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Motivation: Hall effect

Edwin H. Hall:
Sometime during the last university year I was reading Maxwell’s Electricity and
Magnetism. (Maxwell: no permanent effect due to magnetism on current).
I brought the question to Prof. Rowland. He told me he doubted the truth of
Maxwell’s statement. I now began to give the matter more attention and ...

November 1879, experimental demonstration of the Hall effect.

Theory?



Reminder: Hall effect

Textbook chapter: Sommerfeld theory of non-interacting electron gas.
Initially electrons get deflected, a charge builds up at the surface which generates
a uniform electric field to exactly counter-balance the magnetic Lorentz-force.
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Electric field measured to be uniform.
Experiment: Knott, von Klitzing (1995)
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line charge

line charge

no linear potential here

problem: 

BUT: line charges not yield uniform field!

So where are the charges located in reality?
NO charge distribution in a plane yields uniform field!

Simple problem, no simple answer?!



From many to fewer electrons

Solving the many-body Schrödinger equation is a common theme across many
fields. In this talk:

I what is the problem with the electrons in general and in magnetic fields?

I partial review of many-body approaches

I results ... and questions



Reduction: how to set us free from the curse of dimensionality

Solid-state device, operated in the quasi 2d-“quantum-regime” (kBT < ~ω3),
102 − 106 electrons.

1. grid-based methods limited to small particle numbers or effectively
non-interacting systems

2. density-funtional theory (DFT): reduce N-particle wavefunction to a single
density with only 3 coordinates!
(misses important information: excitation energies? pair correlation
function? still need to propagate Kohn-Sham system!)

3. classical dynamics: N-particles described by trajectories {~ri(t),~vi(t)}
4. coherent-state dynamics: TDSE written as set of “classical-like”

equations of motions for an extended set of trajectories
of variational parameters {~ri(t),~pi(t), ~wi(t), . . .}



Alternative: mapping qm state to a classical (chaotic) system
Vandermonde polynomial zj = (xj + iyj)

fN+1(z) = fN(z)
N∏

j=1

(zj − zN+1) (1)

Probability density:

|ψ(z1, . . . , zN)|2 =
N∏

j<k

|zj − zk |2 e−
1
2

∑N
j |zj |2 (2)

Laughlin: interpretation of probability density as a partition function of classical
statistical mechanics

ZLLL =

∫
dR |ψ(z1, . . . , zN)|2 =

∫
dR e−βUcl(R), (3)

Ucl(R) = −
∑
j<k

ln |zj − zk |+
1

4

∑
j

|zj |2 (4)

β = 2 (5)



Two kinds of interactions, #1: Pauli principle

Representation of the state by

1. initially randomly chosen locations of classical electrons

2. let the electrons propagate with mutual logarithmic repulsion

3. check that the temperature is indeed equal to β = 2

4. sample for example the pair distribution function

quantum mechanics:
g2(r) =

∫
dr2 · · · drN |ψ(r, r2, . . . , rN)|2

classical conditional probability:
if one of the particles is in a small volume around (x + ∆x, y + ∆y),
where are the others?



Warm-up for electrons
196 electrons in a quantum-dot (logarithmic interaction, positive background)
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Almost frozen configuration at T = 5 K
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Thermal motion at T = 65 K

This procedure gives the Laughlin states and reproduces the Pauli-hole etc.

Conclusion: antisymmetrization is mapped to classical charges and dynamics at
a specific temperature (for GaAs at 5 Tesla: Fermi-Dirac at T = 0 K mapped to
Boltzmann at T = 65 K)



Two kinds of interactions, #2: Coulomb interaction

What happens if we add a “real force”, for example Coulomb force?
Representation of the new state by

1. initially randomly chosen locations of classical electrons

2. let the electrons propagate with mutual logarithmic and Coulomb repulsion

3. sample for example the pair distribution function

I compare the resulting pair distribution function to the QM result obtained by
diagonalization of the interaction Hamiltonian.



Classical plasma with Pauli+Coulomb vs QM diagonalization

Example: three Coulomb interacting electrons in a magnetic field

Pair distribution function via exact
diagonalization

Pair distribution function from classical
dynamics
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The time-dependent variational principle
Idea: put time-evolution in the parameters of a wave-packet and obtain equations of
motions for the variational parameters. First rewrite TDSE

(i∂t − H) |ψ〉 =
〈ψ|i∂t − H|ψ〉
〈ψ|ψ〉 |ψ〉, |φ〉 = |ψ〉 exp

[
i

∫ t

dt′
〈ψ|i∂t − H|ψ〉
〈ψ|ψ〉

]
Wave function parametrized by N complex variables z(t) (coherent states!)

|ψ(t)〉 = |ψ(z1(t) . . . zN (t))〉, N(z, z) = 〈ψ(z)|ψ(z)〉, H(z, z) =
〈ψ(z)|H|ψ(z)〉
〈ψ(z)|ψ(z)〉

Equations of motion

Cij (z, z) =
∂2

∂zi∂z j
ln N(z, z), i

(
0 C
−C 0

)(
ż
ż

)
=

(
∂z

∂z

)
H

I E. Heller’s work and articles on frozen/thawed Gaussians and wave packet dynamics.

I P. Kramer and M. Saraceno. Book: The Geometry of the TDVP in QM

I Y. Öhrn and E. Deumens. Review: Dynamical, time-dependent view of molecular
theory

I H. Feldmeier and J. Schnack. Review: Molecular dynamics for fermions



Three interacting electrons in a quantum dot with magnetic field

H =
N=3∑
i=1

[
pi

2

2m∗
+

1

2
m(ω2

0+ω2
l )r2

i−ωlLz,i

]
+

N=3∑
i<j=1

e2

4πε0ε|ri − rj |
, ωl =

eB
2m

Use TDVP to get trajectories {~ri(t),~pi(t)} = ~z(t), i = 1, 2, 3 for

H =
〈ψ(~z(t))|H|ψ(~z(t))〉
〈ψ(~z(t))|ψ(~z(t))〉

, equations of motion
∂H
∂z

= ż (6)

The trajectory generates a (non-orthogonal) basis-set, use singular-value
decomposition to obtain eigenstates and -energies.



Three-electron spectrum
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Essential point: do not include c.m.-motion! C.m. yields many shifted copies.
Classification: algebraic vibration-model (Iachello, Oss, Frank), (Moshinsky,
P. Kramer)



Three-electron spectrum

The pair-distribution function

antisymmetric states with l = 3, 6 antisymmetric state with l = 5

Lagrange Euler
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From 3 to 196 interacting electrons

Quantum dot with 196 e−, magnetic field B = 10 T, uniformly positive background.
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GPU calculation by TK (2012)
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Summary

I The mapping of interacting qm many-body systems to a classical interacting
system provides an interesting alternative to (TD)DFT (mapping to a
non-interacting qm system).

I Both approaches need to map qm features of an electronic many-body
wavefunction such as correct statistics. The classical map gives access to
internal structure (pair distribution function)

I More work required to see if the maps works also for other configurations
(also to compare with the “hypernetted-chain-approximation”, see
M.W.C. Dharma-wardana The classical-map hyper-netted-chain (CHNC)
method and associated novel density-functional techniques for warm dense
matter, Internat. J. Quantum Chem. 112 p. 53 (2012))

I Insights from nuclear physics shed light on electronic structure calculations

References available at: www.quantumdynamics.de


