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Area-preserving nontwist maps, i.e. maps that violate the twist condition, arise in the study of
degenerate Hamiltonian systems for which the standard version of the KAM theorem fails to apply.
These maps have found applications in several areas including plasma physics, fluid mechanics, and
condensed matter physics. Previous work has limited attention to maps in 2-dimensional phase
space. Going beyond these studies, in this paper we study nontwist maps with many-degrees-of-
freedom. We propose a model in which the different degrees of freedom are coupled through a
mean-field that evolves self-consistently. Based on the linear stability of period-one and period-
two orbits of the coupled maps, we construct coherent states in which the degrees of freedom are
synchronized and the mean-field stays nearly fixed. Nontwist systems exhibit global bifurcations
in phase space known as separatrix reconnection. Here we show that the mean-field coupling leads
to dynamic, self-consistent reconnection in which transport across invariant curves can take place
in the absence of chaos due to changes in the topology of the separatrices. In the context of self-
consistent chaotic transport we study two novel problems: suppression of diffusion and breakup of
the shearless curve. For both problems we construct a macroscopic effective diffusion model with
time-dependent diffusivity. Self-consistent transport near criticality is also studied, and it is shown
that the threshold for global transport as function of time is a fat-fractal Cantor set.

Nontwist area-preserving maps are discrete
representations in time of degenerate Hamilto-
nians that have found applications in fluid me-
chanics, plasma physics, atomic physics, and
condensed matter physics. These maps are
also theoretically interesting because powerful
results including the standard KAM theorem,
the Poincare-Birkhoff theorem, and the Aubry-
Mather theory cannot be applied to them. Two
unique features of this type of maps are the exis-
tence of robust transport barriers and the possi-
bility of bifurcations of the phase space topology
due to separatrix reconnection. As a first step
to study these phenomena in the case of many-
degrees-of-freedom systems, we study a model
of intermediate complexity between the well-
understood 2-dimensional area-preserving non-
twist maps and the fully coupled 2N-dimensional
many-body system. The proposed model consists
of a family of mean-field coupled area-preserving
nontwist maps, in which the interaction between
the degrees of freedom is mediated by a long-
range field whose evolution depends on the mean
properties of the system. The coupling is moti-
vated by the generic interaction found in weakly-
linear descriptions of plasma and fluid instabili-
ties. Novel results are presented on the formation
of coherent structures, nonchaotic global trans-
port due to self-consistent separatrix reconnec-

tion, the role of mean-field coupling in diffusive
transport, and self-similar scaling of intermittent
self-consistent transport near criticality.

I. INTRODUCTION

Area-preserving maps of the form

xn+1 = xn + Ω(yn+1) ,
yn+1 = yn + f(xn) , (1)

where (xn, yn) denotes the n-th iterate of the map, have
proved to be very useful in numerical and analytical
studies of Hamiltonian chaos in low degrees-of-freedom
systems. In particular, the standard map, for which
Ω = yn+1, and f = κ sin(xn−θ), is a paradigmatic model
to study periodically perturbed, chaotic, one-and-a-half
degrees-of-freedom systems.

However, compared with the progress made in the
study of chaos in low degrees-of-freedom systems, the un-
derstanding of Hamiltonian chaos in systems with many
degrees-of-freedom is in its infancy. In general, the phase
space of N interacting particles in a three-dimensional
space, is 6N -dimensional, and the dynamics is deter-
mined by 6N nonlinearly coupled, first order, ordinary
differential equations. One avenue to approach this chal-
lenging problem is throughout the use of mean-field mod-
els in which the mutual interaction of the particles is me-
diated by a global field whose evolution is determined
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self-consistently from the particle dynamics. In the con-
text of discrete dynamical systems, this mean-field ap-
proach leads to the study of globally coupled maps.

Of particular interest to the present work are the
discrete-in-time, mean-field Hamiltonian models pro-
posed in Refs. 1,2. As discussed in Ref. 1, in the
case when the coupling involves area-preserving standard
maps, the two-dimensional dynamics of an ensemble of
N -particles with coordinates (xnk , y

n
k ), k = 1, 2, . . . N , at

time n, evolves according to

xn+1
k = xnk + yn+1

k , (2)

yn+1
k = ynk − κn+1 sin (xnk − θn) , (3)

where κn and θn denote the amplitude and phase of the
mean-field, which evolve with n according to

θn+1 = θn +
1

κn+1

∂ηn

∂θn
, (4)

κn+1 =
√

(κn)2 + (ηn)2 + ηn , (5)

where

ηn =
N∑
k=1

γk sin(xnk − θn) , (6)

is the mean-field coupling with γk constants. In the ab-
sence of coupling, γk = 0, each degree of freedom evolves
independently following the standard map dynamics with
fixed κ and θ.

The mean-field model in Eqs. (2)-(6) is a useful labo-
ratory to explore the dynamics of Hamiltonian systems
with a large number of degrees of freedom in the context
of area-preserving maps. This model arises from the dis-
cretization of the continuous-in-time, Single Wave Model,
which is a generic model describing the weakly nonlinear
dynamics of kinetic instabilities in plasmas, and shear
flow instabilities in fluids. In the plasma physics context,
the model describes the nonlinear wave-particle interac-
tion in a Vlasov-Poisson plasma near marginal stability in
the weakly nonlinear limit. In this case, (xnk , y

n
k ) denote

the phase space coordinates of an ensemble of electrons
interacting self-consistently with an electrostatic, single
mode wave with amplitude κn and phase θn, in a pos-
itive, neutralizing ion background. The strength of the
coupling is determined by the constants, γk, which de-
pend on the relative charge of the particles with respect
to the background1,3. In fluids, the model provides a sim-
plified description of two-dimensional vortex dynamics in
the presence of a strong background shear flow. In this
context, (xnk , y

n
k ) denote the coordinates of an ensemble of

point vortices interacting self-consistently with a single-
mode shear-flow instability, with the coupling constants
γk determined by the strength of the vortices1. In both,
plasmas and fluids, the coupling constants can be posi-
tive or negative. As discussed in Ref. 4, the single wave
model is also closely related to recent mean-field mod-
els used to study the statistical mechanics of long-range
interacting systems.

The main goal of the present paper is to formulate and
study the analogue of the mean-field model in Eqs. (2)-
(6) for the case of nontwist maps. These maps are char-
acterized by the violation of the twist condition, which
requires

∂xn+1

∂yn
6= 0 , (7)

for all yn. Nontwist maps, arise in the study of the tran-
sition to chaos in perturbed degenerate Hamiltonian sys-
tems. A paradigmatic example is the standard nontwist
map

xn+1 = xn + a(1− y2
n+1),

yn+1 = yn − κ sin (xn − θ) . (8)

In this map, in the limit κ = 0, the twist condition
is violated along the y = 0 line, known as the shear-
less curve that creates a central transport barrier (CTB).
This map was proposed in Ref. 5 as a simplified model
to study chaotic transport in geophysical flows and it
has also been used to study of transport in magnetically
confined plasmas6–8. Note that, to simplify the nota-
tion, Eq. (8) corresponds to the standard nontwist map
in Ref. 10 with the x-coordinated rescaled as x→ x/(2π).
Nontwist maps are interesting from the point of view
of basic Hamiltonian dynamics because the violation of
the twist conditions precludes the applications of power-
ful theorems including the standard KAM theorem, the
Poincare-Birkhoff theorem, and the Aubry-Mather the-
ory. This has motivated new mathematical developments
including, among others, extensions of KAM theory that
do not rely on the validity of the twist condition9.

Two key aspects of nontwist systems of particular in-
terest to the present study are the robustness of invari-
ant circles, and separatrix reconnection. Previous works
have shown that in area-preserving maps of the form
in Eq. (8), shearless invariant curves are remarkably re-
silient to breakup10,11. The violation of the twist condi-
tion also gives rise to a highly nontrivial changes in the
phase space topology generically known as separatrix re-
connection see e.g., Refs. 10,12 and references therein. It
is thus of significant interest from the dynamical systems
point of view to study the roll of mean-field coupling in
these phenomena. Our approach to address these prob-
lems is based on the study of the nontwist generalization
of the coupled map model in Eqs. (2)-(6) obtained by
replacing Eq. (2) by

xn+1
k = xnk + a

[
1−

(
yn+1
k

)2]
. (9)

Throughout this paper, we refer to Eqs. (9) and (3)-(6)
as the nontwist mean-field (NTMF) model.

The organization of the rest of the paper is as fol-
lows. Section II defines the model using generating func-
tions for generic mean-field couplings. This formal ap-
proach is intended to complement the intuitive descrip-
tion presented above. Section II also contains a descrip-
tion of period-one and period-two orbits, and their sta-
bility properties. The relationship between the stability
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of the periodic orbits and the existence of coherent struc-
tures in phase space is also discussed.

Section III studies the role of mean-field coupling in
separatrix reconnection. Contrary to the standard non-
twist map in Eq. (8), for which the phase space topology
is determined by the a priori chosen values of a and κ,
in the NTMF map, separatrix reconnection is dynami-
cally determined by the self-consistent interaction of the
different degrees of freedom through the mean-field. Of
particular interest is the study of dynamic separatrix re-
connection leading to transport across the CTB. Section
IV is devoted to the study of self-consistent diffusion. We
study the role of the mean-field coupling in the suppres-
sion of diffusion and in the destruction of the CTB. For
both cases, an effective diffusive, quasi-linear model is
constructed. Section IV also discusses intermittent trans-
port occurring when the self-consistent evolution of the
mean-field brings κn near the critical transition point for
the destruction of the CTB. Section V presents the con-
clusions.

II. MODEL DESCRIPTION, PERIODIC
ORBITS, AND COHERENT STRUCTURES

The formation of coherent structures is a problem of
considerable interest in systems with many degrees-of-
freedom systems. In Refs. ? this problem was ad-
dressed in the context of continuous in time Hamiltonian
mean-field models in the finite N and N → ∞ limits.
In particular, it was shown that the single wave model
exhibits dipole coherent structures in phase space in the
presence of self-consistent chaos. Here we study coherent
structures in the context of the discrete in time NTMF
model

The NTMF model describes the evolution of N -degrees
of freedom, referred here as “particles”, with coordinates
(x1, . . . xN ) in a one-dimensional periodic domain, xk ∈
(0, 2π), and momenta (p1, . . . pN ), coupled to an oscillat-
ing mean-field with amplitude, J , and phase, θ. Since the
system is Hamiltonian, its evolution can be described as a
canonical transformation of the form (q,p)n → (q,p)n+1

defined by

qn+1 =
∂S

∂pn+1
, pn =

∂S

∂qn
, (10)

where the N + 1 canonical conjugated coordinates are
q = (x1, . . . xN , θ), and p = (p1, . . . pN , J), and S =
S(qn,pn+1) is the generating function. Following Ref. 2
we write,

S = Sp + Sf + Si , (11)

where Sp determines the evolution of the N -particles in
the absence of the mean-field; Sf determines the uncou-
pled evolution of the field; and Si determines the inter-
action of the mean-field with the particles. For Sp we
use the generating function of the unperturbed standard

nontwist map,

Sp =
N∑
k=1

{
xnkp

n+1
k + a

[
pn+1
k − 1

3
∆t2

Γ2
k

(
pn+1
k

)3]}
. (12)

In the absence of interaction, the evolution of the mean-
field is determined by

Sf = θnJn+1 , (13)

while the coupling between the mean-field and the parti-
cles is given by

Si = −2∆t
N∑
k=1

√
Jn+1Γk cos(xnk − θn) , (14)

where ∆t, Γ1, . . . ,ΓN are constants. Although it is pos-
sible, and interesting, to consider maps coupled only
through the phases, like in the study of twist maps in
Ref. 2, here we focus attention in couplings involving
both the amplitude and the phase.

Substituting Eqs. (12)-(14) into (10) we get the 2(N +
1) symplectic map describing the self-consistent interac-
tion of the N -particles with the mean-field

xn+1
k = xnk + a

[
1−

(
∆t
Γk
pn+1
k

)2
]
, (15)

pn+1
k = pnk − 2∆tΓk

√
Jn+1 sin (xnk − θn), (16)

θn+1 = θn − U∆t− ∆t√
Jn+1

N∑
k=1

Γk cos (xnk − θn),

(17)

Jn+1 = Jn + 2∆t
√
Jn+1

N∑
k=1

Γk sin (xnk − θn), (18)

The last equation determining the evolution of the mean-
field amplitude is implicit. Defining

ynk =
∆t
Γk

pnk , κn = 2(∆t)2
√
Jn , (19)

the map can be rewritten with the mean-field amplitude
equation explicit as the NTMF model in Eqs. (9), (3),
(4), and (5) with the order parameter defined in Eq. (6).
Note however that, since the change of coordinates in
Eq. (19) is not canonical, the map does not preserve the
area in the (θ, κ)-plane. However, this is simply an arti-
fact of the coordinates used. By construction, according
to Eq. (10), the NTMF model is symplectic in the canon-
ical coordinates (x1, . . . xN , θ) and (p1, . . . pN , J). In par-
ticular, the area in the (θ, J)-plane, as well as the area
in the (xi, pi) planes, are preserved for i = 1, . . . N . The
non-canonical coordinate κ is simply introduced for the
convenience of expressing the evolution of the mean-field
degree of freedom with an explicit map.
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II.A. Period-one orbits

Introducing the 2(N + 1)-dimensional vector xn =
(xn1 , . . . , x

n
N , y

n
1 , . . . , y

n
N , θ

n, κn)† (where † denotes the
transpose), we write the NTMF map as

xn+1 =M(xn) , (20)

and define a periodic orbit of order s as a sequence
{x∗1, . . . ,x∗s} such that Ms(x∗p) = x∗p, for p = 1, . . . , s.
We limit attention to periodic orbits for which, for any
s, the mean-field remains fixed, i.e. we assume

κn = κ∗ , θn = θ∗ = 0 (21)

for all n, where without loss of generality we have set
θ∗ = 0. It follows from Eqs. (4) and (5), that Eq. (21)
imposes the following constraint on the order parameter
and its derivative

ηn =
∂ηn

∂θn
= 0 , (22)

for all n, evaluated at the periodic orbit.
The fixed mean-field assumption in Eq. (21) consider-

ably simplifies the search of periodic orbits. In fact, this
assumption decouples the mean-field from the particles
and allows to construct the periodic orbits of the NTMF
map from the periodic orbits of the standard nontwist
map. In particular, from the period-one orbits analysis
of the nontwist map10, it follows that, if Eq. (22) holds,
any arrangements of the N -particles such that

(x∗k, y
∗
k) =

(
mkπ, ±

√
1 +

2πlk
a

)
, (23)

for k = 1, . . . , N , defines a period-one orbit (fixed point)
of the 2(N +1)-dimensional NTMF map, where, for each
k, mk ∈ {0, 1} and lk ∈ {0, 1, 2, . . . }. In this case, the
constraint in the order parameter η in Eq. (22) imposes
the following constraint on the values of mk and the cou-
pling constants γk,

N∑
k=1

(−1)mk γk = 0 . (24)

For example, a period-one orbit of the NTMF map can
be constructed by placing half of the particles at (x, y) =
(0, 1) and the other half at (x, y) = (π,−1) with γk = 1
for all k.

To analyze the stability of the period-one orbits we lin-
earize the NTMF map around the fixed point x∗. Writ-
ing, x = x∗+∆x, we get to first order in |∆x|, the linear
map

∆xn+1 = ∇M∗∆xn, (25)

where ∇M∗ is the gradient matrix of M evaluated at
x∗. The stability of x∗ is determined by the eigenvalues

of ∇M∗, λ ∈ {λk}, with j = 1, . . . 2(N + 1), which are
the solutions of the characteristic polynomial

||∇M∗ − λI|| = 0 (26)

where I denotes the 2(N + 1) × 2(N + 1) identity ma-
trix and || || denotes the determinant. The characteristic
polynomial in Eq. (26) can be factorized as follows,

(1− λ)2
N∏
k=1

Pk = 0, (27)

with Pk given by

Pk = λ2 − 2λ
[
1± aκ∗(−1)mk

√
1 + 2πlk/a

]
+ 1,

(28)

where the ± signs depend on the fixed point according to
Eq. (23). The m-th iterate of an eigenvector v of ∇M∗,
under the linearized dynamics is [∇M∗]m v = λmv.
From here it follows that if |λ| > 1 for at least one of
the eigenvalues, the fixed point is linearly unstable.

According to Eq. (27), there are two degenerate eigen-
values with λ = 1. These eigenvalues correspond to
the neutral, parabolic, stability of the mean-field degrees
of freedom, i.e. to perturbations of the amplitude, κ∗,
and the phase, θ∗, of the mean-field. The rest of the
2N eigenvalues are obtained from the solution of the N
quadratic equations Pk = 0. As expected, each of these
equations corresponds to the linearization of the stan-
dard nonwtwist map around the fixed point (x∗k, y

∗
k) in

Eq. (23).
As an specific important example, consider a config-

uration with lk = 0 for all k. In this case accord-
ing to Eq. (23), there are four possibilities: (x∗k, y

∗
k) =

(0, 1), (0,−1), (π, 1), and (π,−1). These cases corre-
spond to the four, period-one orbits of the standard non-
twist map for which it is known that (0, 1) and (π,−1)
are always unstable, and (0,−1) and (π, 1) are unstable
for κ∗ > 2/a. From here it is concluded that a configura-
tion of the NTMF map with all the particles located at
(0,−1) and (π, 1) with the coupling constants satisfying
Eq. (22) will be a stable fixed point of the self-consistent
dynamics provided κ∗ < 2/a.

The stability properties of the period-one orbits of the
NTMF map can be used to guide the construction of self-
consistent coherent states of the NTMF map. To illus-
trate this, we took a = 0.8, and a mean-field with initial
conditions κ1 = 0.3064 and θ1 = 0. For the particles we
considered an ensemble of N = 1.2× 104 particles, with
γk = 10−5 for all k, half of them distributed in a neigh-
borhood of the fixed point (0,−1) and the other half dis-
tributed in a neighborhood the fixed point (π, 1). For the
chosen parameter values, κ1 = κ∗ = 0.3064 < 2/a = 2.5,
which implies linear stability. Consistent with this re-
sult, Fig. 1 shows that the ensemble of particles remains
coherent and the mean-field amplitude exhibits a small
oscillation around κ∗.
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FIG. 1: Period-one coherent structure in the NTMF map.
Panel (c) shows the final state in the (xj , yj) plane, of an en-
semble of N = 1.2×104 particles in the NTMF map with self-
consistent mean-field amplitude, κn, and mean-field phase,
θn, shown in panels (a) and (b) respectively. The coherence of
the state is maintained by the self-consistent trapping of the
particles in the period-one resonances of the nontwist map,
which for each n are located at (θn,−1) and (π + θn, 1).

II.B. Period-two orbits

In order to find the fixed points of period-two orbits
of the NTMF map we restrict attention to a fixed mean-
field, i.e. κn = κ∗, θn = θ∗ = 0, and the constraint
in Eq. (22) is satisfied. Like in the period-one case, the
mean-field decouples from the particles and the period-
two orbits correspond to those of the standard nontwist
map. In particular,

(x∗k, y
∗
k) =

(
mkπ, ±

√
1− π

a

)
, (29)

for k = 1, . . . , N , defines a period-two orbit of the 2(N+
1)-dimensional NTMF map, where, for each k, mk ∈
{0, 1}. The constraint in the order parameter, η, is the
same as the one for period-one orbits in Eq. (24), and
the characteristic polynomial is

(1− λ)2
N∏
k=1

Zk = 0, (30)

where

Zk = λ2 − 2λ
[
1− 2a2κ∗2(1− π/a)

]
+ 1 . (31)

As before, λ = 1 is a degenerate eigenvalue correspond-
ing to the parabolic, neutral linear stability of the mean-
field amplitude and phase. Consistent with the linear
stability analysis of the nontwist map, the eigenvalues
obtained from the solution of Zk = 0 are stable provided
0 < a2κ∗2(1−π/a) < 1. That is, if this condition is satis-
fied, as well as the constraint in Eq. (24), then a configu-
ration on N particles with coordinates given by Eq. (29)
is a self-consistent period-two state of the NTMF map
with mean-field amplitude κ∗ and phase θ∗ = 0 Another
family of period-two orbits corresponds to particles with
coordinates (x∗k, y

∗
k) given by the solution of the two al-

gebraic equations 2− y∗2k − (y∗k − κ∗ sinx∗k)2 = 2π/a and
x∗k = a

(
1− y∗2k

)
/2. In this case the characteristic poly-

nomial is not easily factorized, but numerical results and
previous studies with the standard nontwist map indicate
that these period-two orbits are always unstable.

Based on this linear stability analysis it is possible to
construct coherent states consisting of four clusters of
particles. An example is shown in Fig. 2. According to
Eq. (29), the initial conditions for this calculation con-
sisted of N = 1.2×104 particles evenly distributed in the
neighborhood of (0,±

√
1− π

a ) and (π,±
√

1− π
a ), with

a = 3.4216. To satisfy the constraint in Eq. (24), we
chose γk = 10−5 for all k, and to guarantee the stability
of the configuration, we chose the initial amplitude of the
mean-field κ1 = 0.15 < 1/(a

√
1− π

a ) = 1.7564. As ex-
pected from the linear stability analysis, the mean-field
amplitude and phase stay very close to their equilibrium
values κ∗ = κ1 and θ∗ = 0, and the ensemble of parti-
cles remain coherent in the vicinity where they initially
started.

III. SELF-CONSISTENT SEPARATRIX
RECONNECTION

Separatrix reconnection is one of the main signatures
of nontwist Hamiltonian dynamical systems. Because of
the violation of the twist condition, resonances in non-
twist systems appear in pairs, and nontrivial global bifur-
cations in phase space can arise due to the topologically
different ways in which the unstable and stable manifolds
connect. As shown in Fig. 3, in the case of symmet-
ric nontwist maps, there are two topologically distinct
phase space portraits. In the heteroclinc, or “pendulum
type” topology, the unstable manifolds join the stable
manifolds of adjacent hyperbolic fixed point, whereas in
the homoclinic case, one of the unstable manifolds loops
around the opposite elliptic fixed point and joints the
stable manifold of the same hyperbolic point. These bi-
furcations have been studied in some detail in the litera-
ture and thresholds for the different transitions have been
computed analytically and numerically. In particular, for
the standard nontwist map in Eq. (8) it is known that the
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FIG. 2: Period-two coherent structure in the NTMF map.
Panel (c) shows the final state in the (xj , yj) plane, of an en-
semble of N = 1.2×104 particles in the NTMF map with self-
consistent mean-field amplitude, κn, and mean-field phase,
θn, shown in panels (a) and (b) respectively. The coherence
of the state is maintained by the self-consistent trapping of
the particles in the period-two resonances of the nontwist
map, which for each n are located at (θn,±

p
1− π/a) and

(θn + π,±
p

1− π/a).

topology of period-one resonances is heteroclinic (homo-
clinic) when κ < 2a/3 (κ > 2a/3), with κ = κrec = 2a/3
denoting the reconnection threshold depicted in the mid-
dle panel of Fig. 3. This threshold follows from the
analysis of the nontwist effective Hamiltonian,

Heff = −ay + ay3/3 + κ cos(x− θ) . (32)

As shown in Fig. 3, in the absence of chaos, the level
sets of Heff match the orbits of the standard nontwist
map.

The global coupling in the NTMF map opens a new,
unexplored phenomenology of separatrix reconnection.
Contrary to the standard nontwist map, in which the
topology is uniquely determined once the parameter val-
ues a and κ are fixed, in the NTMF map the evolution
of the mean-field amplitude leads to dynamic separatrix
reconnection, that is to bifurcations in the phase space

topology as function of time. Since the mean-field am-
plitude depends on the state of the system, we refer to
these bifurcation as self-consistent separatrix reconnec-
tion, and in this section we study its role on transport.

Despite the arbitrary large number of degrees of free-
dom, N , the study of separatrix reconnection in the
NTMF map is relatively simple because, at any given
time (iteration), the phase space topology of the j-th de-
gree of freedom in the (xj , yj) phase space plane is the
same for all js and it is only determined by a and the
instantaneous value of κn. This significant simplification
arises from the fact that all the degrees of freedom are
subject to the same global mean-field. Based on this, we
will say that the topology of the NTMF map at iteration
n is heteroclinic (homoclinic) if for all j = 1, . . . , N , the
phase space topology in the (xj , yj)-plane is heteroclinic
(homoclinic), that is, if κn < 2a/3 (κn > 2a/3).

The previously discussed, κrec = 2a/3, reconnection
threshold arises from a simple analysis of the effective
Hamiltonian in Eq. (32) corresponding to an integrable
limit of the map5. To go beyond this estimate, and to
further verify its validity, we also computed the sepa-
ratrix reconnection using a more precise method based
on the linear stability analysis of the period-one orbits
of the map. According to this second method, the re-
connection threshold at the n-th iteration, is defined as
the value of a and κn for which the slope of the un-
stable eigenvector of the hyperbolic fixed point at (θn, 1)
matches the slope of the line joining this hyperbolic point
with the hyperbolic fixed point at (π + θn,−1). Note
that, to be precise, we have explicitly included the de-
pendence of the x-location of the fixed point on the phase
of the mean-field, although, as mentioned before, the
role of this shift is trivial in the linear stability analysis.
Thus, if mR denotes the slope of the unstable eigenvec-
tor, which according to the previously discussed linear
stability analysis depends on a and κn, we define the re-
connection threshold as the mean-field amplitude κrec for
which mR(a, κn = κrec) = 2/π.

To compare the two aforementioned methods for the
computation of the reconnection threshold, and to study
the role of self-consistent separatrix reconnection on
transport, we consider a far-from equilibrium initial con-
dition consisting of an ensemble of N = 1.2×104 particles
with γj = 1×10−5. At n = 1, the particles are uniformly
distributed in two circles with radius r0 = 1.5 centered
around the elliptic points (0,−1) and (π, 1). We take
a = 0.055, an initial mean-field phase, θ1 = 0, and an
initial mean-field amplitude corresponding to the recon-
nection threshold κ1 = κrec = 2a/3 = 0.0367. Figure 4
tracks the separatrix reconnection threshold conditions
of the two methods as function of the iteration n. To
eliminate transient effects, only data for n ≥ n0 = 2720
are shown. Panel (a) shows the instantaneous value of
κn with the horizontal dashed-line denoting the κrec re-
connection threshold. Points above (below) this line cor-
responds to mean-field amplitudes leading to homoclinic
(heteroclinic) topology, while the crossings correspond to
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FIG. 3: Separatrix reconnection in nontwist maps. Panel (a)
shows an example of the heteroclinic topology with (a, κ) =
(0.055, 0.00779); panel (c) shows and example of the homo-
clinic topology with (a, κ) = (0.055, 0.05805). The reconnec-
tion threshold, corresponding to (a, κ) = (a, κrec = 2a/3) =
(0.055, 0.0367), is shown in panel (b). The dotted lines corre-
spond to the map iterations and the solid lines to the level sets
of Heff in Eq. (32). As shown in Fig. 4, in the NTMF map,
self-consistent separatrix reconnection gives rise to a dynamic,
time-dependent transition between the two topologies.

reconnection states. The curve in panel (b) of Figure 4
shows the absolute value of the slope of the eigenvector
of the unstable fixed point as function of n. The horizon-
tal, dashed line denotes the slope, mR = 2/π = 0.636, of
the line joining the two hyperbolic points. According to
the eigenvector criterion, the intersections of the curve

with the horizontal line correspond to the reconnection
states. Comparison of panels (a) and (b) of Fig. 4, in-
dicates that there is a very good agreement between the
two methods. This result is particularly valuable since
it provides further support to the simple reconnection
threshold estimate κrec = 2a/3.
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FIG. 4: Dynamic, self-consistent separatrix reconnection in
the NTMF map. Panel (a) shows the instantaneous values of
the mean-field amplitude, κn. The horizontal dashed line, cor-
responds to the reconnection threshold κrec = 2a/3 = 0.0367.
Values above (below) this line correspond to the homoclinic
(heteroclinc) topology. Panel (b) shows the instantaneous
value of the slope of the eigenvector of the unstable fixed
point as function of n. In agreement with the criterion shown
in (a), the reconnection states are given by the intersections
with the mR = 2/π = 0.636 horizontal dashed line. The cir-
cles denote specific values of n used in the study of transport
in Figs. 5 and 6.

To conclude this section, we discuss the role of self-
consistent separatrix reconnection on transport. As it
is well known, in the standard nontwist map, transport
across the shearless curve can only take place for param-
eter values for which the shearless curve has been de-
stroyed due to chaos. However, in the NTMF map, self-
consistent dynamic reconnection can give rise to trans-
port across the sheareless curve even in the case when
the values of κn never reach the threshold for the de-
struction of the shearless curve. Figure 5 shows evidence
of this novel, self-consistent, reconnection-driven trans-
port mechanism. The different panels in this figure track
the evolution of a concentrated patch of 5, 000 passive
particles in the (x, y)-plane evolving under the NTMF
map used in the study of reconnection in Fig. 4. In this
calculation it is important to distinguish between active
and passive particles. The active particles are the ones
used to create the mean-field. In this case, they corre-
spond to the ensemble of particles uniformly distributed
in two circles with radius r0 = 1.5 centered around the
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elliptic points (0,−1) and (π, 1). As discussed before, the
self-consistent interaction of these particles gives rise to
the variations of the mean-field amplitude sown in Fig. 4-
(a). On the other hand, the passive particles depicted in
Fig. 5, simply follow the evolution in the (x, y) plane of a
standard nontwist map of the form in Eq. (8) for which,
at each iteration n, the value of κ and θ is given by the
instantaneous values of κn and θn of the NTMF map
shown in Fig. 4-(a).

In addition to the distribution of the passive parti-
cles, Fig. 5 also shows the instantaneous location of the
shearless curve and the separatrices of the period-one
resonances. The separatrices were obtained from the
level sets of the effective Hamiltonian, Heff , in Eq. (32).
Tracking the location of the shearless curve is a harder
problem which can be approached using two complemen-
tary techniques: periodic orbits approximations10 or in-
dicator points13. Here we use indicator points as they
provide a relatively straightforward way to locate the
shearless curve for any rotation number. An indicator
point is a point that is guaranteed to belong to the shear-
less curve when this curve exists. For the standard non-
twist map an indicator point is given by

xind = (π/2 + θn, κn/2) . (33)

What this means in terms of the computations is that, if
for a given n, the shearless curve exists, it can be obtained
for given values of (a, κn, θn) by iterating the standard
nontwist map for the initial condition in Eq. (33). It is
critical to point out that the level of chaotic transport in
Fig. 5 is negligible, as the value of κn stays very small
throughout the self-consistent evolution. In particular,
κn, stays way below the threshold for the destruction of
the shearless curve. Nevertheless, as shown in the Fig. 5,
there is transport across the central barrier. This non-
chaotic transport is driven by the changes in the phase
space topology caused by self-consistent separatrix recon-
nection.

To quantify the transport across the CTB we consider
the ratio, Λ, of the number of particles above the shear-
less curve to the total number of particles. In doing this
calculation we used the indicator points of the nontwist
map to track the location of the shearless curve at each
iteration n. Figure 6 shows Λ as function of n, where,
as in the study of reconnection, we have eliminated the
transient effects. As the first panels in Fig.5 show, ini-
tially, separatrix reconnection transports the whole dis-
tribution of particles across the CTB, and the value of
Λ drops to zero. At later times, the combined effects
of separatrix reconnection and (non-chaotic) mixing at
hyperbolic fixed points homogenizes the distribution of
particles across the central barrier, and Λ reaches the
asymptotic state Λ = 1/2.

IV. SELF-CONSISTENT CHAOTIC
TRANSPORT

In addition to the trivial, fully integrable regime, in
which all invariant circles exists, one can distinguish
two non-integrable regimes in nontwist systems: banded
chaos and global chaos5. The banded chaos regime is
characterized by the existence of robust CTBs flanked
by bands of chaotic regions. On the other hand, global
chaos is characterized by the destruction of all the CTBs
and the existence of widespread chaotic transport. In
the case of the standard nontwist map these regimes,
which are uniquely determined by the values of a and κ,
have been studied in considerable detail in the literature.
However, as in the case of separatrix reconnection, the
self-consistent coupling in the NTMF map brings novel
dynamic phenomena.

Once again, the mean-field nature of the coupling sim-
plifies the analytical and numerical study for an arbitrary
number of degrees-of-freedom. In particular, since all the
degrees of freedom behave in the same way, we will say
that the NTMF model exhibits banded (global) chaos
at iteration n, if the corresponding standard nontwist
map in the (xk, yk) plane with κ = κn exhibits banded
(global) chaos. However, the key novel issue is that, be-
cause of the self-consistent coupling, in the NTMF model
the mean-field amplitude evolves with n and therefore a
nontrivial transition among different transport regimes
can take place. In this section we focus on the study of
the following three transport scenarios that exhibit tran-
sitions among the aforementioned regimes due to the self-
consistent evolution of the mean-field amplitude: (i) Self-
consistent suppression of diffusion; (ii) Self-consistent
CTB destruction; and (iii) Intermittent transport near
criticality.

IV.A. Suppression of diffusion

As a case study of a self-consistent transition from a
state at the threshold of global chaos, to banded chaos,
and eventual full integrability, we consider a problem in
which κn → 0 as n → ∞, with κ1 corresponding to the
onset of global chaos. In this case, the diffusive transport
expected to be present in the chaotic regime is suppressed
as KAM surfaces reform while the system approaches full
integrability.

We consider an initial condition consisting of N = 6×
103 particles with γk = 10−6, and N = 6× 103 particles
with γk = −10−6. The γk > 0 (γk < 0) particles are uni-
formly distributed along the x-direction and have a Gaus-
sian distribution along the y-direction with standard de-
viation equal to 0.25 and mean yk = 10 (yk = −10).
Since we are interested on initial states at the threshold
of global chaos, we took a = aγ , κ1 = κγ , and θ1 = 0,
where (aγ , κγ) = (4.31062700354, 0.742493131039) are
the threshold values for the onset of global chaos when
the rotation number of the shearless curve is the in-
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FIG. 5: Nonchaotic global transport driven by dynamic separatrix reconnection. The successive panels follow the evolution of
an initially localized ensemble of passive tracers, for n − n0 = 1, 50, 110, 194, 450, 498, 658, 760, 880, 940, 1480 and 1664. The
dynamic, self-consistent separatrix reconnection shown in Fig. 4, along with the nonchaotic mixing near the hyperbolic fixed
points, homogenizes the tracer across the shearless central transport barrier (dark bold curve). For reference, the instantaneous
separatrices corresponding to the level sets of the effective Hamiltonian, Heff , in Eq. (32) with κ = κn, and θ = θn, are also
shown.

verse golden mean, 1/γ. Note that, to simplify the nota-
tion, Eq.(9) corresponds to the standard nontwist map in
Ref. 10 with the x-coordinated rescaled as x → x/(2π).
Accordingly, the threshold value that we use is the one
reported in Ref. 10, a = 0.686049 . . ., multiplied by 2π.

The self-consistent suppression of diffusion in the
NTMF model for these initial conditions and parameter
values is evident in the time evolution of the ensemble
averaged, second moment of the γk > 0 particles’ dis-

placements,

〈(∆y)2〉(n) =
1
N

N∑
k=1

(ynk − y1
k)2 . (34)

In particular, as shown in Fig. 7, 〈(∆y)2〉(n), exhibits an
initial growth followed by an exponential saturation at
large n, resulting from transport suppression.

The corresponding self-consistent decay of the mean-
field amplitude, κn, is shown in a logarithmic scale in
panel (a) of Fig. 8, along with the evolution of the phase
of the mean-field, θn in panel (b). The evolution of the
particles’ density function (pdf) in y, averaged over x, is
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FIG. 7: Second moment of particles’ displacements during
self-consistent suppression of diffusion in the NTMF map.
The solid line denotes the ensemble average second moment in
Eq. (34). The squares denote the second moment of the pdf,
ρ, of the γ > 0 particles in the effective quasilinear transport
model according to Eq. (41).

shown in Fig. 9. Only the pdf for the γk > 0 particles,
ργ>0, is shown. By symmetry, the distribution function
for the γk < 0 particles is ργ<0(y, t) = ργ>0(−y, t). In
agreement with the fact that κn drops below the critical
value for global chaos, the pdf exhibits a transport bar-
rier around y = 0. Also, consistent with the asymptotic
saturation at large n of the second moment, the distribu-
tion, ργ>0, exhibits a relaxation towards the steady state
shown in Fig. 9-(d)

Quasilinear theory, when it works, provides a sim-
ple, appealing description of transport in chaotic sys-
tems. In particular, in the case of area-preserving
maps of the form in Eq. (1), the quasilinear diffusiv-
ity, DQL = (1/4π)

∫ 2π

0
f2(x)dx, yields a low order, ap-

proximate model describing diffusive transport in y. In
the case of mean-field models, a direct application of
the quasilinear prescription to Eq. (3) gives the self-
consistent diffusivity

Dn
QL =

(κn)2

4
. (35)

Although there is no a priori reason for its justification,
as we will show below, this time dependent quasilinear
diffusion provides a good model to describe suppression
of diffusion in the NTMF map. As a first step to show
this, note that, according to Fig. 8-(a), the dynamics
of κn is well fitted by an exponential decay of the form
κn = κ0e

−nν , which according to Eq. (35) implies Dn
QL =

κ2
0
4 e
−2nν .

Motivated by this, we propose the diffusion equation
with time-dependent diffusion coefficient

∂ρ

∂t
= DQL(t)

∂2ρ

∂y2
, (36)

as an effective transport model describing the spatio-
temporal evolution of the particles’ pdf, ρ, where, for
simplicity, we have dropped the “γ > 0” sub-index, and
the time dependent diffusivity,

DQL(t) =
κ2

0

4
e−2tν , (37)

corresponds to the continuous-in-time limit of the dis-
crete quasilinear diffusivity Dn

QL.
To test the validity of the quasilinear model to de-

scribe transport suppression in the NTMF model we
solve Eqs. (36) and (37) in the semi-infinite interval,
y ∈ (0,∞). Because the CTB forms relatively fast and
remains there for all t > 0, the particle flux through it is
zero. Accordingly, although the CTB is not exactly local-
ized y = 0, we impose the zero-flux, Neumann boundary
condition:

∂ρ

∂y

∣∣∣∣
y=0

= 0 . (38)

To solve Eq. (36), we first perform the invertible change
of variables,

τ(t) =
∫ t

0

DQL(t′)dt′ =
κ2

0

8ν
[
1− e−2νt

]
, (39)

and transform Eq. (36) into the simple, time-independent
diffusion equation

∂ρ

∂τ
=
∂2ρ

∂y2
. (40)

The very good agreement shown in Fig. 9, between the
NTMF model and the well-known solution of the diffu-
sion equation in Eq. (40) with τ = τ(t) given by Eq. (39),
gives support to the validity of the quasilinear model.

From Eqs. (40) and (39) it follows that the time evo-
lution of the second moment, 〈y2〉ρ =

∫∞
0
y2ρdy, is

〈y2〉ρ(t) = 2τ(t) = 2
κ2

0

8ν
[
1− e−2νt

]
. (41)

Figure 7 compares Eq. (41) with the time evolution of the
second moment in Eq. (34) obtained from the ensemble
average of the NTMF model.
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FIG. 8: Mean-field evolution during self-consistent suppres-
sion of diffusion in the NTMF map. Panel (a) shows the de-
cay of κn, in log-normal scale. The dashed line corresponds
to the exponential fit κn = κ0 e

−nν with κ0 = 0.5162 and
ν = −5.7274 × 10−5. Panel (b) shows the evolution of the
phase θn which, in support to the random-phase approxima-
tion, exhibits stochastic fluctuations at intermediate and large
times.

As an additional test of quasilinear diffusion, we con-
sidered the same initial conditions used in the study of
suppression of diffusion above, but for different initial
values of the mean-field amplitude, κ1. For each κ1,
we iterated the NTMF map T -times, and computed the
time-averaged mean-field amplitude, κ, and diffusivity,
D,

κ =
1
T
T∑
n=1

κn , D =
1
T
T∑
n=1

Dn . (42)

For each n, the instantaneous diffusivity, Dn, was calcu-
lated from the statistics of the displacements of an ensem-
ble of 1×104 passive particles iterated 1.5×104 times with
the standard nontwist map with κ = κn and θ = θn. For
each κ1, the value of T was chosen large enough to guar-
antee convergence to steady state. These values ranged
from T = 2 × 104 for κ1 = 0.2, to T = 1.1 × 105 for
κ1 = 0.87. The large values of T , required the com-
putation of a large number of instantaneous diffusivi-
ties, Dn, each of which required by itself the iteration
of the standard nontwist map for a large number of iter-
ations for many initial conditions. To perform this calcu-
lation in a reasonable time, we used Graphics Processing
Units (GPUs) which are a powerful computational re-
source that can be used to accelerate particle based com-
putations. The results of the computation are shown in
Fig. 10 where the circles, with increasing values of κ, cor-
respond to κ1 = {0.2, 0.5, 0.8, 0.87, 0.95, 1, 1.1, 1, 3, 1.5},
and the solid line corresponds to the time-averaged quasi-
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FIG. 9: Spatio-temporal evolution of probability density func-
tion of γ > 0 particles during self-consistent suppression of
diffusion. The circles denote the pdfs obtained from the his-
tograms of an ensemble of particles evolving under the NTMF
map. The solid lines denote the analytical solution of the ef-
fective time-dependent diffusion model in Eqs. (36) and (37).
Panels (a), (b), (c) and (d) correspond to n = 1, 100, 200 and
49900 respectively.

linear diffusivity prediction, DQL = κ4/4.

IV.B. Transition to global chaos

In this section we study transport in the case when the
self-consistent mean-field coupling takes the system from
a banded-chaos state, in which there is a robust CTB,
to a state of global chaos in which the CTB has been
destroyed.

The initial condition consists of an ensemble of N =
1.2×104 particles with γk = 10−6, uniformly distributed
along the x-axis, and as a Gaussian distribution along
the y-axis with mean, y = −150, and standard devia-
tion equal to 0.5. For the map parameter a, we took
the critical value for the destruction of the 1/γ shearless
curve, a = aγ = 4.31062700354. For the initial phase of
the mean-field and the initial amplitude we took θ1 = 0
and κ1 = 0.7, which is a value slightly below the criti-
cal amplitude, κγ = 0.74249, for the destruction of 1/γ
shearless CTB.
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The self-consistent transition to global chaos is ob-
served in Fig. 11 that shows the evolution of mean-field
amplitude, κn, and phase, θn. In particular, as indi-
cated by the vertical dashed line, around n = 28, 800, κn
crosses the threshold for the destruction of the shearless
CTB. As Fig. 14 shows, this transition manifests as a
change in the linear growth rate of the second moment
of the particles’ displacements.

Following the procedure of the previous sub-section,
we use a quasilinear description to model transport. In
this case, as Fig. 11 shows, the evolution of the mean-
field amplitude is well-fitted by the function, κn = K +
α tanh

(
n−µ
β

)
, with K = 0.757, α = 0.063, µ = 3.2× 104

and β = 1.8×104. For this κ(n), the quasilinear prescrip-
tion in Eq. (35), leads to the time-dependent diffusivity,

DQL(t) =
1
4

[
K + α tanh

(
t− µ
β

)]2
. (43)

As before, the change of variables, τ(t) =
∫ t
t0
DQL(t′)dt′,

reduces the problem to the solution of the diffusion equa-
tion in Eq. (40).

To account for the dynamic destruction of the CTB,
we divide the solution of the diffusion equation in two
parts. As mentioned above, when 0 ≤ t ≤ T , where
T ≈ 2.88×104, there is a robust CTB. Therefore, in this
time interval, the diffusion equation is solved in the semi-
infinite domain y ∈ (−∞, 0) with the zero-flux, Neumann
boundary condition in Eq. (38). Outside this interval,
i.e., for t > T , there is global chaos and the diffusion
equation is solved in the y ∈ (−∞,∞) domain. The
matching of the two solutions is done by using the solu-
tion of the first problem at t = T , as the initial condition
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FIG. 11: Mean-field evolution during self-consistent transition
to global chaos in the NTMF map. The solid line in panel (a)
shows the growth and saturation of κn. The squares corre-

sponds to the fit, κn = K + α tanh
“
n−µ
β

”
, with K = 0.757,

α = 0.063, µ = 3.2 × 104 and β = 1.8 × 104. The vertical
dashed line denotes the transition to global chaos due to the
destruction of the shearless, central transport barrier. Panel
(b) shows the evolution of the phase θn which, for the most
part, stays at θn = 0.

of the second problem. Figures 12 and 13 show an excel-
lent agreement between the numerical results obtained
with the NTMF model and the solutions of the first and
the second problems respectively. A further test of the
quasilinear diffusion model is provided by the compari-
son of the rate of change of the second statistical moment
in the Fig. 14. The diffusive model reproduces well the
transition in the rate of change of the growth of the sec-
ond moment. There is however an offset in the transition
point. This is likely related to the fact that, as we will
discuss in the next subsection, near the transition, the
fluctuations of κn around the critical value, κγ , give rise
to an intermittent destruction and formation of the CTB.
This intermittency creates a “semi-impermeable” barrier
at y = 0 not captured by the simple diffusion model.

IV.C. Intermittent transport near criticality

In the study of the self-consistent transition to chaos
presented in the previous section, it was observed that
near the critical point, i.e. for values on n for which
κn ≈ κγ , transport across the CTB slightly deviates
from the predictions of the quasilinear diffusion model.
In particular, as a consequence of the intermittent de-
struction and reappearance of the shearless curve, the
region around y = 0 acts as a nondiffusive leaky barrier
which manifests as an offset in the transition of the rate
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FIG. 12: Spatio-temporal evolution of probability density
function before the onset of global chaos marked by the verti-
cal dashed line in Fig. 11. The circles denote the pdfs obtained
from the histograms of an ensemble of particles evolving ac-
cording to the NTMF map. The solid lines denote the analyt-
ical solution of the effective time-dependent diffusion model
in Eqs. (36) and (43), with boundary condition in Eq. (38).
Panels (a), (b), (c) and (d) correspond to n = 1, 4380, 15780
and 28800 respectively. The late time evolution, after the
onset of chaos, is shown in Fig. 13.

of change of the second moment in Fig. 14. To study in
more detail this near criticality transport regime we con-
sider the NTMF map with the same initial conditions
used in the transition to global chaos of the last section.

For each value of κn in the interval n ∈ (1, 3 × 104)
we determined the existence of the shearless curve us-
ing the indicator point method (as explained following
Eq. (33) proposed and tested in Ref. 13. To implement
the method in the case of the NTMF map, for a given
value of κn and θn, we iterated the standard nontwist
map in Eq.(8) M times with κ = κn and θ = θn and
initial condition (x0, y0) = (π/2 + θ, κ). If, for this initial
condition, there is a j such that |yj | > π , then it was
concluded that the shearless curve in the NTMF map did
not exist. The rationale behind this criterion is that, for
the standard nontwist map, the shearless curve, when it
exists, is bounded in the y ∈ (π, π) interval, and it can be
generated from the initial condition (x0, y0) = (π/2+θ, κ)
known as the indicator point. In principle, M should be
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FIG. 13: Same as Fig. 12, but for late time evolution after
the onset to global chaos where the diffusion model is solved in
the domain (−∞,∞). Panels (a), (b), (c) and (d) correspond
to n = 31380, 42200, 55300 and 99780 respectively.
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FIG. 14: Second moment of particles’ displacements during
self-consistent transition to global chaos in the NTMF map.
The solid line denotes the ensemble averaged second moment
in Eq. (34). The squares denote the second moment of the pdf,
ρ, in the effective quasilinear transport model. The rectangle
in dashed lines shows the transition to global chaos due to the
destruction of the central transport barrier.
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FIG. 15: Fractal binary plot showing the dynamic transition
to global chaos in the NTMF map near criticality. The dark
(white) stripes denote time intervals where the shearless, cen-
tral transport barrier exists (does not exist). The successive
zooms shown in panels (b) and (c) reveal a Cantor-like set
structure corresponding to a fat fractal with scaling exponent
β = 0.6597 (see Fig. 16).

an arbitrarily large number. However, in actual compu-
tations M is a finite, large number. In the calculations
reported in this paper we used M = 2 × 105. Conver-
gence was tested by observing that the results remained
unchanged for M > 2 × 105. The result of this calcula-
tion is shown in the binary plot in Fig.15-(a) where the
bars (white spaces) denote ranges in which the shearless
curve exists (is destroyed). The self-similar structure of
the plot is evident from the successive zooms shown in
panels (b), (c) and (d). An apparent solid stripe at one
scale exhibits a highly nontrivial pattern of intertwined
solid and white stripes at finer scales, reminiscent of a
Cantor set. However, although the set of dark stripes in
Fig. 15 exhibits self-similarity, its fractal dimension cal-
culated using the box counting method equals one. In
this sense, this set resembles more a fat Cantor set than

a regular Cantor set. A regular Cantor set is obtained by
successively deleting the central 1/3 of each segment, and
as it is well known, its fractal dimension is log 2/ log 3.
On the other hand, the set obtained by deleting the cen-
tral 1/3 at the first iteration, then the central 1/9, then
the central 1/27 and so on, is a fat Cantor set whose
fractal dimension is one14.

Like in the case of fat Cantor sets, the fractal dimen-
sion, being an integer, does not characterize the self-
similar scaling properties seen in Fig. 15. As an alter-
native, we consider the characterization of fat fractals
proposed in Ref. 15. For a given scale of resolution, ε, we
consider the coarse-grained measure,

µ(ε) = 1− h(ε) , (44)

where h(ε) is the total size of the stripes in Fig. 15 whose
width is greater than, or equal to, ε. Figure 16 shows a
plot of ∆µ = µ(ε)−µ(0) as function of ε. For consistency
with Eq. (44), in the calculation the time was rescaled to
map the interval in Fig. 15-(a) to the unit interval [0, 1].
In agreement with the conjecture put forward in Ref. 15,
there is algebraic scaling of the form

µ(ε) = µ(0) +Aεβ , (45)

with A ∼ 1, µ(0) = 0.2872, and β = 0.6597.
The exponent β, known as the fatness exponent, is the

key parameter to characterize the self-similar properties
of the set. For non-fractal objects this number diverges,
β → ∞, and for regular fractals it is trivially related to
the fractal dimension d, according to β = D−d where D
is the Euclidean dimension of the embedding space. How-
ever, for fat fractals β is independent of d and it describes
the scaling of the size of the gaps with the resolution15.

V. SUMMARY AND CONCLUSIONS

In this work we have a studied the role of mean-field
coupling in area-preserving nontwist maps. Nontwist
Hamiltonian systems in general, and nontwist maps in
particular, have recently received considerable attention
in the mathematical and applied dynamical systems com-
munities. The violation of the twist condition has mo-
tivated the generalization of previous mathematical re-
sults, including, among others, the KAM theorem and
Green’s residues criterion, to this type of systems. From
an applied perspective, nontwist Hamiltonian systems
have been used to describe chaotic transport in fluids
and plasmas, stochastic magnetic fields in controlled nu-
clear fusion devices, particle accelerators, ray propaga-
tion in waveguides, superconducting quantum interfer-
ence devices, and atomic physics, among others. How-
ever, these previous studies have restricted attention to
low-degrees-of freedom systems.

As a first step to go beyond the relatively well-
understood two-dimensional area-preserving nontwist
maps, we proposed and studied an N -dimensional, non-
twist mean-field (NTMF) model. In this model, the N
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FIG. 16: Power law scaling of gaps’ size with resolution scale
during intermittent transport near criticality in the NTMF
map. The circles denote the data from the binary plot in
Fig. (15). The solid line denotes a fit to the algebraic decay
in Eq. (45) with A ∼ 1, µ(0) = 0.2872, β = 0.6597.

degrees of freedom of the system interact through a self-
consistently mean-field. The type of the mean-field cou-
pling is motivated by the coupling used in the Single
Wave Model (SWM) which is a Hamiltonian mean-field
model that describes the weakly nonlinear dynamics of
marginally stable plasmas and fluids. A natural place
to look for potential applications of the nontwist mean-
field model is in reduced, weakly nonlinear descriptions
of fluids and plasmas. As discussed in Ref.1, the twist
mean-field model provides a reduced description of vor-
tex dynamics in the presence of a strong monotonic back-
ground shear flow. This motivates the exploration of ap-
plications of nontwist mean-field models to problems in
which the background shear flow is not monotonic. In
this regard, the work on Ref.16 (where analogues of the
Single Wave Model were derived for non-monotonic shear
flows) would provide a valuable first step.

A problem of considerable interest in systems with
many degrees-of-freedom systems is the formation of co-
herent structures. Based on the linear stability properties
of period-one and period-two orbits, we showed the exis-
tence of coherent states in the NTMF model. The coher-
ence of these states is maintained by the self-consistent
trapping of the particles in the resonances of the mean-
field.

One of the main signatures of nontwist systems is sep-
aratrix reconnection, which is a global bifurcation result-
ing from the topologically different ways in which the
stable and unstable manifolds of fixed points link. In
the NTMF model the mean-field coupling gives rise to
self-consistent separatrix reconnection. We have shown
that the dynamic evolution of the phase space topology
caused by self-consistent separatrix reconnection can lead

to transport across the central, shearless transport bar-
rier even in the absence of chaos. It is important to
mention that this novel transport mechanism is funda-
mentally different from the chaotic transport that arises
due to the break-up of KAM curves. In the numerical
results shown, the mean-field amplitude stays relatively
small during the self-consistent separatrix reconnection.
In particular, for each, n, the corresponding standard
nontwist map with κ = κn has a negligible amount of
chaos.

In the study of self-consistent chaotic transport we con-
sidered three problems: (i) Suppression of diffusion; (ii)
Self-consistent destruction of the CTB; and (iii) Intermit-
tent transport near criticality. In the first problem the
self-consistent coupling leads to the decay of the mean-
field amplitude. This decay results in a decrease of trans-
port due to the formation of transport barriers. In par-
ticular, it was observed that, for large n, the growth of
the second moment saturates and the particle distribu-
tion function reaches a steady state. In the study of
the second problem, we consider a transport regime in
which the coupling leads to a self-consistent growth of
the mean-field amplitude. This growth results in a tran-
sition from a state of banded chaos, with a robust CTB,
to a state of global chaos, in which the CTB has been de-
stroyed. For both problems, suppression of diffusion and
self-consistent destruction of the CTB, we constructed
time-dependent quasilinear diffusion transport models
describing the spatio-temporal evolution of the particles’
probability density function. It is interesting to point out
that, in the study of suppression of diffusion, quasilinear
theory gives good results even when the mean-field am-
plitude, κn, is small. A further test of quasilinear theory
was presented by comparing the time-averaged diffusion
coefficient with the time-average mean-field amplitude,
for a family of numerical solutions of the NTMF map.
At first hand, the agreement with quasilinear diffusion
seems puzzling, since the random phase approximation is
expected to be valid in the highly non-integrable chaotic
regime. However, in the case of the NTMF map, a key
issue is that the decay of κn is accompanied by an appar-
ent stochastic evolution of the phase of the mean-field,
θn, which leads support to the random-phase approxima-
tion assumed in quasilinear theory. A similar situation
was observed in the study of coupled twist maps in Ref. 2.

It is well-known that the transition to chaos due to
the breakup of KAM curves in area-preserving maps ex-
hibits self-similar scaling behavior in the vicinity of the
critical transition point. To explore the role of mean-
field coupling in this scaling behavior, we studied the
self-consistent dynamics of the NTMF map near the crit-
ical point. It was observed that the self-consistent fluc-
tuations of the mean-field amplitude around the critical
point give rise to the intermittent destruction and for-
mation of the shearless central transport barrier. The
binary plot of the existence and destruction of the shear-
less curve, exhibits a Cantor-set-like self-similar struc-
ture. However, as in the case of fat Cantor sets, the frac-
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tal (box counting) dimension, being an integer in this
case, does not characterize the self-similarity of the set.
As an alternative, we used the characterization of fat-
fractals based on the scaling properties of the size of the
gaps with the resolution scale. Self-similar, algebraic de-
cay was observed with a fatness exponent, β = 0.6597.
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