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A study of finite Larmor radius (FLR) effects on E � B test particle chaotic transport in non-
monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the
non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition.
The electrostatic potential is modeled as a linear superposition of a zonal flow and the
regular neutral modes of the Hasegawa–Mima equation. FLR effects are incorporated by
gyro-averaging the E � B Hamiltonian. It is shown that there is a critical value of the
Larmor radius for which the zonal flow transitions from a profile with one maximum to
a profile with two maxima and a minimum. This bifurcation leads to the creation of addi-
tional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits
complex patterns of separatrix reconnection. A change in the Larmor radius can lead to
heteroclinic–homoclinic bifurcations and dipole formation. For Larmor radii for which
the zonal flow has bifurcated, double heteroclinic–heteroclinic, homoclinic–homoclinic
and heteroclinic–homoclinic separatrix topologies are observed. It is also shown that cha-
otic transport is typically reduced as the Larmor radius increases. Poincare sections show
that, for large enough Larmor radius, chaos can be practically suppressed. In particular,
changes of the Larmor radius can restore the shearless curve.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The study of particle transport in plasmas in the presence of strong magnetic fields is usually based on the E � B approx-
imation that follows the particles’ guiding centers and neglects the fast gyration on the magnetic field. However, for
relatively high energy particles, or fields varying relatively rapidly in space, it is necessary to go beyond this approximation
and incorporate finite Larmor radius (FLR) effects. The goal of this paper is to study the role of these effects on chaotic trans-
port in the presence of drift waves on non-monotonic zonal shear flows.

Because of the non-monotonicity of the zonal flow, the guiding center Hamiltonian violates the twist condition. As we
will review in the next section, nontwist Hamiltonian systems exhibit a rich phenomenology regarding their phase space
structure and their chaotic transport properties. This type of Hamiltonian systems have found applications in many areas.
Some examples include: magnetic fields with reverse shear in toroidal plasma devices of interest to control nuclear fusion
[1–6]; modeling of transport by traveling waves in shear flows in fluids [7–9]; wave-particle interactions [10]; ray propaga-
tion in waveguides [11]; superconducting quantum interference devices (SQUIDs) [12]; relativistic dynamics of periodically
driven oscillators [13]; self-consistent transport in Hamiltonian mean-field models [14]; and E � B transport in magnetized
plasmas [15–17].
. All rights reserved.
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Fig. 1. Transition to chaos in Hamiltonian systems. (a) Standard map in the integrable limit; (b) Standard map at the threshold for global chaotic transport;
(c) Standard non-twist map at the threshold for global chaotic transport. In the absence of a perturbation, the system is integrable and all orbits consist of
invariant KAM circles depicted as vertical lines in (a). When the perturbation breaks the integrability, the phase space exhibits an intricate, fractal-like
pattern of invariant circles, islands, and chaotic regions as depicted in (b). As (c) shows, in nontwist maps, the shearless curve typically provides a very
robust transport barrier separating strongly chaotic regions. The blue (red) points denote the Poincare plot tracing a single initial condition starting to the
left (right) of the shearless curve.
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In this paper, following Ref. [16], we construct the guiding center nontwist Hamiltonian as a superposition of a non-
monotonic E � B zonal shear flow and regular neutral modes of the Hasegawa–Mima equation [18] describing plasma drift
waves. FLR effects are incorporated through a gyroaverage [19,20] of the guiding center Hamiltonian. Previous studies on the
role of FLR effects on test particle dynamics have considered the diffusive and non-diffusive transport properties. In partic-
ular, the dependence of the particle diffusivity on the Larmor radius in plasma turbulence was studied in Refs. [21,22].
Larmor radius effects on non-diffusive transport were studied in Ref. [23] for turbulent transport and in Ref. [24] for chaotic
transport. Here we focus on the study of two novel problems: the role of FLR effects on separatrix reconnection and suppres-
sion of chaotic transport.

Separatrix reconnection is a global bifurcation of the phase space ubiquitous in nontwist Hamiltonian systems, see for
example Refs. [25–29] and references therein. This bifurcation changes the topology of the separatrix from heteroclinic to
homoclinic. The term topology in this context refers to the qualitative different ways in which the stable and unstable
manifolds link the unstable fixed points of the single mode integrable Hamiltonian. In the heteroclinic topology the unstable
manifold of a fixed point joints the stable manifold of a different fixed point, whereas in the homoclinic topology the unsta-
ble manifold of a fixed point joints the stable manifold of the same fixed point. The bifurcation threshold of the heteroclinic-
to-homoclinic transition can be computed by comparing the values of the level sets of the integrable Hamiltonian at the
hyperbolic fixed points, or by comparing the direction of the eigenvectors of the hyperbolic fixed points involved in the
reconnection process [28]. In this paper we show that gyroaveraged nontwist Hamiltonians exhibit complex patterns of
separatrix reconnection. A change in the Larmor radius can lead to heteroclinic–homoclinic bifurcations and dipole forma-
tion. In addition, for large enough Larmor radii, the phase space can exhibit double heteroclinic–heteroclinic, homoclinic–
homoclinic, and heteroclinic–homoclinic topologies.



Fig. 2. Typical phase space portrait of integrable twist Hamiltonians with a single mode in the co-moving reference frame. Panel (a) shows a monotonic,
linear zonal flow profile, V0(x) = x. This flow corresponds to the unperturbed frequency in Eq. (3) which in this case satisfies the twist condition in Eq. (5).
The dashed line indicates the location of the resonance, i.e. the region where the frequency of the single mode perturbation matches the frequency of the
zonal flow. Panel (b) shows a contour plot of the twist Hamiltonian H = x2/2 + cos (3y) � 2x. The perturbation opens one chain of islands at the resonance.
Because of the twist condition, in this case the separatrix topology is heteroclinic, i.e., the separatrix joins different hyperbolic points.
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Chaotic transport has been a topic of significant interest in Hamiltonian systems in general. Nontwist systems are partic-
ularly interesting because, as shown in Refs. [1,7,28], shearless curves in these systems provide very robust transport barri-
ers. By a robust transport barrier we mean an invariant circle that persists even though nearby invariant circles and high
order islands have been destroyed as shown in the standard non-twist map example in Fig. 1(c). By contrast, as the standard
twist map example in Fig. 1(b) illustrates, in twist maps all transport barriers are typically destroyed before chaos is wide-
spread in the phase space. That is, before a significant fraction of the fixed points have lost stability and the corresponding
islands have been destroyed. Other works on chaotic transport in nontwist maps include: renormalization group studies
[30,31]; analysis of the barrier escape time and barrier transmissivity [32]; KAM theory and partial justification of the
Greene’s criterion for nontwist Hamiltonians [33,34]; and use of indicator points to determine the location of the shearless
curve [35], among others. In this paper we show that chaotic transport is typically reduced as the Larmor radius increases,
and for large enough Larmor radius, chaos can be practically suppressed. In particular, we show that small changes on the
Larmor radius can restore a broken shearless curve.

The organization of the rest of this paper is as follows. The next section reviews basic concepts of nontwist Hamiltonian
systems. The construction of the nontwist gyroaveraged Hamiltonian is presented in Section 3. Section 4 presents the main
results on the FLR effects on separatrix reconnection and chaotic transport. The conclusions are presented in Section 5.

2. Nontwist Hamiltonian systems

Let H0 = H(q,p) be an integrable, one-degree-of-freedom Hamiltonian system, and consider
H ¼ H0ðq;pÞ þ H1ðq;p; tÞ: ð1Þ
As it is well-known, depending on the perturbation, H1(q,p, t), the dynamical system in Eq. (1) can cease to be integrable, i.e.,
the system can exhibit chaos. To study the transition to chaotic dynamics it is convenient to use the canonical action-angle
coordinates (J,h) of H0. By construction, H0 depends only on J, and the solution of the integrable problem reduces to
J ¼ J0; h ¼ h0 þXðJ0Þt; ð2Þ
where (J0,h0) is the initial condition, and the unperturbed frequency is
X ¼ @H0

@J
: ð3Þ



Fig. 3. Typical phase space portrait of integrable, nontwist Hamiltonians with a single mode. (a) non-monotonic, quadratic zonal flow profile, V0(x). The
dashed lines indicate the locations of the resonances. Panels (b), (c) and (d) show contour plots of the nontwist Hamiltonian, H = x � x3/3 � bcos (3y) for
b = 1/4, b = 2/3 and b = 1 respectively. Because of the violation of the twist condition, contrary to the case of twist Hamiltonians shown in Fig. 2, one mode
creates two chains of islands. In this case, the separatrix topology can be heteroclinic (b), i.e. the separatrix joins different hyperbolic points, or homoclinic
(d), i.e. one branch of the separatrix joins the same hyperbolic point. Panel (c) shows the reconnection state at the threshold of the heteroclinic–homoclinic
bifurcation.
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In these variables, the perturbed Hamiltonian in Eq. (1) becomes
H ¼ H0ðJÞ þ H1ðJ; h; tÞ: ð4Þ
As Eq. (2) indicates, in the (J,h) phase space, the orbits of H0 are horizontal lines known as invariant circles or KAM (Kolmogo-
rov–Arnold–Moser) curves (see Fig. 1). The problem of the transition to chaos consists of determining the fate of these invari-
ant circles under the perturbation H1. As Fig. 1 shows, in general, under the perturbation, the phase space exhibits an
intricate mixture of smoothly deformed KAM curves, islands, and chaotic regions. Determining which orbits are simply
deformed and which ones are destroyed is a highly non-trivial fascinating problem in Hamiltonian dynamical systems. Since
the seminal work of Kolmogorov, Arnold, and Moser it is known that this problem depends, among other things, on the prop-
erties of the unperturbed frequency, X. In particular, one of the main lessons of the KAM theory (see, e.g., Refs. [36,37]) is
that the persistence of an invariant circle with J = J0 depends on the degree of irrationality (as measured by the rate of
convergence of the continued fraction expansion) of X(J0). This key intuition is the cornerstone of the extensively used
Greene’s residue criterion [38], which is a powerful numerical method to determine accurately and efficiently the threshold
for the destruction of KAM circles.

A key assumption in the formulation of the standard version of the KAM theorem is the nondegeneracy condition, also
known as the twist condition,
@X
@J
¼ @

2H0

@J2 – 0; 8J: ð5Þ
Although Hamiltonians of the form H0 = p2/2 + V(q) satisfy this condition, there are Hamiltonians for which this is not the
case. Hamiltonians that do not satisfy the twist condition in Eq. (5) are known as nontwist Hamiltonians. As discussed in
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the introduction, this type of Hamiltonian naturally appears in transport problems in fluid mechanics, plasma physics, and
condensed matter physics. Of particular interest in nontwist systems is the study of shearless curves. In the integrable limit,
a shearless curve is an invariant circle with a local maximum (or minimum) of the frequency X. That is, an invariant circle
going through J = J0 such that @JX(J0) = 0. Under the effect of a perturbation, the shearless curve can survive as a deformed
smooth curve or it can break into the stochastic region. However, the transition to chaos of the shearless curve is different
than the transition to chaos of KAM curves in twist systems [7,28]. In particular, as illustrated in Fig. 1, shearless curves are
very robust transport barriers. At a more fundamental level, it has been shown that at the transition point, the self-similar
critical behavior of shearless KAM curves in nontwist systems belong to a universality class different than the universality
class of the twist systems [30]. Beyond the robustness properties of shearless curves under non-integrable perturbations, the
phase space of nontwist Hamiltonians is fundamentally different than that of twist Hamiltonians. In particular, as illustrated
in Fig. 3, nontwist Hamiltonians can exhibit a global bifurcation known as separatrix reconnection. The onset of this bifur-
cation depends on the amplitude of the perturbation (that determines the size of the resonances) and the frequency of the
perturbation (that determines the location of the resonance layers with respect to the maximum of the unperturbed fre-
quency). Both, the robustness of the shearless curve and separatrix reconnection play a fundamental role on the study of
transport in nontwist Hamiltonians.

3. Gyro-averaged nontwist E � B Hamiltonian

We consider test particle transport in strongly magnetized plasma. Using a cartesian coordinate system, the magnetic
field is assumed constant and pointing in the z-direction. When finite Larmor radius (FLR) effects are neglected, the dynamics
are determined by the drift equation
dr
dt
¼ E� B

B2 ; ð6Þ
that follows the particle’s guiding center, r = (x,y), in the E � B approximation where E is the electrostatic field, and B is the
magnetic field. Writing B ¼ B0ẑ, and E = �r/(x,y, t), Eq. (6) can be equivalently written as the Hamiltonian dynamical system
dx
dt
¼ � @/

@y
;

dy
dt
¼ @/
@x

; ð7Þ
where the electrostatic potential is the Hamiltonian, and the spatial coordinates (x,y) are the canonical conjugate phase
space variables.

For relatively high energy particles the zero Larmor radius approximation fails and it is necessary to incorporate FLR
effects. A simple, natural way of doing this is to substitute the E � B flow on the right hand side of Eq. (7), which is evaluated
at the location of the guiding center, by its gyroaverage over a ring of radius q, where q is the Larmor radius [19,20]. This
approximation is valid provided the gyrofrequency is greater than other frequencies in the system and yields the following
gyroaveraged Hamitonian system
dx
dt
¼ � @/

@y

� �
h

¼ � @

@y
h/ih; ð8Þ

dy
dt
¼ @/

@x

� �
h

¼ @

@x
h/ih; ð9Þ
where the gyroaverage, h ih, is defined as
hWih �
1

2p

Z 2p

0
W xþ q cos h; yþ q sin hð Þdh: ð10Þ
To obtain the electrostatic potential, /, we start from the Hasegawa–Mima model [18] describing drift waves in magne-
tized plasmas
@t þ ðz�r/Þ � r½ � ðr2/� /� bxÞ ¼ 0; ð11Þ
where the x coordinate corresponds to the direction of the density gradient driving the drift-wave instability, and y corre-
sponds to the direction of propagation of the drift-waves, in the slab approximation. In toroidal geometry, x is analogous to a
normalized coordinate along the minor radius, y is a poloidal-like coordinate, and, in the tokamak ordering, z corresponds to
the toroidal direction. The parameter b = n0(x)0/n0(x) measures the scale length of the density gradient.

Following Ref. [16] we construct / using a linear superposition of drift-waves on a background zonal flow
/ ¼ u0ðxÞ þ
XN

j¼1

ejujðxÞ cos kjðy� cjtÞ; ð12Þ



Fig. 4. Zonal shear flow profile for different values of q according to Eq. (25). For 0 6 q < 1.33 the zonal flow has a maximum at x = 0. However for q P 1.33
a bifurcation creates a minimum at x = 0 along with two symmetrically located maxima.
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where the first term on the right hand side of (12) corresponds to an equilibrium zonal shear flow, and the second term is a
superposition of regular neutral modes of Eq. (11). Going back to the discussion in the previous section, we identify the (x,y)
coordinates with the action-angle coordinates (J,h) and identify u0(x) with the integrable part H0(J) of the perturbed
Hamiltonian in Eq. (4). According to Eq. (7), the unperturbed frequency X in Eq. (3) corresponds to the E � B zonal flow,
u0 = u0(x)ey = ez �ru0, and the twist condition reduces to the condition of having a monotonic decreasing or monotonic
increasing shear flow, i.e. du0/dx – 0. However, here we are interested in the study of transport in non-monotonic E � B
flows. As an specific example we consider
u0 ¼ sech2x; ð13Þ
for which
u0ðxÞ ¼ tanh x; ð14Þ
where x has been non-dimensionalized using the characteristic width, L, of the zonal flow. In this case there are two regular
neutral modes with eigenfunctions
u1;2ðxÞ ¼ sech2x; ð15Þ
and the E � B Hamiltonian in Eq. (12) becomes
/ ¼ tanh x� gxþ �1sech2x cosðk1yÞ þ �2sech2x cosðk2y�xtÞ; ð16Þ
where we have made a Galilean transformation to the co-moving reference frame of the first regular neutral mode. Further
details on the linear eigenmode analysis and the construction of this model can be found in Ref. [16]. Note that, because du0/
dx = �2sech2 x tanhx = 0 at x = 0, the Hamiltonian in Eq. (16) is a nontwist Hamiltonian.

The gyroaverage of Eq. (16) leads to the nontwist Hamiltonian
h/ih ¼ MqðxÞ � gxþ �1Ik1qðxÞ cosðk1yÞ þ �2Ik2qðxÞ cosðk2y�xtÞ; ð17Þ
where the Larmor radius q has been non-dimensionalized using the characteristic width, L, of the zonal flow. Using this
Hamiltonian in Eqs. (8) and (9) we get the following equations of motion



Fig. 5. Parametric dependence of the location of the shearless transport barrier (s) and resonances. The red curves correspond to r0(x;g,q) = 0. The black
curves correspond to R(x;g,q) = 0 from left to right g = 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1.
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dx
dt ¼ �1k1Ik1qðxÞ sin k1yþ �2k2Ik2qðxÞ sinðk2y�xtÞ;
dy
dt ¼ I0qðxÞ � g� 2�1Kk1qðxÞ cos k1y� 2�2Kk2qðxÞ cosðk2y�xtÞ;

ð18Þ
where the functions Mq, Ikq, and Kkq are
MqðxÞ ¼
1
p

Z p

0
tanhðx� q cos hÞdh; ð19Þ

IkqðxÞ ¼
1
p

Z p

0
sech2ðxþ q cos hÞ cosðkq sin hÞdh; ð20Þ

KkqðxÞ ¼
1
p

Z p

0
sech2ðxþ q cos hÞ tanhðxþ q cos hÞ cosðkq sin hÞdh: ð21Þ
In the small q limit,
MqðxÞ ¼ tanh x� q2

2
sech2x tanh xþ Oðq3Þ; ð22Þ

IkqðxÞ ¼ 1� k2

4
� 1þ 3

2
sech2x

 !
q2

" #
sech2xþ Oðq3Þ; ð23Þ

KkqðxÞ ¼ sech2x tanh x 1� q2 3sech2xþ k2

4
� 1

 !" #
þ Oðq3Þ: ð24Þ
4. Gyro-average effects on separatrix reconnection and chaos

Separatrix reconnection and the destruction of transport barriers of the q = 0 nontwist E � B Hamiltonian in Eq. (16) has
been studied before in Refs. [7,16]. In the rest of this paper we study the role of FLR effects on these problems.

4.1. Zonal flow and fixed points bifurcations

Fig. 4 shows the zonal flow of the gyroaveraged Hamiltonian,



Fig. 6. Creation and annihilation of fixed points as function of the Larmor radius. The solid-black (dashed-red) curve tracks the x-location, x⁄, of the fixed
points of the single-mode gyroaveraged Hamiltonian in Eq. (27), with k1 = 0.5, g = 0.3 and �1 = 0.5, for n = even (n = odd) in Eq. (31). In regions I and III there
are two fixed points in x⁄ for n odd and two for n even. However, in region II there are four fixed points in each case, and there are none in region IV. The
transition from one region to the next is marked by bifurcations that create or annihilate pairs of fixed points in the phase space.
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u0ðxÞ ¼
@

@x
hu0ih ¼ I0qðxÞ; ð25Þ
for different values of q. For q = 0, u0 exhibits the expected sech2x profile with a single maximum at x = 0. However, for large
enough values of q the zonal flow profile bifurcates and develops two maxima whose relative distance increases linearly
with q. Zonal flow extrema are important because they correspond to shearless orbits. From the point of view of separatrix
reconnection there is not a qualitative difference between shearless curves corresponding to minima and those correspond-
ing to maxima of the zonal flows. However, shearless curves forming at inflection points of zonal flows can exhibit qualita-
tively different reconnection scenarios [26,27].

In the absence of perturbations, �1 = �2 = 0, these orbits are defined by the condition
r0ðx; g;qÞ ¼ @
2h/0ih
@x2 ¼ �2K0qðxÞ ¼ 0: ð26Þ
Fig. 5 shows the location of the unperturbed shearless orbits as function of q according to Eq. (26). Consistent with Fig. 4, for
q 6 1.33 there is only one shearless curve which corresponds to the single maximum of the zonal flow. However, for q > 1.33
the zonal flow bifurcates: the center becomes a minimum and two symmetrically located maxima are created. In this case,
q = 1.33 defines a pitch-fork bifurcation that creates three shearless curves.

When a normal mode perturbation is added to the zonal flow, a chain of island forms at the resonance layer where the
frequency of the normal mode matches the frequency of the zonal flow. In the case of a single mode Hamiltonian in the co-
moving reference frame,
h/ih ¼ MqðxÞ � gxþ �1Ik1qðxÞ cosðk1yÞ; ð27Þ
the resonance layer is defined by the condition
Rðx;q;gÞ ¼ @h/0ih
@x

� g ¼ I0qðxÞ � g ¼ 0: ð28Þ
The solid black lines in Fig. 5 tracks the location of the resonances as function of q for several values of g. Consistent with the
fact that for small values of q the zonal flow has a single maximum, in this case there can be zero or at most two resonances.
However, for large values of q, and small enough values of g, there can be up to four resonances.



Fig. 7. Heteroclinic-homoclinic separatrix reconnection and dipole bifurcations for increasing values of the gyro-radius, q. The four panels show contour
plots of the gyroaveraged Hamiltonian in Eq. (27) with �1 = 0.5, g = 0.4, k = 1 and q = 0 (top left), q = 1.5 (top right), q = 1.7 (bottom left) and q = 2 (bottom
right). The bold black line denotes the contour level of the separatrix.
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For the single-mode Hamiltonian in Eq. (27), the fixed points (x⁄,y⁄) are defined by the condition @xh/ih(x⁄,y⁄) =
@yh/ih(x⁄,y⁄) = 0 which according to Eq. (27) gives
Ik1qðx�Þ sin k1y� ¼ 0; ð29Þ
I0qðx�Þ � g� 2�1Kk1qðx�Þ cos k1y� ¼ 0: ð30Þ
One class of solutions to these equations is
y� ¼ np=k1; g� I0qðx�Þ þ ð�1Þn2�1Kk1qðx�Þ ¼ 0: ð31Þ
Fig. 6 tracks the solutions, x⁄ for n odd and n even as function of the Larmor radius q. Four qualitatively different regions are
identified. In regions I and III there are two fixed points in x⁄ for n odd and two for n even. However, in region II there are four
fixed points in each case, and there are none in region IV. The transition from one region to the next is marked by bifurcations
that create or annihilate pairs of fixed points in the phase space. As we will see in the next subsection, these fixed points
bifurcations have a nontrivial effect on the phase space portrait. In what follows we treat the Larmor radius as an indepen-
dent bifurcation parameter and explore the dependence of the dynamics on its value. However, it is important to keep in
mind that on physical grounds the Larmor radius cannot have an arbitrary large value. Depending on the specific problem
under consideration, there will be an upper bound of the Larmor radius which might limit the types of bifurcations occurring.
Also, for very large values of q, the gyro-average approximation might require higher order corrections.



Fig. 8. Fixed points creation and separatrix reconnection. The four panels show contour plots of the gyroaveraged Hamiltonian in Eq. (27) with �1 = 0.5,
g = 0.3, k = 0.5 and increasing values of q. The bold black line denotes the contour level of the separatrix. Top-left panel corresponds to q = 1.5 which is in
region I of Fig. 6; Top-right panel corresponds to q = 2.204 which is at the boundary between region I and region II in Fig. 6. Bottom left corresponds to
q = 2.3312 which is in region II of Fig. 6. Bottom right corresponds to q = 2.43 which is in region II of Fig. 6.
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4.2. Separatrix reconnection

When FLR effects are not included, the structure of the phase space is well-understood [7]. For a monotonic zonal flow in
presence of one mode there is a single resonance which produces a chain of islands in the phase space as illustrated in Fig. 2.
However, for a non-monotonic zonal flow, there can be two resonant points for a given mode, producing two chains of
islands in phase space as shown in Fig. 3. Depending on the closeness of the resonances and the wave amplitude, there
can be an overlap that changes the separatrix topology from heteroclinic (in which the separatrix joins different fixed points)
to homoclinic (in which a branch of the separatrix joins the same fixed point).

The inclusion of FLR effects leads to several interesting new phenomena. The FLR effects on the heteroclinic topology are
shown in Fig. 7. Starting from q = 0, it is observed that an increase in q can give rise to the standard hetroclinic-homoclinic
bifurcation. However, as the last panel in Fig. 7 shows, at large enough values of q, dipole-type structures can appear. In this
case, there are fixed points with y⁄– np/k1. As discussed before, a change in q can give rise to the creation and annihilation of
fixed points. To explore the consequences of these bifurcations on separatrix reconnection, Figs. 8 and 9 show contour plots
of the one-mode, gyroaveraged nontwist Hamiltonian in Eq. (27) for values of q across the four regions in Fig. 6. In region I,
there are two fixed points in x for each value of y⁄. This is the familiar nontwist case in which the separatrix topology can be
heteroclinc or homoclinic. However, crossing to region II creates two additional fixed points, and a total of four fixed points
in x for each y⁄ are involved in determining the separatrix topology. As shown in Figs. 8 and 9 in this case the separatrix can
exhibit a complex reconnection pattern. The transition to regions III and IV in Fig. 9 is accompained by the annihilation of
fixed points that manifests in the formation of cusps in the corresponding contour lines of the the Hamiltonian. Finally,
for parameter values in region IV, there are no fixed points and, as shown in the bottom left panel in Fig. 9, the trapping
regions disappear. Fig. 10 illustrates the possibility of double heteroclinic–homoclinic separatrix reconnection for parameter



Fig. 9. Fixed points anhilation and flow rectification. The four panels show contour plots of the gyroaveraged Hamiltonian in Eq. (27) with �1 = 0.5, g = 0.3,
k = 0.5 and increasing values of q. The bold black line denotes the contour level of the separatrix. Top-left panel corresponds to q = 2.75 which is in region II
of Fig. 6; Top-right panel corresponds to q = 3.0748 which is at the boundary between region II and region III in Fig. 6. Bottom left corresponds to q = 4.464
which is at the boundary between rgion III and IV of Fig. 6. Bottom right corresponds to q = 6 which is in region IV of Fig. 6.
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values with four fixed points in x for each value of y⁄ as it is the case in region II of Fig. 6. Note that in this case, as the two
panels at the bottom of Fig. 10 show, the island chains can be in phase.

4.3. Chaos supression

FLR can also have a nontrivial effect on the degree of chaos in the non-integrable (�1 – 0 and �2 – 0) regimen. To study
this problem, we integrated numerically the gyroaveraged equations of motion in Eq. (18). The main result is that the FLR can
lead to a suppression of chaos. By chaos suppression we mean an increase of the set of initial conditions for which invariant
circles exist. Using the Lyapunov exponent as a measure of chaos, chaos suppression implies a reduction of the phase space
regions with positive Lyapunov exponent. Here we limit attention to a qualitative description of this novel results using
Poincare plots as the diagnostic tool. As Fig. 11 shows, increasing the Larmor radius can restore invariant circles and, for large
enough q, make the system close to integrable. Of particular interest are the Poincare plots in Fig. 12 that show that increas-
ing q can restore the shearless invariant circle. Although these results qualitatively indicate that increasing q tends to
decrease chaos, it should be kept in mind that the exact threshold for the destruction of the shearless curve has a nontrivial
dependence on q.
5. Summary and conclusions

We have presented a study of finite Larmor radius effects on E � B test particle chaotic transport in zonal flows with drift
waves. The electrostatic potential was modeled as a linear superposition of a zonal flow and regular neutral modes of the



Fig. 10. Double separatrix reconnection and double dipole formation. The four panels show contour plots of the gyroaveraged Hamiltonian in Eq. (27). The
bold black lines denote the contour values corresponding to the separatrix. Top-left panel: double heteroclinic topology for �1 = 0.075, g = 0.25, k = 0.5 and
q = 3.25. Top-right panel: double homoclinic topology for �1 = 0.3, g = 0.25, k = 0.5 and q = 3.25. Bottom-left panel: double heteroclinic–homoclinic topology
for �1 = 0.25, g = 0.2, k = 1 and q = 3.5. Bottom-right panel: double dipole formation for �1 = 0.2, g = 0.25, k = 1 and q = 3.25.
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Hasegawa–Mima equation. FLR effects are incorporated by gyro-averaging the E � B Hamiltonian. We focused attention on
non-monotonic zonal flows for which the corresponding E � B Hamiltonian does not satisfy the twist condition. Non-twist
Hamiltonians exhibit global changes in the phase space known as separatrix reconnection. In addition, in these Hamiltoni-
ans, shearless curves provide robust barriers to chaotic transport. In this paper we studied the role of FLR effect on both,
separatrix reconnection and chaotic transport. A bifurcation of the zonal flow was observed as the Larmor radius increases.
There is a critical value for which the zonal flows transitions from a profile with one maximum to a profile with two maxima
and a minimum. This bifurcation leads to the creation of additional shearless curves which form at the extrema of the zonal
flow profile. The zonal flow bifurcation has also an impact on the formation of additional resonances, i.e. regions where the
frequency of the perturbation matches the frequency of the zonal flow. In the presence of only one normal mode the Ham-
iltonian is integrable, and because of the violation of the twist conditions, the single-mode Hamiltonian exhibits sepratrix
reconnection. The gyroaveraged Hamiltonian exhibits vey complex changes in the phase space depending on the Lamor
radius. A change of the Larmor radius can lead to heteroclinic–homoclinic bifurcations and dipole formation. For Larmor radii
for which the zonal flow has bifurcated, we have observed double heteroclinic–heteroclinic, homoclinic–homoclinic and
heteroclinic–homoclinic topologies. As the Larmor radius increases we have observed the formation and annihilation of fixed
points in the phase space. For large enough Larmor radius all fixed points disappear and the phase space of the integrable,
one-mode gyroaveraged Hamiltonian does not exhibit any resonances.

The role of FLR effects on chaotic transport in the presence of two drift waves was also considered. The main conclusion is
that chaos is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius,
chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve. The



Fig. 11. Chaos suppression due to gyroaveraging. The four panels show Poincare plots for the gyroaveraged Hamiltonian system in Eq. (18) with
�1 = �2 = 0.5, k1 = k2 = 1, g = 0.4 and: q = 0 (top left panel), q = 0.5 (top right panel), q = 0.75 (bottom left panel), and q = 1 (bottom right panel).

Fig. 12. Shearless curve recovery due to gyroaveraging. The two panels show Poincare plots for the gyroaveraged Hamiltonian system in Eq. (18) with
�1 = 0.5,�2 = 0.25, k1 = k2 = 1, g = 0.4 and: q = 0.4 (left panel), q = 0.5 (right panel). The increase of the Larmor radius leads to the recovery the shearless curve
going through (x,y) � (�0.75,0), and the suppression of global transport across the resonances.
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onset of global chaos typically tends to increase with the Larmor radius. However, preliminary calculations indicate that the
threshold for the destruction of the shearless curve exhibits a complex dependence on the Larmor radius.
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