and some statistical properties of transport and in Ref. 2 to include
FLR effects. Non-local transport may result when the particles have
a thermal distribution of FLR, which shows up as a non-Gaussian
PDF. In the present study, we extended the analysis to the case with
non-monotonic shear flow in addition to the monotonic flow stud-
ied earlier. We also studied the properties of the transport for all
relevant cases in some detail.

Background flows modify the particle dynamics changing in
turn the chaotic properties that produce the transport. A large
poloidal shear flow drags the particles along the poloidal direction,
hindering the chaotic motion produced by the waves. When there is
chaos reduction in some region due to a localized flow, there can be a
surface where regular motion is restored and this is identified with a
transport barrier. However, we focused here on the case when global
chaos is maintained even in the presence of flow and considered the
resulting modification of transport.

When no flow is present, we obtained the diffusive transport
and recovered the well-known quasilinear diffusion coefficient that
scales with the wave amplitude as A2 and presents oscillations due
to coupling between successive steps.7 In addition, the PDF is Gaus-
sian and self-similar. When FLR effects are included, the diffusion
coefficient D presents oscillations as a function of ρ with a double
period. For a realistic plasma, the particle Larmor radius should have
a thermal distribution and when this is included, D is a decreasing
function of the thermal gyro-radius ρth, which implies that transport
is reduced for hotter plasmas. Also, the PDF becomes non-Gaussian
when ρth is large enough, remaining self-similar. This means that
FLR effects give rise to non-local transport since particles sample
wider regions in their orbits.

Inclusion of a background flow requires the process to be
described by a two-step mapping. This makes it more difficult to
analyze the transport properties and for that reason, we considered
simplified maps that preserve the essential features of the original
one but allow us to get analytical results and understand the underly-
ing cause for the observed scalings of transport. Transport in the two
directions has now to be studied separately. In the x (radial) direc-
tion, we showed that the transport is still diffusive, and non-local for
thermally distributed Larmor radii, as in the case without flow, inde-
pendently of the type of flow profile. However, in the y (poloidal)
direction, transport is modified differently depending on the type
of flow. For a linear shear flow profile, it becomes super-ballistic
since the flow velocity keeps increasing as particles go to larger x. By
bounding the flow growth to a finite region, super-diffusive trans-
port results. For a localized flow, due to its limited action range, it
stays diffusive mostly, but it can be super-diffusive when the thermal
distribution of particles is included. It is worth mentioning, though,
that the poloidal transport has no effect on the confinement and,
therefore, it has no direct relevance for fusion experiments.

For the two types of shear flows considered, the transport coef-
ficients have the following features: (1) for monotonic profile, (a) Dx

no longer has oscillations with A following the quasilinear value, and
it is smaller than the flowless Dx. As a function of ρ, the coefficient

Dx oscillates with a single period (∼ A2J2
0(

√
2ρ)). The PDF is Gaus-

sian but for a thermal distribution of FLR it becomes non-Gaussian
for ρth > 1 and is self-similar. (b) The transport in the y direction is
not diffusive [the variance is given by Eq. (25)]; the transport coeffi-
cient scales quadratically with A and the flow strength C. The PDF is
Gaussian with its width scaling as t3. When the growth of linear flow
is bounded, the variance is given by Eq. (27). Including FLR effects,
the scalings with A and C stay the same and oscillations with ρ are
present as before. For a thermal distribution, the scalings are not
modified and the PDF is becomes non-Gaussian with a self-similar
structure.

(2) For non-monotonic flow profile, (a) Dx maintains the oscil-
lations with A and singular points appear associated with acceler-
ating modes. It has the double period oscillations as a function of
ρ, but it has a uniform decrease with ρth for a thermal plasma. (b)
In the y direction, there is a net displacement that grows as the
square root of time. The transport is diffusive and the diffusion coef-
ficient Dy [given by Eq. (33)] has the oscillatory behavior with A and
increases drastically for low A. This is obtained also in numerical
computations. The inverse dependence with Dx produces that the
dependence with ρ has singularities at the zeros of J0(

√
2ρ); around

these singular points, the transport is not diffusive. The interesting
feature is that for thermal distribution of FLR, the transport is super-
diffusive when ρth is larger than a threshold value (about ρth ≈ 0.5
for A = 10). On the other hand, the PDF is asymmetric with a
longer tail in the direction of the flow and some ballistic particles
are present. For the thermal plasma, it also becomes non-Gaussian
for ρth > 1.
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