Flux Limits for Ultra-High Energy

Neutinos

Olaf Scholten KVI, Groningen

rijksuniversiteit groningen

may 2012

High E neutrino Physics E_v>10²² eV NuMoon@WSRT, results NuMoon@LOFAR, status Combination of exp. & modeling

Physics of Cosmic rays

Spectrum is power law Flux ~ E⁻³ Non thermal spectrum!

There must be sources!

Where? What? End point?

This talk: Physics case UHEv Measurement at highest E (NuMoon & others)

Source - Solar Flare

solar coronal mass ejection → 10 GeV particles

flows of charged particles (plasmas) result in large B-fields

Source - Active Galactic Nucleus

a possible picture

supermassive black hole 10⁸ M_{sun}

accretion disk

• jet

Transport: Cosmic Microwave Background Energetic protons loose energy through Interactions with the cosmic microwave background

Based on Lorentz Invariance, What if ...?

Production of Energetic Neutrinos

Greisen – Zatsepin – K'uzmin (GZK)

Talk

<u>The Physics Case</u> Ultra-High Energy Cosmic Rays

 Production-acceleration mechanisms?

E=10¹⁹ eV ~ 50g@100km/h

Intergalactic Transport (GZK)
 & Source
 produces neutrinos

•Challenging rate: $\approx 1 / \text{km}^2 / \text{sr} / \text{century}$ above $10^{20} \text{ eV}!$ Events have been seen above 10²⁰ eV

Go for neutrino detection

lg(E/eV)

Cosmic ray & Neutrino Detection

The Lunar Cherenkov Technique

Important magnitudes:

- Leading cloud of electrons, $v \approx c$ Typical size of order 10cm Coherent Čerenkov for $v \leq 2-5$ GHz $\cos \theta_c = 1/n$, $\theta_c = 56^\circ$ for ∞ shower length
- Length of shower, $L \approx 2-3$ m

strong angular spreading for $v \approx 100 \text{ MHz}$

Cosmic rays, Position on Moon

O.S. et al, Astropart. Phys. 26 (2006) 219

Calculations for

E_{cr}=4 10²¹ eV

With decreasing v rim inside increasing probability:

 \int over surface Moon Detection probability $\propto v^{-3}$

Lunar History

Probably formed from Mars-sized impact on the Earth.

- Lunar 'magma ocean' gradually cooled to produce an extremely uniform, differentiated crust (>20km depth).
- The solid crust is subjected to a late, heavy bombardment, forming huge impact basins.
- Nearside basins fill with lava to form mare.
- Local surface pulverised to form regolith...

NuMoon Experiment @ WSRT

11 dishes of 25 m diameter, 110-175 MHz band

may 2012 Trigger: 4o pulse in all four frequency bands

Results WSRT observations

No pulse of 240kJy seen in 46.7 h data → 90% confidence limit on neutrino flux

O.S. et al, PRL 103 (2009) 191301

Buitink, et al_{alk}A&A 521, A47 (2010).

NuMoon Experiment @ LOFAR

New generation of radio-telescopes, many (3000) simple wire antennas

- Total collecting area ≈ 0.25 km²
- Cover whole moon,
- Sensitivity 25 times better than WSRT.
- Band: 115-240 MHz
- Multiple tied-array beams

Talk

New generation telescopes: software beamforming

- Coherently add signal of antennas
- Delay determines viewing direction
- Multiple beams per station
 possible

 $\Delta r = c\Delta t$

elofar

Neutrinos

FORTE

WSRT

TD $M_{k} = 10^{24}$

 10^{4}

 ν

Conclusion: With LOFAR able to reach sensitivity level W-B estimate

dN/dE [GeV/cm²/sr/s]

 E^2

10⁻⁵

10⁻⁶

 10^{-7}

 10^{-8}

10⁻⁹

 10^{-1}

ANITA

GZK

1

WB

 10^{3}

OFAR,

SKA_{MFB}

SKA_{LFB}

 10^{2}

 $E [10^{20} eV]$

10

Conclusions

NuMoon Thank yous Francopr E > 10²³ eV forMshowing Cthat: beauty in physics lies in its simplicity

Radboud University Nijmegen

rijksuniversitei

groningen

he University of Manchester

Jodrell Bank

Observatorv

Vriie

Brussel

creation

S KVIAST ROM

BERKELEY LAB

Universiteit

NuMoon collaboration:

O.S., Stijn Buitink, Heino Falcke, Clancy James, Maaijke Mevius, Ben Stappers, Kalpana Singh, Richard Strom, Sander ter Veen Talk LORD

Lunar Orbiter for Radio Detection

Height of orbit – 500-700 km
Exposition Time ~ 2 years
Energy range of particles detection > 10²⁰eV

Expected "Luna-Globe" launch 2012

Limits for CR and Neutrino Fluxes

Experimental Hurdles

Triggering

- η sec time resolution
- Data rates too high for baseband recording: we must search for pulses in real time
- This requires fast (η sec) trigger logic

Sensitivity

- Coherent addition of signals from:
 - A large collection area
 - A wide bandwidth
- Large antenna will only see a fraction of the Moon – use many small dishes or PAF
- Significant beamforming requirements

RFI Discrimination

- Some terrestrial RFI still appears as a η sec pulse
 - car engines
 - internal electronics
 - unknown sources???
- How to determine real events with a few nanoseconds of data?

Ionospheric Dispersion

- The Earth's ionosphere smears our signals & destroys the coherency
- This drastically reduces sensitivity
- We must correct for this in real time!

Theoretical Hurdles

Maximising Sensitivity

- Do we point at the centre of the Moon or at the limb?
- What frequency to use?
- What dish size?

Directionality

- To which directions are we most sensitive?
- What parts of the sky currently have low limits?

Cosmic Rays

- These generate showers very similar to that of neutrinos.
- Are the differences important?

Reconstruction

- If we see a signal, what was the primary particle
 - Type (CR or nu)?
 - Energy?
 - Arrival direction?

Surface Roughness

- The Moon is rough on all size scales: large (hills, craters) and small (rocks & perturbations ~ 1 wavelength)
- These effects are currently not well modelled.