Exotic Weak Decays of Atomic Nuclei

Jouni Suhonen

Department of Physics University of Jyväskylä

Beauty in Physics: Theory and Experiment, Cocoyoc, Mexico, May 14-18, 2012

Contents:

- Intro: Neutrino Properties and ββ Decays
- $\beta^{-}\beta^{-}$ Decays
- Positron-emitting/EC Decays

I. INTRO: Neutrino Properties and Double Beta Decays

Neutrino Properties and $\beta\beta$ Decays

Neutrino Properties from Experiments

Neutrino Properties from Oscillation Experiments:

From solar, atmospheric, accelerator and reactor-neutrino data (SuperKamiokande, SNO, KamLAND, etc.):

- Squared mass differences Δm^2 of neutrinos
- Matrix elements of the neutrino mixing matrix ⇔ flavor eigenstates in terms of mass eigenstates: ν_e → ν_i → ν_μ → ν_j → ν_e → ν_k → ν_μ ···

Complementary Experiments:

- Tritium beta decay (absolute neutrino mass), KATRIN
- **Double beta decay** (nature, absolute mass and hierarchy of neutrinos)

Double Beta Decay (Isobars A = 76)

MODE 1: Two-Neutrino Double Beta Decay

Two-Neutrino Double Beta Decay of ⁷⁶Ge

MODE 2: Neutrinoless Double Beta Decay

$0\nu\beta\beta$ Decay is Able to:

- Reveal if the neutrino is a Majorana particle
- Probe the neutrino effective mass $\langle m_{\nu} \rangle = \sum_{j=\text{light}} \lambda_j^{\text{CP}} |U_{ej}|^2 m_j$
- Probe the degenerate or inverted mass hierarchies (next-generation experiments!)
- Probe possibly the CP phases (nuclear matrix elements are critical!)

MASS MODE: $T_{1/2} \propto \langle m_{\nu} \rangle^2$

Neutrinoless Double Beta Decay of ⁷⁶Ge

Rates of Neutrinoless Double Beta Decays

Decay rates:

$$\frac{\ln 2}{T_{1/2}^{\alpha}(0^{+})} = g_{0\nu}^{\alpha}(0^{+}) [M^{(0\nu)'}]^2 \langle m_{\nu} \rangle^2 , \quad \alpha = \beta^{-}\beta^{-}, \, \beta^{+}\beta^{+}, \, \beta^{+} \text{EC} ,$$

 $g^{lpha}_{0
u}(0^+)$ is the phase-space factor

Effective neutrino mass:

$$\langle m_{\nu} \rangle = \sum_{j=\text{light}} \lambda_j^{\text{CP}} |U_{\text{e}j}|^2 m_j$$

Standard NME:

$$M^{(0\nu)'} = \left(\frac{g_{\rm A}}{1.25}\right)^2 \left[M^{(0\nu)}_{\rm GT} - \left(\frac{g_{\rm V}}{g_{\rm A}}\right)^2 M^{(0\nu)}_{\rm F} + M^{(0\nu)}_{\rm T}\right]$$

 $g_A = 1.25 =$ the bare-nucleon value of the axial-vector coupling constant

II. Double β^- Decays

$\beta^{-}\beta^{-}$ Decays

Comparison of the Yale and Jyväskylä NMEs

The IBM-2 results are taken from: F. Iachello, J. Barea and J. Kotila, AIP Conf. Proc. 1417 (2011) 62-68 (MEDEX'11 Workshop)

		0_{gs}^+		0_1^+
Nucleus	IBM-2	QRPA	IBM-2	QRPA
$^{48}Ca \rightarrow ^{48}Ti$	2.00	1.09 - 1.89 [1]	5.90	-
$^{76}\text{Ge} \rightarrow \ ^{76}\text{Se}$	5.46	2.28 - 4.17 [2]	2.48	2.47 - 5.38 [3]
$^{82}Se \rightarrow \ ^{82}Kr$	4.41	2.11 - 3.51 [2]	1.25	0.83 – 1.85 [3]
$^{96}{ m Zr} ightarrow ^{96}{ m Mo}$	2.53	2.00 - 2.07 [4]	0.04	1.96 (0.18) [5]
$^{100}Mo \rightarrow \ ^{100}Ru$	3.73	2.26 - 2.74 [4]	0.42	0.31 [6]
$^{110}\text{Pd} \rightarrow ~^{110}\text{Cd}$	3.62	3.63 - 4.51 [7]	1.60	0.96 – 1.73 [7]
$^{116}Cd \rightarrow \ ^{116}Sn$	2.78	2.36 - 3.98 [4]	1.05	0.25 [5]
$^{124}Sn \rightarrow \ ^{124}Te$	3.53	2.58 - 4.18 [7]	2.72	3.96 - 5.88 [7]
$^{128}\text{Te} \rightarrow \ ^{128}\text{Xe}$	4.52	2.74 - 4.15 [2]	3.24	-
$^{130}\text{Te} \rightarrow ~^{130}\text{Xe}$	4.06	2.60 - 3.78 [2]	3.09	3.88 - 6.61 [8]
$^{136} Xe \rightarrow \ ^{136} Ba$	3.35	1.83 – 2.53 [2]	1.84	2.75 - 6.08 [3]

[1] J. Suhonen, JPGA 19 (1993) 139 ; [2] J. Suhonen and O. Civitarese, NPA 847 (2010) 207 ; [3] J. Suhonen, NPA 853 (2011) 36 ; [4] J.

Suhonen and M. Kortelainen, IJMP E 17 (2008) 1 ; [5] J. Suhonen, PRC 62 (2000) 042501 ; [6] J. Suhonen, NPA 700 (2002) 649 ; [7] J.

Suhonen, NPA 864 (2011) 63 ; [8] J. Suhonen, this birthday party

The ZORRO Experiment

III. Double Positron/EC Decays

$\beta^+\beta^+$, β^+ EC and ECEC Decays

$2\nu/0\nu$ Double Positron/EC Decays

 $0\nu\beta^+\beta^+$ Decay

Final nucleus (Z - 2, N + 2)

Initial nucleus (Z, N)

 $0\nu\beta^+$ EC Decay

Two-Neutrino Double Electron Capture

Initial nucleus (Z, N)

Example: Double Positron/EC Decays

Decays of ⁷⁸Kr

Various $2\nu 2\beta$ Decay Modes of ⁷⁸Kr

Various $0\nu 2\beta$ Decay Modes of ⁷⁸Kr

Check: Beta-Decay Transitions Feeding ⁷⁸Se

Neutrinoless Double Electron Capture

Radiative 0vECEC

Final nucleus (Z-2, N+2)

Resonant 0ν ECEC

Rate of Resonant 0ν ECEC Decay

$$\frac{\ln 2}{T_{1/2}} = g^{\text{ECEC}} [M^{\text{ECEC}}]^2 \frac{\langle m_{\nu} \rangle^2 \Gamma}{(Q-E)^2 + \Gamma^2/4} , \quad Q-E = \text{ degeneracy parameter}$$

phase-space factor

$$g^{\text{ECEC}}(0^+) = \left(\frac{G_{\text{F}}\cos\theta_{\text{C}}}{\sqrt{2}}\right)^4 \frac{g_{\text{A}}^4}{4\pi^2} m_{\text{e}}^6 \mathcal{N}_{0,-1}^2 ,$$

where $\mathcal{N}_{0,-1}$ is the normalization of the relativistic K-shell(1s_{1/2}) Dirac wave function for a uniformly charged spherical nucleus

- Q = M(Z, A) M(Z 2, A) = difference between the initial and final atomic masses
- $E = E^* + E_H + E_{H'} + E_{HH'}$ = nuclear excitation energy + electron binding
- $\Gamma = \Gamma^* + \Gamma_H + \Gamma_{H'}$ = nuclear and atomic radiative widths
- NUCLEAR MATRIX ELEMENT: $M^{\text{ECEC}} = \frac{1}{R_A} M^{(0\nu)'}$, $R_A = 1.2A^{1/3}$ fm

Enhancement factors of 10⁶ possible (J. Bernabeu, A. De Rujula, and C. Jarlskog, Nucl. Phys. B 223 (1983) 15 ; Z. Sujkowski and S. Wycech, Phys. Rev. C 70 (2004) 052501(R))

Decays of ⁹⁶Ru

Various Decay Modes of ⁹⁶Ru

Various $2\nu 2\beta$ Decay Modes of ⁹⁶Ru

Various $0\nu 2\beta$ Decay Modes of ⁹⁶Ru

Jouni Suhonen (JYFL, Finland)

Cocoyoc'12 25 / 28

Transition	J_f^{π}	Q - E [keV]	At. orb.	Ref.	
$^{74}\text{Se} \rightarrow ^{74}\text{Ge}$	2+	2.23	L_2L_3	[1]	
$^{96}\mathrm{Ru} ightarrow ^{96}\mathrm{Mo}$	2+	8.92(13)	L_1L_3	[2]	
	$0^+?$	-3.90(13)	L_1L_1	Q from [2]	
$^{102}\mathrm{Pd} \rightarrow ~^{102}\mathrm{Ru}$	2+	75.26(36)	KL_3	[3]	
$^{106}Cd \rightarrow ~^{106}Pd$	$0^+?$	8.39	KK	[4], Q from [3]	· · · / / /
	$(2,3)^{-}?$	-0.33(41)	KL ₃	[3]	U U
$^{112}\text{Sn} \rightarrow ^{112}\text{Cd}$	0^{+}	-4.5	KK	[5]	
$^{136}\text{Ce} \rightarrow ^{136}\text{Ba}$	0^{+}	-11.67	KK	[6]	
$^{144}\text{Sm} \rightarrow \ ^{144}\text{Nd}$	2+	171.89(87)	KL_3	[3]	
$^{152}Gd \rightarrow \ ^{152}Sm$	0_{gs}^+	0.91(18)	KL_1	[7]	
$^{156}\text{Dy} \rightarrow ^{156}\text{Gd}$	1-	0.75(10)	KL_1	[8]	
-	0^{+}	0.54(24)	L_1L_1	[8]	
	2+	0.04(10)	M_1N_3	[8]	
$^{162}{ m Er} ightarrow ^{162}{ m Dy}$	2+	2.69(30) keV	KL ₃	[2]	
$^{168}\mathrm{Yb} ightarrow ^{168}\mathrm{Er}$	(2-)	1.52(25) keV	M_1M_3	[2]	

[1] V. Kolhinen et al., PLB 684 (2010) 17 (JYFLTRAP, JYFL); [2] S. Eliseev et al., PRC 83 (2011) 038501 (SHIPTRAP, GSI); [3] M. Goncharov et al., PRC 84 (2011) 028501 (SHIPTRAP, GSI); [4] J. Suhonen, PLB 701 (2011) 490; [5] S. Rahaman et al., PRL 103 (2009) 042501 (JYFLTRAP, JYFL); [6] V. Kolhinen et al., PLB 697 (2011) 116 (JYFLTRAP, JYFL); [7] S. Eliseev et al., PRL 106 (2011) 052504 (SHIPTRAP, GSI); [8] S. Eliseev et al., PRC 84 (2011) 012501(R) (SHIPTRAP, GSI)

Conclusions:

- The field of double β⁻ decays has livened up since many new groups have entered the field (IBM-2, energy-density functionals, ...)
- The positron emitting/electron-capture modes are less studied (smaller *Q* values, less observational potential)
- Most R0vECEC decays are NOT OBSERVABLE due to badly fulfilled resonance condition and/or tiny NME.
 Possible exceptions are: Decay of ¹⁰⁶Cd to (2,3)⁻ in ¹⁰⁶Pd (NMEs are unknown); decay of ¹⁵²Gd to the ground state of ¹⁵²Sm ; Decays of ¹⁵⁶Dy to 1⁻, 0⁺ and 2⁺ states in ¹⁵⁶Gd (NMEs are unknown)

Outlook (and recommendations):

• Reliable calculation of the NMEs of the above-mentioned decay modes, in particular for the R0*v*ECEC, should be pursued.

The U(5) Limit of Franco, Artist's View

