Microscopic Description of Quantum Phase Transitions in Nuclei

Cocoyoc, May. 17, 2012

Peter Ring

Technical University Munich

Content:

- Quantum phase transitions

- Covariant density functional theory
- Calculations of Spectra
- Generator Coordinate Method
- axial symmetric calculations of the Ne-chain
- 5-dimensional Bohr Hamiltonian
- Order parameters
- R42, B(E2),
- isomer shifts,
- E0-strength
- Conclusions

Quantum phase transitions and critical symmetries

Transition $\mathrm{U}(5) \rightarrow \mathrm{SU}(3)$ in Nd-isotopes

R. Krücken et al, PRL 88, 232501 (2002)

X(5)

${ }^{150} \mathrm{Nd}$
$R=B E 2(J \rightarrow J-2) / B E 2(2 \rightarrow 0)$

First and second order QPT can occur between systems characterized
by different ground-state shapes.
Control Parameter: Number of nucleons

Density functional theory in nuclei:

$$
E[\hat{\rho}]=\langle\Psi| H|\Psi\rangle \approx\langle\Phi| H_{e f f}(\rho)|\Phi\rangle
$$

Skyrme Gogny RMF
$|\Phi\rangle \quad$ Slater determinant $\Longleftrightarrow \hat{\rho}$ densitv matrix

$$
|\Phi\rangle=\mathcal{A}\left\{\varphi_{1}\left(\mathbf{r}_{1}\right) \ldots \varphi\left(\mathbf{r}_{\mathrm{A}}\right)\right\} \Longleftrightarrow \hat{\rho}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{i=1}\left|\varphi_{i}(\mathbf{r})\right\rangle\left\langle\varphi_{i}\left(\mathbf{r}^{\prime}\right)\right|
$$

Mean field:
$\hat{h}=\frac{\delta E}{\delta \hat{\rho}}$

Eigenfunctions:
$\hat{h}\left|\varphi_{i}\right\rangle=\varepsilon_{i}\left|\varphi_{i}\right\rangle$

Interaction:

$$
\hat{V}=\frac{\delta^{2} E}{\delta \hat{\rho} \delta \hat{\rho}}
$$

Extensions: Pairing correlations, Covariance
Relativistic Hartree Bogoliubov (RHB) theory

Walecka model:

- the basis is an effective Lagrangian with all relativistic symmetries
- it is used in a mean field concept (Hartree-level)
- with the no-sea approximation

Effective density dependence:

The basic idea comes from ab initio calculations density dependent coupling constants include Brueckner correlations and threebody forces

> non-linear meson coupling: NL3
Point-coupling models with derivative terms:

adjusted to ground state properties of finite nuclei

Manakos and Mannel, Z.Phys. 330, 223 (1988)
Bürvenich, Madland, Maruhn, Reinhard, PRC 65, 044308 (2002):
Niksic, Vretenar, P.R., PRC 78, 034318 (2008):

PC-F1
DD-PC1

Comparision with ab-initio calculations:

we find excellent agreement with ab initio calculations of Baldo et al.

Adjustment to ab-initio calculations:

point coupling model is adjusted to microscopic nuclear matter:

Ground state properties of finite nuclei:

Charge isotope shifts in even-A Pb isotopes.

DD-PC1

Giant resonances:
T. Niksic et al, (2008)

Can a universal density functional, adjusted to ground state properties, at the same time reproduce critical phenomena in spectra?

We need a method to derive spectra:
Generator coordinate method (GCM),
Adiabatic time-dependent relativistic mean field (ATDRMF)

We consider the chain of Ne -isotopes with a phase transition from spherical (U(5)) to axially deformed (SU(3))

The generator coordinate method:

$$
\langle\delta \Phi| \hat{H}-q \hat{Q}|\Phi\rangle=0
$$

Constraint relativistic mean field produces wave functions depending on a generator coordinate q

$$
|\Psi\rangle=\int d q f(q)|q\rangle
$$

the GCM wave function is a superposition of Slater determinants

$$
\int d q^{\prime}\left[\langle q| H\left|q^{\prime}\right\rangle-E\left\langle q \mid q^{\prime}\right\rangle\right] f\left(q^{\prime}\right)=0
$$

Hill-Wheeler equation:
with projection:

$$
|\Psi\rangle=\int d q f(q) \hat{P}^{N} \hat{P}^{I}|q\rangle
$$

Self-consistent RMF plus Lipkin-Nogami BCS binding energy curves of ${ }^{142-152} \mathrm{Nd}$, as functions of the mass quadrupole moment.

GCM: only one scale parameter: X(5): two scale parameters:

Problem of GCM at this level:

```
E(2)
E(2), BE2(2 (2 }->0\mp@subsup{0}{1}{}
```

restricted to $\mathrm{\gamma}=\mathbf{0}$
$B(E 2 ; L \rightarrow L-2)$ values and excitation energies for the yrast states: ${ }^{148} \mathbf{N d}$, ${ }^{150} \mathbf{N d}$, and ${ }^{152} \mathbf{N d}$, calculated with the GCM:

$B(E 2 ; L \rightarrow L-2)$ values and excitation energies for the yrast states: ${ }^{148} \mathbf{N d}$, ${ }^{150} \mathrm{Nd}$, and ${ }^{152} \mathrm{Nd}$, calculated with the GCM and compared with those predicted by the $\mathbf{X (5) : ~}$

$B(E 2 ; L \rightarrow L-2)$ values and excitation energies for the yrast states: ${ }^{148} \mathbf{N d}$, ${ }^{150} \mathbf{N d}$, and ${ }^{152} \mathbf{N d}$, calculated with the GCM and compared with those predicted by the $\mathbf{X (5) , S U (3)}$

$B(E 2 ; L \rightarrow L-2)$ values and excitation energies for the yrast states: ${ }^{148} \mathbf{N d}$, ${ }^{150} \mathbf{N d}$, and ${ }^{152} \mathbf{N d}$, calculated with the GCM and compared with those predicted by the $\mathbf{X (5) , S U (3) ~ a n d ~}$ $\mathbf{U (5)}$ symmetries.

potential energy suface:

First relativictic full 3D GCM calculations

Yao et al, PRC 81, 044311 (2010)
collective wave functions:

triaxial GCM in $\mathrm{q}=(\beta, \gamma)$ is approximated by the diagonalization of a 5-dimensional Bohr Hamiltonian:

Bohr Hamiltonian: $H=-\frac{\partial}{d q} \frac{1}{2 B(q)} \frac{\partial}{d q}+V(q)+V_{\text {corr }}(q)$
the potential and the inertia functions are calculated microscopically from rel. density functional

Theory:	Banerjee and Brink (1973) Giraud and Grammaticos (1975)	(from GCM) (from GCM)
	Baranger and Veneroni (1978)	(from ATDHF)
Skyrme:	J. Libert,M.Girod, and J.--P. Delaroche (1999)	
RMF:	L. Prochniak and P.R. (2004)	
Gogny	Niksic, Li, et al (2009)	DelaRoche et al (2010)

Inertia parameters:

$$
\mathcal{M}^{-1}=\left(\begin{array}{cc}
A & -B \\
-B^{*} & A^{*}
\end{array}\right)=\mathcal{M}_{0}^{-1}+\mathcal{V}
$$

$$
\mathbf{B}_{\mu \mu^{\prime}}(\mathbf{q})=\frac{1}{\hbar^{2}}\left(P^{*}-P\right)_{\mu} \mathcal{M}\binom{P}{-P^{*}}
$$

$$
\left(\mathcal{M}_{0}^{-1}\right)_{p h p^{\prime} h^{\prime}}=\left(\epsilon_{p}-\epsilon_{h}\right)_{p p^{\prime}} \delta_{h h^{\prime}}
$$

$\mathcal{M}=\mathcal{M}_{0}\left[\mathbb{1}+\mathcal{V} \mathcal{M}_{0}\right]^{-1} \quad$ Thouless-Valatin mass
$\mathcal{M}=\mathcal{M}_{0}-\mathcal{M}_{0} \mathcal{V} \mathcal{M}_{0}+\mathcal{M}_{0} \mathcal{V}_{0} \mathcal{V}^{\mathcal{V}} \mathcal{M}_{0}+\cdots$.
An example:
Rotational inertia here we can use the self-consistent cranking model

Potential energy surfaces:

$\begin{array}{cccccc}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\ \beta & 0.7\end{array}$

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7\end{array}$

Beautiy in Physics, Cocoyoc, I

neutron and proton levels for ${ }^{150} \mathrm{Nd}$

Questions:

- How much are the discontinuities smoothed out in finite systems?
- How well can the phase transition be associated with a certain value of the control parameter that takes only integer values ?
- Which experimental data show discontinuities in the phase transition?

Content:

- Quantum phase transitions
- Covariant density functional theory
- Calculations of Spectra
- Generator Coordinate Method
- axial symmetric calculations of the Ne-chain
- 5-dimensional Bohr Hamiltonian
- Order parameters
- R42, B(E2),
- isomer shifts,
- E0-strength
- Conclusions

Sharp increase of $R_{42}=E\left(4_{1}\right) / E\left(2_{1}\right)$ and $B\left(E 2 ; 2_{1}-0_{1}\right)$:

Isomeric shifts in the charge radii:

Properties of 0^{+}excitations

Monopol transition strength $\rho\left(\mathrm{EO} ; \mathrm{O}_{2}-\mathrm{O}_{1}\right)$

Fission barrier and super-deformed bands

in ${ }^{240} \mathrm{Pu}$

Niksic et al PRC 79 (2009)
4

0
DD-PC1

SD-1

SD-1
g.s. $\beta \quad \gamma$

Exp.

Conclusions:

GCM calculations for spectra in transitional nuclei

- $\mathrm{J}+\mathrm{N}$ projection is important,
- triaxial calculations so only for very light nuclei possible
- microscopic theory of quantum phase transitions

Derivation of a collective Hamiltonian

- allows triaxial calculations
- nuclear spectroscopy based on density functionals
- open question of inertia parameters

The microscopic framework based on universal density functionals provides a consistent and (nearly) parameter free description of quantum phase transitions

The finiteness of the nuclear system does not seem to smooth out the discontinuities of these phase transitions

Collaborators:

T. Niksic (Zagreb)
D. Vretenar (Zagreb)

G. A. Lalazissis (Thessaloniki)
L. Prochniak (Lublin)
Z.P. Li (Beijing)
J.M. Yao (Chonqing)
J. Meng (Beijing)

Thank you

and

Happy Birthday to you, Franco

