Interacting boson model from microscopic theory

Kosuke Nomura (Tokyo --> Köln)
Beauty in Physics @ Cocoyoc, May 2012

IBM and its "microscopic foundation"

- collective pairs of valence nucleons
- shell-model derivation for modest deformation

Building blocks

Nucleon
Boson

Refs:

- A. Arima \& F. Iachello (1974)
- T. Otsuka, A. Arima \& F. Iachello (1978)
- T. Mizusaki \& T. Otsuka (1997)

SD nucleon space sd boson space
Q. How to derive IBM for general cases?

Energy density functional (EDF)

- Mean-field model with EDFs: Skyrme, Gogny, RMF, etc. for nuclear properties. Universal.
- Textbook: P. Ring \& P. Schuck (1985)
- Review: M. Bender et al. RMP (2003)

- Methods to derive spectra (with symmetry restoration and/or fluctuation of collective variables). Complicated. much involved for well deformed and/or triaxial configs.
- Skyrme-GCM: M. Bender \& P.-H. Heenen PRC (2008)
- Gogny-5DCH: J.-P. Delaroche et al. PRC (2010)
- RMF-GCM: J. M. Yao et al. PRC (2011)
Q. Exploit the merit of EDF to formalize the IBM ?

Potential energy surface

- intuitive picture of geometry, deformation, QPT, ...
- For spectroscopy, it is also suitable to start with.
(e.g., GCM, 5-dim. Collective Hamiltonian)
- then, can we construct IBM Hamiltonian in a similar way?

Contents of the talk

1. Introduction
2. Basics, and application to axially-deformed case

Derive IBM Hamiltonian from EDF, Sph.-Def. transition
3. Shape phenomena involving triaxiality

Shape coexistence, prolate-oblate transition in A~190
4. Robust regularity in triaxially-shaped systems
5. Summary

Basics, and

axially-deformed nuclei

Refs. Phys. Rev. Lett. 101, 142501 (2008) Phys. Rev. C 81, 044307 (2010)
Phys. Rev. C 83, $041302(R)$ (2011)

"Mapping" the energy surfaces

IBM parameters are obtained through this process.
Diagonalize boson Hamiltonian \Rightarrow Spectra \& transition rates

Geometry in IBM

- Simplest Hamiltonian (up to two body) oblate

$$
\begin{gathered}
\hat{H}_{\mathrm{IBM}}=\epsilon(\underbrace{\left.\hat{n}_{d \pi}+\hat{n}_{d v}\right)+\kappa \underbrace{\hat{Q}_{\pi} \cdot \hat{Q}_{v}}_{\text {Def. Driving }}}_{\text {Sph. Driving }} \begin{array}{c}
\hat{n}_{d \rho}=d_{\rho}^{\dagger} \cdot \tilde{d}_{\rho} \quad \hat{Q}_{\rho}=s_{\rho}^{\dagger} \tilde{d}_{\rho}+d_{\rho}^{\dagger} \tilde{s}_{\rho}+\chi_{\rho}\left[d_{\rho}^{\dagger} \tilde{d}_{\rho}\right]^{(2)}
\end{array}
\end{gathered}
$$

- Coherent state

$$
|\Phi\rangle=\prod_{\rho=\pi, v} \frac{1}{\sqrt{N_{\rho}!}}\left(\lambda_{\rho}^{\dagger}\right)^{N_{\rho}}|0\rangle \quad \lambda_{\rho}^{\dagger}=\frac{1}{\sqrt{1+\beta_{\rho}^{2}}}\left[s_{\rho}^{\dagger}+d_{\rho 0}^{\dagger} \beta_{\rho} \cos \gamma_{\rho}+\frac{1}{\sqrt{2}}\left(d_{\rho+2}^{\dagger}+d_{\rho-2}^{\dagger}\right) \beta_{\rho} \sin \gamma_{\rho}\right]
$$

- Energy surface

$$
E\left(\beta_{B}, \gamma_{B}\right)=\langle\Phi| \hat{H}_{\mathrm{IBM}}|\Phi\rangle \quad\left\{\begin{array}{l}
\beta_{\pi}=\beta_{v} \equiv \beta_{B}(\propto \beta) \\
\gamma_{\pi}=\gamma_{v} \equiv \gamma_{B}(=\gamma)
\end{array}\right.
$$

This encompasses entire class of symmetries for intrinsic shape.

Wavelet transform

cf. G. Kaiser, "A Friendly Guide to Wavelets" (1994)

- extracts global features of PES: curvature, minimum, ...
- hence, eliminating any irrelevant local pattern.

$$
|\tilde{E}(\delta \beta, \beta)|^{2}
$$

For axial symmetry,

$$
\underset{\substack{\text { Pcasition } \\ \uparrow}}{\substack{\text { Scale (frequency) }}} \underset{\substack{\text { Signal (Energy surface) }}}{\uparrow}
$$

Example - Ba isotopes

Derived IBM parameters
Energy surfaces

Problem with deformed rotor

- Moment of inertia is too underestimated in IBM when formulated microscopically. Why ?
- Boson's intrinsic wave function is different in its change with the rotation from the nucleon's.

Rotational "response"

Principal idea:

- Rotational response of a fixed shape at equilibrium should be reproduced. Hence, PES is kept the same.
- To do this, LL term becomes necessary.

Impact on rotational bands

Spherical-deformed shape transition

Scissors mode

- isovector collective excitation of valence shells
- observed in general two-fluid quantal systems: Trapped BEC, elliptically deformed quantum dots, ...
- strong $1^{+} \rightarrow 0^{+} \mathrm{M} 1$ transition:
characteristic of proton-neutron IBM (IBM-2).

Fixing parameters of Majorana term:
from isovector constraint on quad. mom.

$$
\begin{aligned}
\hat{M}_{\pi v}= & \frac{1}{2} \xi_{2}\left[d_{\pi}^{\dagger} s_{v}^{\dagger}-s_{\pi}^{\dagger} d_{v}^{\dagger}\right]^{(2)} \cdot\left[\tilde{d}_{\pi} s_{v}-s_{\pi} \tilde{d}_{v}\right]^{(2)} \\
& +\sum_{k=1,3} \xi_{k}\left[d_{\pi}^{\dagger} d_{v}^{\dagger}\right]^{(k)} \cdot\left[\tilde{d}_{\pi} \tilde{d}_{v}\right]^{(k)}
\end{aligned}
$$

from isovector rotational oscillation
With the Majorana term, $1+$ level ($\sim 3 \mathrm{MeV}$) and $\mathrm{B}\left(\mathrm{M1} ; 1^{+} \rightarrow 0^{+}\right)$of $2.7 \mu \mathrm{~N}^{2}$ (expt: $2.65 \mu \mathrm{~N}^{2}$) are reproduced for axially-deformed nucleus.

Scissors $1+$ level

Shape phenomena involving triaxiality

Refs: Phys. Rev. C 83, 014309 (2011) Phys. Rev. C 83, 054303 (2011)

Nuclear structure in A~190 region

Rich in nuclear shape phenomena:
Prolate-oblate shape transition, shape-coexistence, competing singleparticle and collective dynamics, etc.

- Evidence for O(6) sym. (Casten \& Cizewski, 1978)
- Shape coexistence (Review: Andreyev et al., 2005; Heyde \& Wood, 2011)

Relevant theoretical works: (beyond) mean field, phenomenological IBM, etc...

- Configuration mixing in IBM for Hg (Duval \& Barrett, 1982)
- Nilsson-Strutinsky method for Pb-Hg (W. Nazarewicz, 1993)
- Skyrme+GCM for Pb (T. Duguet et al., 2003; M. Bender et al., 2004)
- Gogny+GCM for Pb (R. Rodríguez-Guzmán et al., 2004)

Shape coexistence

K.N., R. Rodriguez-Guzman et al., in preparation (2012)

- Mix IBM Hamiltonian for cross-shell (Op-Oh, 2p2h, ...) excitations, using Duval-Barrett's procedure (1982)

$$
\begin{aligned}
& \hat{H}= \hat{H}_{0 p-0 h}+\hat{H}_{2 p-2 h}+\hat{H}_{4 p-4 h}+\hat{H}_{m i x} \\
& \hat{H}_{i}=\epsilon_{i} \hat{n}_{d}+\kappa_{i} \hat{Q}_{\pi}^{\chi_{\pi, i}} \cdot \hat{Q}_{v}^{\chi_{v, i}}+\Delta_{i} \\
& \hat{H}_{m i x}=\sum_{i=2 p-2 h, 4 p-4 h} \alpha_{i}\left(s^{\dagger} \cdot s^{\dagger}+s \cdot s\right)+\beta_{i}\left(d^{\dagger} d^{\dagger}+\tilde{d} \cdot \tilde{d}\right)
\end{aligned}
$$

Mapped PES from Gogny D1S

Pt isotopes: ground-state shape (Gogny D1S)

K.N., T. Otsuka, R. Rodríguez-Guzmán et al., PRC83, 014309 (2011)

Low-lying spectra

K.N., T. Otsuka, R. Rodríguez-Guzmán et al., PRC83, 014309 (2011)

- Consistent with experiment for g.s. band.
- NO need for config. mixing, as Gogny-D1S PES is concerned. But, experimental $0^{+} 2$ energy is very low for $\mathrm{A}<180$ (future work).
- Level pattern of quasi- r band for $A>190$ (discussed later).

Exotic Os-W (from Gogny D1S)

Mapped IBM

K.N., T. Otsuka, R. Rodríguez-Guzmán et al., PRC83, 054303 (2011)

$\delta \mathrm{V}_{\mathrm{pn}}$: Empirical average p-n interaction

Double difference of $\mathrm{BE}(\mathrm{Z}, \mathrm{N})$:
K.N., PhD thesis (U. Tokyo, 2012)

$$
\begin{aligned}
\delta V_{\mathrm{pn}}= & \frac{1}{4}[\{B E(Z, N)-B E(Z, N-2)\} \\
& -\{B E(Z-2, N)-B E(Z-2, N-2)\}]
\end{aligned}
$$

Collectivity, deformation, shell structure,

Larger $\delta \mathrm{V}_{\mathrm{pn}}$ value for $\mathrm{p}-\mathrm{p}$ and h -h than $\mathrm{p}-\mathrm{h}$ and $\mathrm{h}-\mathrm{p}$ configs. This trend is predicted also for right-lower quadrant of ${ }^{208 \mathrm{~Pb}}$.

- Federman \& Pittel 1978
- J.-Y. Zhang et al. 1989
- Cakirli et al. 2005, Cakirli \& Casten 2006

Robust regularity in non-axially symmetric nuclei

Ref. Phys. Rev. Lett. 108, 132501 (2012)

Is a triaxial nucleus r rigid or unstable ?

Majority of observed triaxial nuclei are middle in between.
This regularity is not explained in major geometrical models.

- Rigid triaxial rotor model (Davydov \& Filippov, 1958)
- r-unstable rotor model (Wilets \& Jean, 1956)
- Equivalence between W-J and O(6) in IBM (Ginocchio \& Kirson, 1980)

Three-body term in IBM-2

- Hamiltonian

$$
\hat{H}_{\mathrm{IBM}}=\epsilon\left(\hat{n}_{d \pi}+\hat{n}_{d v}\right)+\kappa \hat{Q}_{\pi} \cdot \hat{Q}_{v}+\hat{H}_{3 \mathrm{~B}}
$$

- Three-body term $\quad \hat{H}_{3 B}=\sum_{\rho^{\prime} \neq \rho} \theta_{\rho}\left[d_{\rho}^{\dagger} d_{\rho}^{\dagger} d_{\rho^{\prime}}^{\dagger}\right]^{(3)} \cdot\left[\tilde{d}_{\rho^{\prime}} \tilde{d}_{\rho} \tilde{d}_{\rho}\right]^{(3)}$
-IBM-1: P. Van Isacker \& J.-Q. Chen (1981); K. Heyde et al. (1984)
- Energy surface
- Up to 2B terms: Minimum at $r \sim \pi / 3,0$

$$
\left\langle\epsilon\left(\hat{n}_{d \pi}+\hat{n}_{d v}\right)+\kappa \hat{Q}_{\pi} \cdot \hat{Q}_{\nu}\right\rangle=f_{1}(\beta)+f_{2}(\beta) \cos 3 \gamma
$$

- 3B term: Minimum at $r \sim \pi / 6$

$$
\left\langle\hat{H}_{3 B}\right\rangle=f_{3}(\beta)+f_{4}(\beta) \cos ^{2} 3 \gamma
$$

Energy surface

${ }^{134} \mathrm{Ba}$ (from DD-PC1)

Robustness

- Independently of EDFs, neither W-J nor D-F picture is realized in presumably all triaxial nuclei.
- In the IBM, this regularity never arises without the 3B term.

Summary

Bridge over the gap between IBM and nuclear DFT

- Gives spectra and transition rates with good J and N.
- Works out for general cases:
- Main part \Leftarrow energy surface with varying deformation
- LL part \Leftarrow rotational response of a fixed shape
- 3B part \Leftarrow stable triaxial minimum
- Config. mixing \Leftarrow more than one minimum

Work in progress

- Use more realistic interaction. Shell model will catch up.
- Application to other finite quantal system

Collaborators

T. Otsuka, N. Shimizu (Tokyo)
L. Guo (Beijing)
R. Rodríguez-Guzmán (Rice U., TX)
L. M. Robledo, P. Sarriguren (Madrid)
P. H. Regan, P. D. Stevenson, Zs. Podolyák (Surrey)
D. Vretenar, T. Nikšić (Zagreb)

Introduction

- Variety of nuclear shapes: onset of deformation, QPT, etc. These are governed by multi-nucleon dynamics
- Derived from nucleons? Prediction?

We shall work in the interacting boson model (IBM)

Quantum Phase Transition QPT

A piece of history

- Bohr \& Mottelson (1980):
"SD truncation is far from perfect to describe the intrinsic state of rotational nucleus"
\Rightarrow Validity of IBM for strongly deformed nuclei?
- A. Bohr \& B. R. Mottelson, Phys. Scr. 22, 468 (1980)
- Debates over the validity of SD-pair truncation:

Renormalization of $\mathrm{J}=4$ (G) pair, sdg-IBM ..., though still not conclusive.

- Nilsson+BCS model (T. Otsuka et al., 1982; D. R. Bes et al., 1982)
- ZB-type boson mapping (M. R. Zirnbauer, 1984)
- J-projection on intrinsic state (N. Yoshinaga et al., 1984)
- sdg-IBM and/or sd-IBM with G-pair renormalized
(T. Otsuka \& J. N. Ginocchio, 1985; T. Otsuka \& M. Sugita, 1988)

Cranking mom. of inertia

Large difference between fermion and boson systems

Inglis-Belyaev (IB) formula
$\mathscr{J}_{F}=2 \cdot \sum_{i, j>0} \frac{\left.\left|\langle i| L_{k}\right| j\right\rangle\left.\right|^{2}}{E_{i}+E_{j}}\left(u_{i} v_{j}-u_{j} v_{i}\right)^{2}$,
Mom. of inertia in IBM
$\mathscr{J}_{B}=\lim _{\omega \rightarrow 0} \frac{1}{\omega} \frac{\left\langle\phi_{B}\right| L_{k}\left|\phi_{B}\right\rangle}{\left\langle\phi_{B} \mid \phi_{B}\right\rangle}$,
\mathscr{J}_{B} is adjusted to \mathscr{J}_{F}

$$
\Rightarrow \alpha \text { value }
$$

Distributions of wave functions of r-band states

- Configuration mixing is quite strong. e.g., 4_{r} state of ${ }^{134} \mathrm{Ba}$
- 2_{r} and 3_{r} states are similar \Rightarrow strong $3_{r} \rightarrow 2_{r}$ E2 transition ?

Wave functions in $\beta \gamma$-plains

 without 3B
with 3B

- Configuration mixing is strong for 4_{r} state
- 2_{r} and 3_{r} states are similar \Rightarrow strong $3_{r} \rightarrow 2_{r}$ E2 transition ?

Correlation energy

```
K.N. et al. PRC81 (2010)
```

Correlation energy included by the IBM hamiltonian

- BE ${ }^{\text {IBM: }}$: eigenenergy of Hibm
- BE ${ }^{M F}$: mean-field solution

Similar arguments

- Skyrme+GCM: Bender et al. 2006
- Gogny+5DCH: Delaroche et al. 2010

Systematics of correlation energy

Maximal in the transitional regions, e.g., Sm and Pt isotopes

