Nuclear charge radii and E0 transitions in the IBM

S. Zerguine & A. Bouldjedri, University of Batna, Algeria S. Heinze, University of Cologne, Germany P. Van Isacker, GANIL, France Motivation Charge radii and E0 transitions Application to rare-earth nuclei

Beauty in Physics, Cocoyoc, May 2012

Motivation

Origin of E0 transitions in nuclei: Mixing of coexisting configurations with different shapes (Heyde & Wood); Between β-vibrational states in the geometric collective model (Reiner).

- In a geometric framework E0 strength
 should rise in the transition from
 spherical to deformed ⇒ Link with
 phase transitions in nuclei (von
 Brentano et al.).
- Simultaneous treatment of charge radii and E0 transitions Beauty in Physics, Cocoyoc, May 2012

Electric monopole (E0) transitions

The probability for an E0 transition to occur is given by $P=\Omega\rho^2$ with Ω and ρ^2 electronic and nuclear factors.

The nuclear factor is the matrix $p = n_k f \left(\frac{r_k}{R} \right)^2 - \sigma \left(\frac{r_k}{R} \right)^2 + \cdots |i\rangle \quad \left(R = r_0 A^{1/3}, r_0 = 1.2 \text{ fm} \right)$

Higher-order terms are usually not considered, σ=0, (cfr. Church & Weneser) and hence contact, issemadered, 103 with the margin Physics. Cocourt May 2012³⁵

E0 and charge radius operators

Definition of a 'charge radius

$$\langle \mathbf{s} | \hat{T}(\mathbf{r}^2) \mathbf{s} \rangle \equiv \langle \mathbf{r}^2 \rangle_{\mathbf{s}} = \frac{1}{Z} \sum_{k \in \text{protons}}^{Z} \langle \mathbf{s} | \mathbf{r}_k^2 | \mathbf{s} \rangle \Longrightarrow \hat{T}(\mathbf{r}^2) = \frac{1}{Z} \sum_{k \in \text{protons}}^{Z} \mathbf{r}_k^2$$

$$\begin{array}{c} \text{Definition} \\ \langle \mathbf{f} | T(\mathbf{E0}) \mathbf{i} \rangle \\ \mathcal{P} = \mathbf{rator} \\ eR^2 \end{array} \stackrel{\text{of an `E0}_{Z} \text{transition}}{\Rightarrow} \hat{\mathbf{f}}(\mathbf{E0}) \sigma = 0 \sum_{k \in \text{protons}} r_k^2 \\ k \in \text{protons} \end{array}$$

 $\hat{T}(E0) = eZ\hat{T}(r^2)$ Hence we find the following (standard) relation:

Beauty in Physics, Cocoyoc, May 2012

Effective charges

Addition of neutrons produces a change in the charge radius \Rightarrow need for effective charges.

Generalized operators: $\langle r^2 \rangle_{s} = \frac{1}{e_{n}N + e_{p}Z} \sum_{k=1}^{A} \langle s|e_{k}r_{k}^{2}|s \rangle \Rightarrow \hat{T}(r^2) = \frac{1}{e_{n}N + e_{p}Z} \sum_{k=1}^{A} e_{k}r_{k}^{2}$ $\hat{T}(E0) = \sum_{k=1}^{A} e_{k}r_{k}^{2}$

Generalized (non-standard) relation: $\hat{T}(E0) = (e_n N + e_p Z) \hat{T}(r^2)$

Beauty in Physics, Cocoyoc, May 2012

E0 transitions in nuclear models

Nuclear shell model: E0 transitions between states in a single oscillator shell vanish.

Geometric collective model: Strong E0 transitions occur between β - and ground-state band.

Interacting boson model (intermediate
 between shell model and collective
 model): The IBM can be used to test
 the relation between radii and E0
 transitions.

Beauty in Physics, Cocoyoc, May 2012

Application to rare-earth nuclei

Application to even-even nuclei with Z=58-74.

Procedure:

Fix IBM hamiltonian parameters from spectra with special care to the spherical-to-deformed transitional region.

Determine α and η from measured isotope and isomer shifts.

Calculate ho^2 (depends on η only).

S. Zerguine et al., Phys. Rev. Lett. 101 (2008) 022502 Beauty in Physics, Cocoyoc^S, May 2012 al., Phys. Rev. C 85 (2012) 034331

Energy spectra

The standard (1+2)-body IBM $\hat{H} = \hat{e} \hat{n}_d^1 + \hat{a}_0 \hat{P}_+ \hat{P}_- + \hat{a}_1 \hat{L} \cdot \hat{L} + \hat{a}_2 \hat{Q} \cdot \hat{Q} + \hat{a}_3 \hat{T}_3 \cdot \hat{T}_3 + \hat{a}_4 \hat{T}_4 \cdot \hat{T}_4$

Constant parameters for a given isotopi $N_{\nu}N_{\pi}$ hain except for the $a_{2} = a'_{2} + \frac{1}{N_{\nu}}a''_{\pi}a''_{\pi}$ strength:

Example: gadolinium isotopes

Beauty in Physics, Cocoyoc, May 2012

Example: gadolinium isotopes

Beauty in Physics, Cocoyoc, May 2012

Example: gadolinium isotopes

Charge radii

The charge radius operator in IBM:

$$\hat{T}(r^2) = \langle r^2 \rangle_{\text{core}} + \alpha N_b + \eta \frac{\hat{n}_d}{N_b}$$

Standard parametrization (cfr. Iachello and Arima): $\hat{T}(r^2) = \langle r^2 \rangle_{corr} + \alpha' N_b + \eta' \hat{n}_d$

F. Iachello and A. Arima, The Beauty in Physics, Cocoyoc, May 2012 ng Boson Model

Isotope shifts

Isotopes shifts depend on the parameters α and η : $\Delta \langle r^2 \rangle \equiv \langle r^2 \rangle_{0_1^+}^{(A+2)} - \langle r^2 \rangle_{0_1^+}^{(A)} = |\alpha| + \eta \left(\left\langle \frac{\hat{n}_d}{N_b} \right\rangle_{0_1^+}^{(A+2)} - \left\langle \frac{\hat{n}_d}{N_b} \right\rangle_{0_1^+}^{(A)} \right)$

 α (linear slope) varies between 0.10 and 0.25 fm²;

 $\begin{array}{c} \eta \ (deformation \ dependence) \ equals \ 0.5 \ fm^2 \\ (constant \ for \ all \ nuclei) \\ \Lambda \left< r_{d}^2 \right> = \left< r_{d}^2 \right> \left< r_{d+2}^2 \right> \left< r_{d+2}^2$

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in cerium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in neodymium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in samarium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in gadolinium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in dysprosium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in erbium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in ytterbium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in hafnium

Beauty in Physics, Cocoyoc, May 2012

Isotope shifts in tungsten

Beauty in Physics, Cocoyoc, May 2012

Isomer shifts

Isotopes shifts depend on the parameter η : $\delta \langle r^2 \rangle \equiv \langle r^2 \rangle_{2_1^+}^{(A)} - \langle r^2 \rangle_{0_1^+}^{(A)} = \eta \left(\left\langle \frac{\hat{n}_d}{N_b} \right\rangle_{2_1^+}^{(A)} - \left\langle \frac{\hat{n}_d}{N_b} \right\rangle_{0_1^+}^{(A)} \right)$

 η (deformation dependence) equals 0.5 fm² (constant for all nuclei).

$$\begin{array}{c} \text{Standard}_{2} \left\langle \vec{r}^{2} \right\rangle_{2_{1}^{+}} - \left\langle \vec{r}^{2} \right\rangle_{0_{1}^{+}} = \eta \left(\left\langle \vec{n}_{d} \right\rangle_{2_{1}^{+}} - \left\langle \vec{n}_{d} \right\rangle_{0_{1}^{+}} \right) \end{array}$$

Isomer shifts

Beauty in Physics, Cocoyoc, May 2012

EO transitions and ho^2 values

We apply the general relation between E0 and charge-radius operators.

The EO operator in the IBM is $\hat{T}(\hat{r}) \stackrel{\text{re}}{\to} \hat{r}_{core} + \alpha N_b + \eta \frac{\hat{n}_d}{N_b} \Rightarrow \hat{T}(EO) = \eta \frac{e_n N + e_p Z}{N_b} \hat{n}_d$

 $In \hat{T} (\hat{r}^{2}) \stackrel{\text{andard}}{=} \langle r \rangle_{\text{core}}^{2} + \alpha N_{b} + \eta n_{d} \stackrel{\text{right}}{\Rightarrow} \hat{T} (E0) \stackrel{\text{on}}{=} \eta (e_{n}N + e_{p}Z) \hat{n}_{d}$

The $\rho^2 = \frac{\langle f | \hat{T}(E\theta) \rangle}{e^2 R^4}$ is defined as

Beauty in Physics, Cocoyoc, May 2012

values

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in samarium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in gadolinium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in gadolinium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in gadolinium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in dysprosium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in erbium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in ytterbium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in hafnium

Beauty in Physics, Cocoyoc, May 2012

ho^2 values in tungsten

Beauty in Physics, Cocoyoc, May 2012

Conclusions

Consistent treatment of charge radii and E0 transitions assuming the same effective charges.

- Yet another application of the IBM to explain nuclear data in a simple and comprehensive fashion.
- Thanks to Franco and Akito for this model that continues to give interesting new results to this day.

Beauty in Physics, Cocoyoc, May 2012

Estimate of parameters

The `average' increase of the charge radius with particle number:

$$\left\langle r^2 \right\rangle_{\mathrm{av}} \approx \frac{3}{5} r_0^2 A^{2/3} \Longrightarrow \left| \alpha \right| \approx \frac{4}{5} r_0^2 A^{-1/3} \sim 0.2 \,\mathrm{fm}^2$$

The increase of the charge radius due to deformation:

$$\langle r^2 \rangle_{\text{def}} \approx \frac{3}{4\pi} \beta^2 r_0^2 A^{2/3} \Rightarrow \eta \approx \frac{4}{3} \left(1 + \overline{\beta}^2 \right) r_0^2 N_b^2 A^{-4/3}$$

~ 0.25 - 0.75 fm²

Effective charges from radii

Estimate with harmonic-oscillator wave

$$\begin{aligned} \left\{ r^{2} \right\}_{s} &= \frac{1}{e_{n}N + e_{p}Z} \sum_{k=1}^{A} \langle s | e_{k} r_{k}^{2} | s \rangle \\ &= \frac{3^{4/3}}{4} \frac{b^{2}}{e_{n}N + e_{p}Z} \left(e_{n}N^{4/3} + e_{p}Z^{4/3} \right) \\ &= \frac{3\sqrt[3]{2}}{5} r_{0}^{2} \frac{A^{1/3} \left(e_{n}N^{4/3} + e_{p}Z^{4/3} \right)}{e_{n}N + e_{p}Z} \end{aligned}$$

Fit for rare-earth nuclei (Z=58 to 74) gives: $r_0=1.24$ fm, $e_n=0.50e$ and $e_p=e$. Beauty in Physics, Cocoyoc, May 2012

Influence of g boson

Spherical-to-deformed transitional hamiltonian in sdg-IBM-1:

$$\hat{H} = c \left[(1 - \varsigma) (\hat{n}_d + \lambda \hat{n}_g) - \frac{\varsigma}{4N_b} Q \cdot Q \right]$$

$$Q_{\mu} = \left[s^{+} \times \tilde{d} + d^{+} \times \tilde{s}\right]_{\mu}^{(2)} - \frac{11}{14} \left[d^{+} \times \tilde{d}\right]_{\mu}^{(2)}$$

$$+\frac{9}{7} \left[d^{+} \times \tilde{g} + g^{+} \times \tilde{d} \right]_{\mu}^{(2)} - \frac{3}{14} \left[g^{+} \times \tilde{g} \right]_{\mu}^{(2)}$$

Take $\lambda = 1.5$ and let ζ vary from 0 (spherical) to 1 (deformed).

Effect of g boson on radii

Beauty in Physics, Cocoyoc, May 2012

Effect of g boson on EOs

Beauty in Physics, Cocoyoc, May 2012