Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties

Cocoyoc 2012

- · Something about graphene and microwave billiards
- Dirac spectrum in a photonic crystal
 - Experimental setup
 - Transmission and reflection spectra
- Photonic crystal in a box: Dirac billiards
 - Measured spectra
 - Density of states
 - Spectral properties
- Outlook

Supported by DFG within SFB 634 S. Bittner, B. Dietz, J.Isensee, T. Klaus, M. Miski-Oglu, A. R., C. Ripp N.Pietralla, L. von Smekal, J. Wambach

Nobel Prize in Physics 2010

Andre Geim

Photo: University of Manchester, UK

Konstantin Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

2012 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 3

Graphene

- "What makes graphene so attractive for research is that the spectrum" closely resembles the Dirac spectrum for massless fermions." M. Katsnelson, Materials Today, 2007
- Two triangular sublattices of carbon atoms
- Near each corner of the first hexagonal Brillouin zone the electron energy E has a conical dependence on the quasimomentum
- $E = \hbar v_F k$ but low $v_F \approx c/300$
- Experimental realization of graphene in analog experiments of microwave photonic crystals

Quantum Billiards and Microwave Billiards

2012 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 4

Measurement Principle

• Measurement of scattering matrix element S₂₁

Open Flat Microwave Billiard: Photonic Crystal

- A photonic crystal is a structure, whose electromagnetic properties vary periodically in space, e.g. an array of metallic cylinders
 - \rightarrow open microwave resonator

- Flat "crystal" (resonator) \rightarrow E-field is perpendicular to the plates (TM₀ mode)
- Propagating modes are solutions of the scalar Helmholtz equation
 - \rightarrow Schrödinger equation for a quantum multiple-scattering problem
 - \rightarrow Numerical solution yields the band structure

Calculated Photonic Band Structure

• Dispersion relation $\omega(\vec{k})$ of a photonic crystal exhibits a band structure analogous to the electronic band structure in a solid

- The triangular photonic crystal possesses a conical dispersion relation \rightarrow Dirac spectrum with a Dirac point where bands touch each other
- The voids form a honeycomb lattice like atoms in graphene

Effective Hamiltonian around the Dirac Point

 δk_y

• Close to Dirac point the effective Hamiltonian is a 2x2 matrix

$$\hat{H}_{\text{eff}} = \omega_D \mathbb{1} + v_D \left(\delta k_x \hat{\sigma}_x + \delta k_y \hat{\sigma}_y \right)$$

• Substitution $\delta k_x \rightarrow -i\partial_x$ and $\delta k_y \rightarrow -i\partial_y$ leads to the Dirac equation

$$\begin{pmatrix} 0 & \partial_x - i\partial_y \\ \partial_x + i\partial_y & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = i \frac{\omega - \omega_D}{v_D} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

- Experimental observation of a Dirac spectrum in open photonic crystal (S. Bittner *et al.*, PRB **82**, 014301 (2010))
- Scattering experiment

Scattering Experiment

- Horn antenna emits approximately plane waves
- VNA measures the modulus of the scattering matrix given by $|S_{ba}|^2 = \frac{P_b}{P_a}$
- Transmission: $|S_{ab}|^2$, $|S_{ba}|^2$
- Reflection: $|S_{aa}|^2$, $|S_{bb}|^2$

Experimental Realization of 2D Photonic Crystal

- # cylinders: 23 x 38 = 874
- Cylinder radius: R = 5 mm
- Lattice constant: a = 20 mm
- Crystal size: 400 x 900 x 8 mm
- Frequency: f_{max}=19 GHz

• First step: experimental observation of the band structure

Transmission through the Photonic Crystal

- Transmission spectrum possesses two stop bands
- Comparison with calculated band structure

Projected Band Diagram

- The density plot of the 1st frequency band
- The projected band diagram along the irreducible Brillouin zone ΓMK
- The 1st and 2nd frequency bands touch each other at the corners of the Brillouine zone \rightarrow Dirac Point

Transmission through the Photonic Crystal

- The positions of measured stop bands coincide with the calculated ones \rightarrow lattice parameters chosen correctly
- Dirac point is not sufficiently pronounced in the transmission spectra
 → single antenna reflection measurement

Single Antenna Reflection Spectrum

Measurement with a wire antenna *a* put through a drilling in the top plate
 → point like field probe

- Characteristic cusp structure around the Dirac frequency
- Van Hove singularities at the band saddle point $|\vec{\nabla}_k \, \omega(\vec{k})| = 0$
- Next: analysis of the measured spectrum

Local Density of States and Reflection Spectrum

- The scattering matrix formalism relates the reflection spectra to the local density of states (LDOS)
 - $1 |S_{aa}(f)|^2 \propto L(\vec{r}_a, f)$
- LDOS

$$L(\vec{r},f) \propto \int_{BZ} |\psi(\vec{k},\vec{r})|^2 \frac{1}{2\pi} \delta(f-f(\vec{k})) d^2k$$

• LDOS around the Dirac point (Wallace, 1947)

$$L(\vec{r_a}, f) \sim \frac{\langle |\psi(\vec{r_a})|^2 \rangle}{v_D^2} \left| f - f_D \right|$$

• Three parameter fit formula $|S_{aa}(f)|^2 = D - C |f - f_D|$ fit parameters

Reflection Spectra

• Description of experimental reflection spectra $|S_{aa}(f)|^2 = D - C |f - f_D|$

- Experimental Dirac frequencies agree with calculated one, f_D =13.81 GHz, within the standard error of the fit
- Oscillations around the mean intensity \rightarrow origin?

Comparison with STM Measurements

- Tunneling conductance is proportional to LDOS
- Similarity with measured reflection spectrum of the photonic crystal
- Oscillations in STM are not as pronounced due to the large sample size
- Finestructure in the photonic crystal shows fluctuations (RMT)

Summary I

- Connection between reflection spectra and LDOS is established
- Cusp structure in the reflection spectra is identified with the Dirac point
- Photonic crystal simulates one particle properties of graphene
- Results are published in Phys. Rev. B 82 014301 (2010)
- Measured also transmission near the Dirac Point
- Dirac billiards

Dirac Billiard

• Photonic crystal \rightarrow box: bounded area = billiard

- 888 cylinders (scatterers) milled out of a brass plate
- Height $d = 3 \text{ mm} \rightarrow f_{max}^{2D} = 50 \text{ GHz}$ for 2D system
- Lead plated \rightarrow superconducting below 7.2 K \rightarrow high Q value
- Boundary does not violate the translation symmetry \rightarrow no edge states
- Relativistic massless spin-one half particles in a billiard (Berry and Mondragon, 1987)

Transmission Spectrum at 4 K

TECHNISCHE

UNIVERSITÄT DARMSTADT

Density of States of the Measured Spectrum and the Band Structure

- Positions of stop bands are in agreement with calculation
- DOS related to slope of a band
- Dips correspond to Dirac points
- High DOS at van Hove singularities → ESQPT?
- Flat band has very high DOS
- Qualitatively in good agreement with prediction for graphene

(Castro Neto et al., RMP 81,109 (2009))

Integrated Density of States: 1st and 2nd Bands

- Does not follow Weyl law for 2D resonators ($N_{Weyl}(f) = \frac{4\pi A}{c^2}f^2$)
- Small slope at the Dirac frequency \rightarrow DOS nearly zero
- Nearly symmetric with respect to the Dirac frequency
- Two parabolic branches

• Weyl law for Dirac billiard $N(k) = \frac{A}{2\pi}k^2 + \frac{U_{zz}}{\pi}k + C$ (J. Wurm *et al.*, PRB **84**, 075468 (2011))

- U_{zz} is length of zigzag edges $k = 2\pi \frac{|f f_D|}{m\pi}$
- group velocity v_D is a free parameter
- Same area A for two branches, but different group velocities $\rightarrow \alpha \neq \beta$ \rightarrow electron-hole asymmetry like in graphene

Spectral Properties of a Rectangular Dirac Billiard: Nearest Neighbour Spacing Distribution

- 159 levels around Dirac point
- Rescaled resonance frequencies such that $\langle s_i \rangle = 1$
- Poisson statistics
- Similar behavior at second Dirac point

TECHNISCHF

UNIVERSITÄT DARMSTADT

NND: 3rd Band

- Very dense spectrum $\langle \Gamma \rangle / \langle D \rangle \approx 10^{-1}$
- Unfolding with a polynom of 8th order
- Missing levels?
- Seems to agree with GOE

Summary II

- Photonic crystal simulates one particle properties of graphene
- Observation of edge states in the Dirac billiard (not shown)
- Realisation of superconducting microwave Dirac billiard i.e. photonic crystal in a metallic box serves as a model for a relativistic quantum billiard
- Experimental DOS agrees with calculated photonic band structure
- Fluctuation properties of the spectrum were investigated
- Open problems:
 - (i) Length spectrum of periodic orbits
 - (ii) Do we see an excited state quantum phase transition?

Excited State Quantum Phase Transitions

• Francesco lachello at the "6th International Workshop in Shape-Phase Transitions and Critical-Point Phenomena in Nuclei" Darmstadt 2012

- Control parameter ξ
- At the separatrix the density of states diverges (Caprio, Cejnar, Iachello,2008)

Excited State Quantum Phase Transition in Dirac Billiard

saddle point

• Experimental density of states in the Dirac billiard

- Van Hove singularities at saddle point: density of states diverges at *k*=M
- Possible control parameters
 - chemical potential

•

• sublattice dependent potential

Personal Remarks

