Microscopic Description of Quantum Phase Transitions in Nuclei

TECHNISCHE

UNIVERSITAT MUNCHEN

ТΠ

Excellence Cluster

ML

Cocoyoc, May. 17, 2012

Peter Ring

Technical University Munich

Quantum phase transitions

Covariant density functional theory

Calculations of Spectra

- Generator Coordinate Method
- axial symmetric calculations of the Ne-chain
- 5-dimensional Bohr Hamiltonian
- Order parameters
 - R42, B(E2),
 - isomer shifts,
 - E0-strength
- Conclusions

Quantum phase transitions and critical symmetries

Transition U(5) \rightarrow SU(3) in Nd-isotopes

First and second order QPT can

occur between systems characterized

by different ground-state shapes.

Control Parameter: Number of nucleons

$$E[\hat{\rho}] = \langle \Psi | H | \Psi \rangle \approx \langle \Phi | H_{eff}(\rho) | \Phi \rangle$$

$$\begin{split} |\Phi\rangle & \text{Slater determinant } \iff \hat{\rho} \text{ density matrix} \\ |\Phi\rangle = \mathcal{A}\{\varphi_1(\mathbf{r}_1) \dots \varphi_{(\mathbf{r}_A)}\} \iff \hat{\rho}(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^{A} |\varphi_i(\mathbf{r})\rangle \langle \varphi_i(\mathbf{r}')| \end{split}$$

Mean field: $\hat{h} = \frac{\delta E}{\delta \hat{\rho}}$

Eigenfunctions:
$$\hat{h} | \varphi_i \rangle = \varepsilon_i | \varphi_i \rangle$$

Interaction:
$$\hat{V} = \frac{\delta^2 E}{\delta \hat{\rho} \delta \hat{\rho}}$$

Extensions: Pairing correlations, Covariance Relativistic Hartree Bogoliubov (RHB) theory

- the basis is an effective Lagrangian with all relativistic symmetries
- it is used in a mean field concept (Hartree-level)
- with the no-sea approximation

Beautiy in Physics, Cocoyoc, May 2012

Effective density dependence:

The basic idea comes from ab initio calculations density dependent coupling constants include Brueckner correlations and threebody forces

Manakos and Mannel, Z.Phys. **330**, 223 (1988) Bürvenich, Madland, Maruhn, Reinhard, PRC **65**, 044308 (2002): **PC-F1** Niksic, Vretenar, P.R., PRC 78, 034318 (2008): **DD-PC1**

Comparision with ab-initio calculations:

Beautiy in Physics, Cocoyoc, May 2012

Adjustment to ab-initio calculations:

point coupling model is adjusted to microscopic nuclear matter:

Ground state properties of finite nuclei:

DD-PC1 Giant resonances:

T. Niksic et al, (2008)

Can a universal density functional, adjusted to ground state properties, at the same time reproduce critical phenomena in spectra ?

We need a method to derive spectra: Generator coordinate method (GCM), Adiabatic time-dependent relativistic mean field (ATDRMF)

We consider the chain of Ne-isotopes with a phase transition from spherical (U(5)) to axially deformed (SU(3))

Constraint relativistic mean field produces wave functions depending on a generator coordinate q

$$\left| \Psi \right\rangle = \int dq \, f(q) \left| q \right\rangle$$

the GCM wave function is a superposition of Slater determinants

Hill-Wheeler equation:

$$\int dq' \left[\left\langle q | H | q' \right\rangle - E \left\langle q | q' \right\rangle \right] f(q') = 0$$

$$\left|\Psi\right\rangle = \int dq f(q) \hat{P}^{N} \hat{P}^{I} \left|q\right\rangle$$

with projection:

Self-consistent RMF plus Lipkin-Nogami BCS binding energy curves of ¹⁴²⁻¹⁵²Nd, as functions of the mass quadrupole moment.

R. Krücken *et al*, PRL 88, 232501 (2002)

GCM: only one scale parameter: X(5): two scale parameters:

 $E(2_1)$ $E(2_1), BE2(2_2 \rightarrow 0_1)$

Problem of GCM at this level:

restricted to γ=0

Beautiy in Physics, Cocoyoc, May 2012

B(E2; L \rightarrow L-2) values and excitation energies for the yrast states: ¹⁴⁸Nd, ¹⁵⁰Nd, and ¹⁵²Nd, calculated with the GCM and compared with those predicted by the **X(5)**:

Beautiy in Physics, Cocoyoc, May 2012

20

18

16

14

¹⁴⁸Nd

¹⁵⁰Nd

¹⁵²Nd

G→ ⊡ X(5)

10

8

 $B(E2; L \rightarrow L-2)$ values and excitation energies for the yrast states: ¹⁴⁸Nd, 150Nd, and 152Nd, calculated with the GCM and compared with those predicted by the X(5), SU(3)

Beautiy in Physics, Cocoyoc, May 2012

20

18

16

14

¹⁴⁸Nd

¹⁵⁰Nd

→ ¹⁵²Nd G→ O X(5)

♦ ♦ SU(3)

10

8

28

B(E2; L \rightarrow L-2) values and excitation energies for the yrast states: ¹⁴⁸Nd, ¹⁵⁰Nd, and ¹⁵²Nd, calculated with the GCM and compared with those predicted by the X(5), SU(3) and U(5) symmetries.

29

20

potential energy suface:

First relativictic full 3D GCM calculations

Yao et al, PRC 81, 044311 (2010)

triaxial GCM in $q=(\beta,\gamma)$ is approximated by the diagonalization of a 5-dimensional Bohr Hamiltonian:

Bohr Hamiltonian: $H = -\frac{\partial}{dq} \frac{1}{2B(q)} \frac{\partial}{dq} + V(q) + V_{corr}(q)$

the potential and the inertia functions are calculated microscopically from rel. density functional

Theory:	Banerjee and Brink (1973) Giraud and Grammaticos (1975) Baranger and Veneroni (1978)	(from GCM) (from GCM) (from ATDHF)
Skyrme:	J. Libert, M. Girod, and JP. Delaroche (1999)	
RMF:	L. Prochniak and P. R. (2004)	
	Niksic, Li, et al (2009)	
Gogny	DelaRoche et al (2010)	

Inertia parameters:

$$\mathsf{B}_{\mu\mu'}^{\cdot}(\mathbf{q}) = \frac{1}{\hbar^2} \left(\begin{array}{c} P^* & -P \end{array} \right)_{\mu} \mathcal{M} \left(\begin{array}{c} P \\ -P^* \end{array} \right)_{\mu}$$

 $\mathcal{M} = \mathcal{M}_0 \left[\mathbb{1} + \mathcal{V} \mathcal{M}_0 \right]^{-1}$ Thouless-Valatin mass

 $\mathcal{M} = \mathcal{M}_0 - \mathcal{M}_0 \mathcal{V} \mathcal{M}_0 + \mathcal{M}_0 \mathcal{V} \mathcal{M}_0 \mathcal{V} \mathcal{M}_0 + \cdots$

An example: **Rotational inertia**

here we can use the self-consistent cranking model

neutron and proton levels for ¹⁵⁰Nd

- How much are the discontinuities smoothed out in finite systems ?
- How well can the phase transition be associated with a certain value of the control parameter that takes only integer values ?
- Which experimental data show discontinuities in the phase transition?

- Quantum phase transitions
- Covariant density functional theory
- Calculations of Spectra
 - Generator Coordinate Method
 - axial symmetric calculations of the Ne-chain
 - 5-dimensional Bohr Hamiltonian

Order parameters

- R42, B(E2),
- isomer shifts,
- E0-strength
- Conclusions

Sharp increase of $R_{42}=E(4_1)/E(2_1)$ and $B(E2;2_1-0_1)$:

Isomeric shifts in the charge radii:

Li, Niksic et al PRC 79 (2009)

Properties of 0⁺ excitations

Li, Niksic et al PRC 79 (2009)

Monopol transition strength $\rho(E0; 0_2 - 0_1)$

Li, Niksic et al PRC 79 (2009)

Conclusions:

GCM calculations for spectra in transitional nuclei

- J+N projection is important,
- triaxial calculations so only for very light nuclei possible
- microscopic theory of quantum phase transitions

Derivation of a collective Hamiltonian

- allows triaxial calculations
- nuclear spectroscopy based on density functionals
- open question of inertia parameters

The microscopic framework based on universal density functionals provides a consistent and (nearly) parameter free description of quantum phase transitions

The finiteness of the nuclear system does not seem to smooth out the discontinuities of these phase transitions

Collaborators:

- T. Niksic (Zagreb) D. Vretenar (Zagreb)
- G. A. Lalazissis (Thessaloniki)
- L. Prochniak (Lublin)
- Z.P. Li(Beijing)J.M. Yao(Chonqing)J. Meng(Beijing)

Thank you

and

Happy Birthday to you, Franco