Quantum monodromy and quantum phase transitions in floppy molecules

Danielle Larese Yale University

In honor of the occasion of Franco Iachello's 70th birthday

road map

- molecular physics: vibrations and rotations
- short history of vibron model
- quantum phase transitions (QPT)
- excited state quantum phase transitions (ESQPT)
- results for floppy molecules

molecular I

- energy scales (acetylene as example)
 - electronic excitation: ~42,000 cm⁻¹ (= 5 eV)

- vibrational excitation: ~600 and 1000 cm⁻¹ (= 0.07 and 0.1 eV)
- rotational excitation: ~10 cm⁻¹ (= 0.001 eV)

molecular II

precision

- high precision with several methods
- example: bromofulminate
- vibrational and rotation levels measured infrared, photoelectron and millimeter-wave spectroscopy
- used with ab initio calculations to assign levels
- energy levels with 1:1000 precision
- prediction of barrier in potential surface to 1:1000 precision
- equilibrium bending angle to hundredth of degree

molecular III

- over 10,000 experimental levels available for water
- recent work bring levels up to dissociation
- experimental accuracy of ±0.03cm⁻¹ at highest levels

rigid molecules

bending in floppy molecules

small molecules, 4-7 atoms total

- have an isolated bending vibration mode
- for which vibration-rotation spectrum is known

α

- non-rigid or "floppy"
- vibron model has few, physically relevant parameters, values of which are obtained by a fit to experimental data
 - harmonicity ε
 - anharmonicity
 - angular momentum β
 - pairing (interaction)
- F. Iachello, S. Oss, J. Chem. Phys. 104 (1996) 6956 F. Iachello, F. Pérez-Bernal, P. Vaccaro, Chem. Phys. Lett. 375 (2003) 309

quantum phase transition (QPT) in molecules

 QPT: qualitative changes in the state of a system as a function of a parameter in Hamiltonian

$$H_{total} = (1 - \xi) H_{linear} + \xi H_{bent}$$

F. Pérez-Bernal, F. Iachello, Phys. Rev. A 77 (2008) 032115

 Evolution of energy levels as a function of ξ: correlation diagram

Excited State QPT in molecule

 ESQPT: qualitative changes in the state of the system as a function of excitation energy

$ESQPT \equiv monodromy$

M. Child, T. Weston, J. Tennyson, Mol. Phys. 96 (1999) 371 M. Winnewisser, B. Winnewisser, I. Medvedev, F. DeLucia, S. Ross, J. Mol. Struct. 798 (2006) 1 M. Caprio, P. Cejnar, F. Iachello, Annals of Phys. 323 (2008) 1106

Monodromy

spectroscopic signatures of QPT and ESQPT

Birge-Sponer plots

R. Dixon, Trans. Of Farady Soc. 60 (1964) 1363

spectroscopic signatures of QPT and ESQPT

Monodromy plot

spectroscopic signatures of QPT and ESQPT

Angular momentum exponent plot $E(\ell) = E_0 + a \ell^{\gamma_{v_b}+1}$

potential surfaces

summary of our study

Table 1: Best-fit values of Hamiltonian parameters. N (the integer vibron number) and ξ (control parameter value) are both dimensionless, while ε , α , β , A, and rms deviation are in cm⁻¹.

/							
Molecule	N	ε	α	$_{eta}$	A	\mathbf{rms}	ξ
CH_3NCO	78	453.756	-5.5741	7.6712	1.6313	1.34	0.2168
NCNCS	70	203.572	-2.5766	1.4957	0.81344	2.18	0.2154
GeH_3NCO	90	385.319	-4.1902	4.6941	1.1172	0.38	0.2069
CH_3NCS	73	523.947	-6.8652	7.8193	1.8524	0.48	0.2029
ClCNO	92	638.079	-6.4925	3.2283	1.7766	0.71	0.2025
BrCNO	96	642.047	-6.4154	3.1938	1.6980	0.57	0.2010
DCNO	30	634.902	-12.5727	8.4958	5.2775	0.25	0.1942
HCNO	24	716.715	-13.0168	10.7685	7.4363	0.09	0.1927

fulminic acid

germyl isocyanate

spectroscopic signatures

more evidence of ESQPT in NCNCS

next project: coupled benders

- Molecules with two bending sites that are coupled
- Acetylene
 - Ground electronic state, linear molecule
 - F. Iachello, F. Pérez-Bernal J. Phys. Chem. A 113 (2009) 13273
 - Excited electronic state, trans-bent
 - Three large-amplitude motions: two bends, one torsion
 - Makes trans-cis transition?
 - A.J. Merer, A.H. Steeves, J.H. Baraban, H.A. Bechtel, R.W. Field, J. Chem. Phys. 134 (2011) 244310

next project: water

Vast experimental data available

- J. Chem. Phys. Ref. Data 30 (2001) 735
- J. Che. Phys. 131 (2009) 221105
- J. Quant. Spectros. & Rad. Transf. 111 (2011) 1043

Bend + anti-symm. stretch + symm. Stretch

ESQPT at high energy

- ~11 000 cm⁻¹
- v_b = 8

conclusion

- Simple algebraic Hamiltonian can describe rigidly linear, quasi-linear, quasi-bent, and rigidly bend molecules
- QPT and ESQPT (monodromy) can be seen in bending modes of small non-rigid molecules
- More complex systems (e.g., coupled benders and isomerization) may also be described

This work is funded by the National Defense Science and Engineering Graduate (NDSEG) Fellowship.

Correlation diagram

