The Beauty of Good Data: Unveiling the Traces of Mixed Symmetry

Norbert Pietralla, TU Darmstadt + his group and collaborators...

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

On March 16th, 1976, Franco lachello...

TECHNISCHE UNIVERSITÄT DARMSTADT

...invented the IBM-2

Arima, Ohtsuka, Iachello, Talmi, PLB 66 (1977) 205.

Xerox-copy of Franco's log-book

Outline

IBM-2: Inspiration & Challenge for Experimentalists

Reminder at main features

Focus: Mixed-Symmetry States (MSSs)

Some historical milestones

- Scissors Mode: ¹⁵⁶Gd and Systematics
- Vibrational MSSs
- "Complete" spectroscopy from Projectile-COULEX

Recent Developments

- First solid ID of MSS in RIB-experiment
- Systematics in A=130 mass region
- Quadrupole Transition Radii

Summary

Quadrupole Vibrations with Mixed Symmetry

Mixed-Symmetry States at the Analytical Limits

Discovery of Scissors mode: deformed nuclei

¹⁵⁶Gd(γ,γ')

Darmstadt, 1983 Achim Richter

 $Ga(\gamma, \gamma')$ $E_{\gamma}^{max} = 3.5 \text{ MeV}$ $\theta = 127^{\circ}$ $\theta = 127^{\circ}$ $Ga(\gamma, \gamma')$ $E_{\gamma}^{max} = 3.5 \text{ MeV}$ $\theta = 127^{\circ}$ $Ga(\varphi, \varphi')$ $E_{\gamma}^{max} = 3.5 \text{ MeV}$ $\theta = 127^{\circ}$ $Ga(\varphi, \varphi')$ $E_{\gamma}^{max} = 3.5 \text{ MeV}$ $\theta = 127^{\circ}$ $Ga(\varphi, \varphi')$ $E_{\gamma}^{max} = 3.5 \text{ MeV}$ $\theta = 127^{\circ}$ $Ga(\varphi, \varphi')$ $E_{\gamma}^{max} = 3.5 \text{ MeV}$ $\theta = 127^{\circ}$ $\theta = 165^{\circ}$ $\theta = 165^{\circ}$ $H_{2,8}^{max} = 3.5 \text{ MeV}$

D. Bohle et al. / Orbital M1 strength

6

Counts(arbitrary units)

Predicted by Lo Iudice & Palumbo, 1978 @ 3 MeV: Iachello, 1981 in IBM-2

Bohle *et al*., NPA 458, 205 (1986). DALINAC data

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Collectivity of the Scissors Mode

⁹⁴Mo: the "hydrogen atom" for MS structure

Identification of One- and Two-phonon MSSs

N.Pietralla, C.Fransen et al., Phys.Rev.Lett.83, 1303 (1999). N.Pietralla, C.Fransen et al., Phys.Rev.Lett.84, 3775 (2000). C.Fransen, N.Pietralla et al., Phys.Lett.B 508, 219 (2001). C.Fransen, N.Pietralla et al., Phys.Rev.C 67, 024307 (2003).

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Projectile-Coulomb Excitation

- Gamma-ray angular distribution
 - gamma-ray multipolarities
 - spin quantum numbers
- Gamma intensity
 - Decay branching ratios
 - Total population of levels
 - \succ Excitation cross section σ
 - Absolute transition rates

CoulEx of Mixed-Symmetry States

TECHNISCHE UNIVERSITÄT DARMSTADT

Observe 2+_{1,2,3,4,5,6} up to 2.7 MeV

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Systematics of $B(M1;2_i^+ \rightarrow 2_1^+)$ on proton number

TECHNISCHE UNIVERSITÄT

DARMSTADT

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Firm Observation of MSS in an Unstable Nucleus

M.Danchev, G.Rainovski, NP et al., PRC 84, 061306(R) (2011) 132

ms **69**[•] Compton Edge **E**2 **E**2 $^{132}_{52}$ Te₈₀ = $^{132}_{50}$ Sn₈₂ + 2p + 2n⁻¹ $B(M1;2^+_{ms} \rightarrow 2^+_{fs}) > 0.2 \ \mu_N^2$ $B(E2;2^+_{ms} \rightarrow 0^+_{fs}) = 0.4 \text{ W.u.}$ Energy (keV)

¹³²Te: 2 valence protons and neutrons = key nucleus for testing shell model

Oak Ridge - Data

Systematics along the N=80 Isotopic Chain

> ¹³²Te is radioactive

Emerging information on $B(M1; 2^+; \rightarrow 2^+_2)$

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Shell Structure of ⁹²Zr

- 2 valence protons and 2 valence neutrons
- Low-energy structures dominated by ν(2d_{5/2}) and π(1g_{9/2}) orbitals
- Neutron excitations slightly favored

Electron and Proton Scattering on A = 90

O.Burda et al., Phys.Rev.Lett. 99, 093502 (2007)

 One-phonon states are strongly excited in (e,e') and (p,p') scattering experiments

Superconducting-DArmstadt LINear electron ACcelerator (S-DALINAC)

- 130 MeV in-house electron linac
- $TM_{010} \pi$ -mode acceleration
- "cw" beam at 3 GHz ("S"-band)
- Ideal for nuclear structure studies

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Thanks to

- ✓ State of Hesse
- ✓ TU Darmstadt
- ✓ DFG

Transition Form Factors for ⁹²Zr

Diffraction pattern in (p,p') shifted to higher momentum transfers for MSS
>MSS has smaller matter transition radius than FSS! p-n-phase?

C.Walz et al., Phys. Rev. Lett. 106, 062501 (2011)

 $F(2_{2}^{+})/F(2_{1}^{+})$ from (e,e') Ratio of form factors $B(E2, k_2)$ 0.80 = ratio of B(E2) at photon point 0.70 Flat curve as a function of q² (e, e') this work From γ transitions 0.60 Identical E2 charge transition radii within uncertainties 0.0 0.1 0.3 0.2 q^2 (fm⁻²) ■ $R_{ch,tr}(2_{2}^{+}) \approx R_{ch,tr}(2_{1}^{+})$

Transition Form Factors for ⁹²Zr

Diffraction pattern in (p,p') shifted to higher momentum transfers for MSS
>MSS has smaller matter transition radius than FSS! p-n-phase?

C.Walz et al., Phys. Rev. Lett. 106, 062501 (2011)

Microscopic analysis of the one-phonon vibrations: transition strengths

- M1 strength dominated by p and n valence-shell components
- E2 strength dominated by cross-shell components (coupling to GQR)

Simplify to Three-State-Model (TSM)

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Consequences for the Transition Densities

Transition Densities from the Collective Part

Inclusion of Valence Shell Component

Transition Form Factors for ⁹²**Zr**

Pattern-shift to higher momentum transfers for MSS in (p,p')

Consequence of the negative sign of the neutron valence-shell component (with a node! Because of n=2)

➤The quantum mechanical phases have been accessible !

C.Walz *et al.*, Phys. Rev. Lett. **106**, 062501 (2011)

Evidence for relative quantum phase from inelastic proton scattering

C.Walz et al., PRL 106, 062501 (2011)

- MSS has smallest matter transition radius of all observed 2⁺ states (here for ⁹⁴Mo).
- This is consequence of the outof-phase coupling of proton and neutron contributions to the mixed-symmetry wave function.
- New signature for the 2⁺_{ms} state.
- Formation of MSS itself is a consequence of the emerging of nuclear collectivity.

S-DALINAC: Beauty in Technology

Conclusions

- IBM-2 still a constant source of inspiration
- MSSs remain a challenge
 - How access multi-phonon MSSs?
 - Evolution with N,Z (energy, strength)
- Transition radii can show relative phase for valence protons and neutron contributions
- Thank you for years of inspiration!

Happy Birthday, Franco

29. Start 22021 || Notobert Frietral tage Belauty aim Playsics 22021 || Bara Otyteo Provide Bata upling from Scattering Experiments on 92Zr

sd-IBM 1 Fit: ¹²⁴Xe

 $\lambda/\kappa \rightarrow E(8_{1}^{+})-E(5_{1}^{+})=533 \text{ keV}$

 $\begin{array}{l} \lambda/\kappa \rightarrow E(6_1)^{-E(5_1)} - 535 \ \text{KeV} \\ \beta/\kappa \rightarrow \text{Energy distance GS band} \\ \epsilon/\kappa, \chi \rightarrow R_0 = B(E2;0^+_2 \rightarrow 2^+_1)/B(E2;0^+_2 \rightarrow 2^+_2); \\ R_{\chi} = B(E2;2^+_2 \rightarrow 0^+_1)/B(E2;2^+_2 \rightarrow 2^+_1); \\ \kappa, e_B \rightarrow E(2^+_1); \ B(E2;2^+_1 \rightarrow 0^+_1) \end{array}$

H_{T-ECQF} =ε n_d + λ LL + κ Q^XQ^X + β C₂(O(5))

¹²⁴Xe from V. Werner et al, Nucl. Phys. A 692, 451 (2001)

14. May 2012 | Norbert Pietralla @ Beauty in Physics 2012 | Beauty of Good Data

Model pn-symmetry in valence shell:

M1 Transitions as Experimental Signatures for Mixed-Symmetry States

$$T(M1) \propto (g_{\pi} - g_{\nu}) \left([d_{\pi}^{+} \tilde{d}_{\pi}]^{(1)} - [d_{\nu}^{+} \tilde{d}_{\nu}]^{(1)} \right) + \mathcal{L}_{\text{tot}}$$
$$g_{\pi} \approx 1 \ \mu_{N} \ , \quad g_{\nu} \approx 0 \ \mu_{N}$$

New information on mixedsymmetry states will be the topic for the remaining part of this talk.

Evidence for common structure of MSSs

