Coproduct of Vector Fields on the Quantum Lorentz Group *

C. Chryssomalakos

Department of Physics
University of California at Berkeley
and
Theoretical Physics Group
Physics Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

Abstract

We use properties of the L^\pm matrices, specific to the case of the q-deformed Lorentz group, to derive expressions for the coproduct of its bicovariant vector fields.

*This work was supported by NSF grant 1-444010-21308-2
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof of The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
1 Introduction

Among the plethora of q-deformations that recent years have witnessed, that of the Lorentz group1,2 stands perhaps as the most tangible link between quantum groups and physics. From this (physical) point of view, the exploration of the corresponding dual structure, i.e. the Lorentz algebra, is of particular interest as it should provide the basic ingredients for, among other things, the q-deformation of relativistic quantum field theory. The Lorentz algebra has been studied in [3],[4] (a generalization of the results given there to the case of other groups appears in [5]). What we consider here is an alternative, simpler way to derive one of the results of [4], namely the expression for the coproduct of the vector fields on the group.

We begin by briefly reviewing the formalism for complexified quantum groups developed in [3],[4] as it applies to the case of $SL_q(2, \mathbb{C})$. Introduce the 2×2 matrix t of functions on the group whose elements, members of a non-commutative algebra A, satisfy the relations$^6 (g > 0 \text{ real})$:

$$\hat{R} t_1 t_2 = t_1 t_2 \hat{R}, \quad \det_q t \equiv t_{11} t_{22} - q t_{12} t_{21} = 1$$

Here $t_1 \equiv t \otimes I$ (with \otimes denoting matrix tensor product: $(A \otimes B)_{ij,kl} \equiv A_{ik} B_{jl}$), $t_2 \equiv I \otimes t$ and \hat{R} is the symmetric R-matrix for this group, suitably normalized:

$$\hat{R} = q^{-1/2} \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}$$

The first of (1) determines the commutation relations among the elements t_{ij} of t while the second is the q-analogue of a unit-determinant condition (one easily checks that this is consistent with the commutation relations, i.e. that $\det_q t$ is indeed central).

Complex conjugation of (1) gives rise to four more generators t_{ij}^* whose algebra is most conveniently expressed in terms of $\hat{t}_{ij} \equiv (S(t_{ji}))^*$ (here $S(\cdot)$
denotes the antipode map and $S(t_{ij}) = (t^{-1})_{ij}$. One finds:

$$\hat{R}^{-1}\hat{t}_1\hat{t}_2 = \hat{t}_1\hat{t}_2\hat{R}^{-1}, \quad \det_q \hat{t} \equiv \hat{t}_{11}\hat{t}_{22} - q\hat{t}_{12}\hat{t}_{21} = 1$$ \hspace{1cm} (2)

Finally, consistent commutation relations between t and \hat{t} must be given. These are:

$$\hat{R}\hat{t}_1t_2 = t_1\hat{t}_2\hat{R}$$ \hspace{1cm} (3)

All the commutation relations presented so far can be encoded in a single RTT equation:

$$\hat{R}T_1T_2 = T_1T_2\hat{R}$$ \hspace{1cm} (4)

with the definitions:

$$T = \begin{pmatrix} t & 0 \\ 0 & \hat{t} \end{pmatrix}, \quad \hat{R} = \begin{pmatrix} \hat{R} & 0 & 0 & 0 \\ 0 & 0 & \hat{R} & 0 \\ 0 & \hat{R}^{-1} & 0 & 0 \\ 0 & 0 & 0 & \hat{R}^{-1} \end{pmatrix}$$

In the following we will use frequently the notation3: $T_{ij} \equiv t_{ij}, \ T_{ij} \equiv \hat{t}_{ij}$ (while $T_{ij} = T_{ij} = 0$) $i,j,\hat{i},\hat{j} = 1,2$.

Having completed the description of the algebra A of functions on the group and their complex conjugates, we now turn our attention to its dual, A^*. To this end, one introduces the matrices of linear functionals L^\pm in the form3:

$$L^+ = \begin{pmatrix} L^+_{11} & L^+_{12} & 0 & 0 \\ 0 & L^+_{22} & 0 & 0 \\ 0 & 0 & L^+_{11} & 0 \\ 0 & 0 & L^+_{21} & L^+_{22} \end{pmatrix}, \quad L^- = \begin{pmatrix} L^-_{11} & L^-_{12} & 0 & 0 \\ L^-_{21} & L^-_{22} & 0 & 0 \\ 0 & 0 & L^-_{11} & L^-_{12} \\ 0 & 0 & L^-_{21} & L^-_{22} \end{pmatrix}$$ \hspace{1cm} (5)

Their elements operate on those of T according to:

$$\langle L^+_{IJ}, T_{KL} \rangle = (\hat{R}^{\pm1})^L^K_{IJ}, \quad (I) = (i, \hat{i}) \quad i,\hat{i} = 1,2$$ \hspace{1cm} (6)
while $\langle L^+_IJ, 1 \rangle = \delta_{IJ}$. We will also need the standard formulas \(^3\) (summation over repeated indices implied):

$$
\Delta(L^+_IJ) = L^+_IK \otimes L^+_KJ, \quad S(L^+_IJ) = ((L^\pm)^{-1})_{IJ}
$$

(7)

for the coproduct and the antipode of L^\pm respectively.

We close this review of the formalism with the definition of the object under study here i.e. the matrix Y of linear functionals given by:

$$
Y \equiv \begin{pmatrix} y & 0 \\ 0 & \hat{y} \end{pmatrix} \equiv L^+S(L^-)
$$

(8)

For the motivation behind this definition see [7].

2 Coproduct of Y

The task of expressing $\Delta(Y_{IJ})$ in terms of the Y’s, rather than the L’s was accomplished in [4] in two different ways. In the first approach, one starts by expressing $\Delta(Y_{IJ})$ in terms of the L’s using the definition (8) and the known result for $\Delta(L^\pm_{MN})$, given in (7), and then essentially inverts (8) (to the extend needed) to obtain the desired expression in terms of the Y’s. The second approach is based on a study of the action of Y_{IJ} on monomials in the elements of T and subsequently ‘reads off’ the desired expressions, using in an intermediate step a set of operators with relatively simple action on such monomials. Both methods involve rather tedious algebra the need for which, as we now show, one can eliminate.

Start from (8) to get:

$$
\Delta(Y_{IJ}) = \Delta(L^+_IK) \Delta(S(L^-_{KJ})) = (L^+_IS \otimes L^+_SR)(S(L^-_{RJ}) \otimes S(L^-_{KR})) = L^+_IS(L^-_{RJ}) \otimes Y_{SR} \quad \text{or,}
$$

$$
\Delta(Y_{\alpha}) = \mathcal{O}_{\alpha \beta} \otimes Y_{\beta} \quad \alpha, \beta = 1, \ldots, 16
$$

(9)
where $O \equiv L^+ \otimes S(L^-)^T$ and Y is now a column vector:

$$Y^T = (Y_{11}, Y_{12}, 0, 0, Y_{21}, \ldots, Y_{22})$$

Also, (8) implies:

$$Y^{-1} = L^- S(L^+)$$ (10)

In [4], the following relations were shown to hold for $U_q(sl(2, \mathbb{C}))$ (no summation implied):

$$L_{ii}^+ L_{ii}^- = 1, \quad L_{ij}^- = L_{ij}^-, \quad i, j, \hat{i}, \hat{j} = 1, 2. \quad (11)$$

These, together with the known relations6: $L_{11}^+ L_{22}^- = L_{11}^+ L_{22}^+ = 1$ give:

$$L_{11}^+ = L_{22}^+; \quad L_{22}^- = L_{11}^- \quad (12)$$

Consider now the matrix:

$$B \equiv L^- (L_{11}^+)^{-1} \equiv \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}. \quad \text{(13)}$$

Use (10),(11),(12) and the specific form of L^+ to compute, as an example, A_{12}:

$$A_{12} \equiv L_{12}^- (L_{11}^+)^{-1} = L_{12}^- (L_{22}^+)^{-1} = L_{12}^- (L^+)_{22}^{-1} = L_{12}^- S(L^+)_{22} = (Y^{-1})_{12}$$

since $S(L^+)_{12} = 0$. Proceeding in the same fashion for the rest of its elements, one finds for A:

$$A = \begin{pmatrix} (Y^{-1})_{11} & (Y^{-1})_{12} \\ (Y^{-1})_{21} & (Y^{-1})_{22} \end{pmatrix}$$
which in turn gives O in terms of the Y’s:

\[
O ≡ L^+ ⊗ S(L^-)^T
\]

\[
= L^+ S(L^-) L^- (L^+_{11})^{-1} ⊗ L^+_{11} S(L^-)^T
\]

\[
= YB ⊗ ((L^+_{11})^{-1}) S(L^-)^T
\]

\[
= YB ⊗ S(L^+_{11})^{-1} S(L^-)^T
\]

\[
= YB ⊗ (B)^T
\]

(13)

Substituting in (13) explicit expressions for the elements of Y^{-1}, we find after a little algebra (in agreement with the results of [4]):

\[
\Delta(y) = \left(\begin{array}{cc} F & y_A F \\ 0 & y_B F \end{array} \right) ∙ y, \quad \Delta(\hat{y}) = \left(\begin{array}{cc} y_B F & 0 \\ y_C F & F \end{array} \right) ∙ \hat{y}
\]

where

\[
y_A ≡ y_+ \hat{y}_1 - q^{-2} y_1 \hat{y}_+, \quad y_B ≡ \hat{y}_1 y_2 - q^2 \hat{y}_+ y_-, \quad y_C ≡ \hat{y}_- y_2 - q^2 \hat{y}_2 y_-,
\]

y is a column vector: $y^T = (y_{11}, y_{12}, y_{21}, y_{22}) ≡ (y_1, y_+, y_-, y_2)$ (similarly for \hat{y}),

\[
F ≡ \left(\begin{array}{cc} S(y_2) & -q^2 S(y_-) \\ -q^{-2} S(\hat{y}_+) & S(\hat{y}_1) \end{array} \right),
\]

and $∙$ denotes matrix multiplication and algebraic tensor product. As an example:

\[
\Delta(y_1) = S(y_2) ∙ y_1 - q^2 S(y_-) ∙ y_+ + y_A S(y_2) ∙ y_- - q^2 y_A S(y_-) ∙ y_2
\]

Similar considerations can provide the coproduct of the Y’s for other complex quantum groups provided their L^\pm matrices have the form of (5). It remains to be seen whether relatively simple procedures like the above would be sufficient in the case of higher dimensional groups.
Aknowledgments

I would like to express my gratitude to Professor B. Zumino for his enlightening (and very patient) guidance.

References