Excited state quantum phase transition and chaos in the Dicke model

Beauty in Physics: Theory and Experiment
Quantum phase transitions (QPT’s) describe the change in the ground state wave function of a many particle system due to quantum fluctuations.

An excited quantum phase transition (ESQPT) is similar to a QPT but affecting to excited states.

We study the relationship between ESQPT and chaos in the Dicke model.
We consider a single-mode bosonic field (HW(1)) interacting with an algebraic subsystem:

- \(SU(2) \rightarrow HW(1) \otimes SU(2) \).

Operators for HW(1): \(b^\dagger, b \).

Operators for SU(2): \(J_\pm = J_1 \pm iJ_2, \; J_0 = J_3 \).

Commutation relation of SU(2) algebra:

\[
[J_0, J_\pm] = \pm J_\pm, \quad [J_+, J_-] = 2J_0
\]
Dicke and Jaynes-Cumming models

- Its generators can be constructed from fermionic operators:

\[
J_+ = \sum_{i=1}^{2j} a_{i \uparrow}^\dagger a_{i \downarrow}, \quad J_- = \sum_{i=1}^{2j} a_{i \downarrow}^\dagger a_{i \uparrow}, \quad J_0 = \frac{1}{2} \sum_{i=1}^{2j} (a_{i \uparrow}^\dagger a_{i \uparrow} - a_{i \downarrow}^\dagger a_{i \downarrow})
\]

- The Hamiltonian reads:

\[
H_2 = \omega_0 J_0 + \omega b^\dagger b + \frac{\lambda}{\sqrt{M_3}} \left(b J_+ + b^\dagger J_- \right)
\]

\[
H_3 = \omega_0 J_0 + \omega b^\dagger b + \frac{\lambda}{\sqrt{M_2}} \left((b + b^\dagger)(J_- + J_+) \right)
\]
The Models: Jaynes-Cummings and Dicke model

- $H_2 \rightarrow$ Tavis(Jaynes)-Cummings Model.
 - It conserves the quantity:
 \[M_2 = 2(N_b + J_0 + j) \]

- $H_3 \rightarrow$ Dicke Model.
 - This model violates the conservation of M_2, but it still conserves the parity:
 \[\Pi = (-1)^{M_2/2} \]
 - M_3 is defined as $M_3 = 4j$.

\[\text{P. Pérez Fernández} \quad \text{ESQPT and chaos in the Dicke model} \]
The Models: Classical limits

Coherent states

\[|\psi\rangle = |\zeta\rangle \otimes |\xi\rangle, \]
\[|\zeta\rangle \propto e^{\zeta b^\dagger} |0\rangle, \]
\[|\xi\rangle \propto e^{\xi \hat{J}^+} |j, -j\rangle \]

Holstein-Primakoff transformation + position and momentum operators

\[J_+ = c^\dagger \sqrt{2j - c^\dagger c}, \]
\[J_- = \sqrt{2j - c^\dagger c} c, \]
\[J_0 = c^\dagger c - j \]
The Models: Classical limits

Coherent state for the HW(2) algebra

\[|\zeta, \xi \rangle \propto e^{\zeta b^\dagger + \xi c^\dagger} |0\rangle \]

Semiclassical approximation

\[\frac{c}{\sqrt{M_n}} = \frac{\hat{x} + i\hat{p}}{\sqrt{2}} \]
\[\frac{b}{\sqrt{M_n}} = \frac{\hat{y} + i\hat{q}}{\sqrt{2}} \]
\[[\hat{x}, \hat{p}] = [\hat{y}, \hat{q}] = \frac{i}{M_n} \]
QPT Dicke model is well known: \(\lambda_{QPT} = \sqrt{\frac{\omega \omega_0}{2}} \). (C. Emary and T. Brandes, Phys. Rev. E 67, 066203).

QPT for Jaynes-Cummings: \(\lambda_{QPT} = \frac{|\omega_0 - \omega|}{\sqrt{2}} \).

\[
H_n = H_{n0} + \lambda H'_n
\]
\[
H_{10} = -\frac{R_1 \omega_0}{2} + \frac{\omega_0}{2} (p^2 + x^2) + \frac{\omega}{2} (q^2 + y^2)
\]
\[
H'_1 = \sqrt{2R_1 + (p^2 + x^2)(xy + pq)}/\sqrt{2}
\]
The Models: Classical limits

P. Pérez Fernández
ESQPT and chaos in the Dicke model
Order parameters

\[\langle \hat{J}_z \rangle = \langle \hat{J}_z \rangle_c + A |E - E_c|^{\alpha} \]
ESQPT and onset of Chaos

Regular regime \rightarrow Poisson: $P(s) = e^{-s}$
Chaotic regime \rightarrow Wigner: $P(s) = \frac{\pi}{2}se^{-\pi s^2/4}$

$E < E_c$

$E > E_c$
ESQPT and onset of Chaos

\[F(s) = \int_0^s dx P(x) \]

\[\Delta = \frac{\sum_i (F^w(s_i) - F(s_i))^2}{\sum_i (F^w(s_i) - F^p(s_i))^2} \]
We have studied the Dicke and Jaynnes-Cummings model. We have demonstrated the existence of an ESQPT in two models describing the collective matter-light interaction. We have calculated the value for λ_{QPT} using a semiclassical approximation for the Jaynnes-Cummings model. For the Jaynes-Cummings model, the ESQPT leads to a neat nonanalyticity of the order parameter $\langle J_z \rangle$ at the critical energy E_c.
The Dicke model exhibits a similar type of ESQPT than the Jaynes-Cummings model, but with signatures blurred by the onset of chaotic behaviour in the spectrum.

Our numerical calculations show that a crossover from the regime with no level repulsion to the one with the Wigner level statistics takes place precisely around the critical energy. These results are compatible with the hypothesis that the abrupt emergence of level repulsion is caused by the precursors of the ESQPTs.

We anticipate the existence of a similar qualitative behaviour in other non-integrable systems with ESQPTs.