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HAPPY BIRTHDAY FRANCO!

“T'he most beautiful result
in mathematical physics...”

Emmy Noether’s theorem:

A symmetry leads to
a conserved quantity
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If the Hamiltonian commutes with the generator(s)
of a symmetry, then we can write the Hamiltonian

as block diagonal with the blocks (subspaces) defined
by the 1rreps of the symmetry group:

o o

- JJ
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But there 1s a mystery that we seldom think about:
the ground state 1s almost always dominated by
the “most symmetric” nrep (often one of lowest
dimension, too)

E.g., translational invariance leads to conserved momentumn....
i QM state exp(ipx).... lowest energy state has p =0 (also most symmetric)

rotational invariance leads to conserved angular momentum....

lowest energy state 1s usually =0 (or J= 0) even in many-body systems
(also 1rrep with lowest dimension (2J+1) urrep)
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Of course we can “explain” the simple cases
because the Hamiltonian 1s quadratic in
momentum, p? ....

...only this persists even when we erase any
such argument, e.g. with random interactions

A numerical ﬁ Draw interaction from
% “two-body random ensemble”

experiment:

)

General many-body —

structure code
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48Ca in pf shell (8 neutrons)
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TABLE 1. Percentage of ground states for selected random ensembles that have J=0 for our target
nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers.
(Statistical error is approximately 1 —3%.) Entries with dashes were not computed.

. Nucleus \ J=0 J=2
\Mw | . (total space) (total space)
st C‘; So the fraction of ik s
e 0 states with J = 0 is | %
“Ca quite small...you have a | s0% 9.6%
46Ca . 3.5% 8.1%
Py higher chance of 2.9% 7.6%
50 °
2ntg randomly getting J = 2 | %% by
26Mg 4% 15%
28Mg 4% 16%
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Different ensembles of matrix elements

TABLE I. Percentage of ground states for selected/random ensembles that have J=0 for our target
nuclides, as compared to the percentage of all states ji the model spaces that have these quantum numbers.
(Statistical error is approximately 1 —3%.) Entrieg/vith dashes were not computed.

Nucleus RQE RQE-NP TBRE RQE-SPE J=0 J=2
(total space) (total space)

20 68% 50% 50% 49% 11.1% 14.8%
20 72% 68% 71% 77% 9.8% 13.4%
20 66% 51% 55% 78% 11.1% 14.8%
4Ca 70% 46% 41% 70% 5.0% 9.6%
46Ca 76% 59% 56% 74% 3.5% 8.1%
8Ca 72% 53% 58% 1% 2.9% 7.6%
i 6 65% 45% 51% 61% 2.7% 7.1%
“Mg 66% - 44% 54% 4% 16%
Mg 62% 52% 48% 56% 4% 15%
2Mg 59% 46% 44% 54% 4% 16%
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We have a long list of
results that
qualitatively resemble
nuclear structure:

*Pairing-like “gap” from g.s.

*Odd-even staggering

*One-particle, one-hole collectivity among low-lying states
(band structure)

eMallman plots for J = 0,2,4,6,8 states
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This is amazing!

Do we understand this?

“...the simple question of symmetry and chaos
asks for a simple answer which
is still missing.”
- A. Volya, PRL 100, 162501 (2008).
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Renoir, Country Road
Bellini, Madonna
and Child
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We’re not satisfied to merely represent reality...
in art (and science) we explore how far we can
stray and yet still “represent” some aspects
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14 JACKSON POLLOCK Number 2 1949

Very simple systems may

not seem realistic, but they
probe the fundamentals in a
way we can come to appreciate
as beautiful

20 MARK ROTHKO Orange Yellow Orange 1969
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Can we go more abstract-—
Can we 1mpose a nontrivial symmetry on a random matrix”?

Consider C, symmetry:

[y,
1 O v,
Qs V3

6 () V4
(4 v,

5
V
*e.g. Brody et al, RMP, 1981 \ 6 /
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The generator of rotations 1s

02
0 0 0 0 0 1)
1 00000
(O3 L[0T 0000
1o o100 0
000100
4 0 00 0 1 0
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The generator of rotations 1s

(0

o O O

r
-

oS O O = O O

O O = O O O

1)

S =R O O O O
-_ O O O O O
-
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The general matrix invariant

under H=T-'HT is

(a

o QL 6 &

L 6 & Q &

o

QL 6 S Q S 6

O S QSO Q.

S Q@ S 6 &8 O

b\

QO
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Note that H 1s manifestly The general matrix invariant

translationally mvariant: under H=T'HT 1s
H. =F .
Y 1=l (a b ¢ d ¢ b
Fo=a, ¥, =b Fy=¢ Fy=d b a b ¢ d c
c b a b c
H —
d ¢c b a b
c d ¢ b a
\b ¢ d ¢ b a
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We can solve H by a

Fourler transform; The general matrix invariant
each eigenvalue 1s associated under H=T'HT is
with a “quantum number”
(momentum)
amk ([a b ¢ d ¢ b)
h,6 = EZCOS — |F, b
N a b ¢ d c
k
- c b a b c
wmk =
=22COS—Hll+k d ¢ b a b
P N c d ¢ b a
\b ¢ d ¢ b a

(It’s straightforward to also
find the analytic eigenvectors—
sines and cosines, as you’d imagine)
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While this is

cute, can we do

/

anything more?

(a b ¢ d

What if we b a b c

replace each b oa b
entry by a H =

random matrix? d ¢ b a

c d c b

\b ¢ d c
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While this is
cute, can we do
anything more?

| (A B C D

| What if we B A B C

W | rzp:a;ebjach i C B A B

;\..'//“\:5’ random matrix? D C B A

Q\;"g C D C B
(The dimensions of

B D
the submatrices \ ¢ ¢

represent internal
degrees of freedom)
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We can not longer analytically solve the matrix, but
we can project out matrices representing the irreps
(irreducible representations) of the symmetry:

As before, we identify the submatrices
with an index:

(A B C D

Fo=A, F,=B,F,=C.. |, , 5 o
hm=EZCos%Fk o€ 2 AP
- N D C B A

C D C B

...only now h__ is a matrix. \B C D C

Better yet, we can compute
the width of each h_,
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We can not longer analytically solve the matrix, but
we can project out matrices representing the irreps
(irreducible representations) of the symmetry:

, , . Transformed so H’ is
As before, we identify the submatrices block-diagonal in irreps

with an index:
(h, O 0 0 O O)
Fo=A F,=B,E,=CL. |0 . o 0 o o
h, =22(:os unk F, |H'= 00 D00
- N 0O 0 0 A, O O
0O 0 0 O h O
...only now h__ is a matrix. \0 0 0 0 0 hy

Better yet, we can compute

the width of each h_,

“BEAUTY IN PHYSICS” COCOYOC MAY 2012



amk
h =) 2cos] — |F

Assuming all the submatrices
are independent...

o = 2 4 cosz(ﬂk)az(Fk)
- N

Assuming all the submatrices
have the same width...

\O

a0 OO w >

= O

o O O

O O T = I O

S O S O O

A %S > o O 0
S > T O T O

SO O S O o o
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amk

h = ;2003 N

Fy

Assuming all the submatrices

are independent...

o = 2 4 cosz(ﬂk)az(Fk)
k

N

Assuming all the submatricesf

have the same width...

/

\_

So the matrix for the
irrep with m=0 has the
largest width

\_

...which also forces
the ground state to
be predominantly

from

the m=0 irrep
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4 N

What about other
symmetries... particularly
nonabelian symmetries?

\_

Like the point
groups?
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The Tetrahedron

(A B B B)

B A B B
H=

B B A B

\B B B A

One-dimensional irrep:

(most symmetric)
\ / h= A+3B o?; =10
Q 3-dimensional irrep:
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Largest width
so most likely
ground state



Transformed so block-diagonal in irreps

The Tetrahedron

(A+3B 0 0 0 )
0 A-B 0 0
H'=
0 0 A-B 0
.0 0 0 A-B,

One-dimensional irrep:
(most symmetric)

Largest width
; h=A+3B c?%; =10 so most likely

ground state
3-dimensional irrep:
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Th G A BCBUBC CDC
e Cube B ABCC CBTCD
C B ABDTCBC

B C B ACDC B

H=lp ¢ D c A B C B

C B CDBABC

D C B CC B A B

C DCBBCB A

One-dimensional irreps:
(most symmetric)

Largest width
h= A13B +3CxD 0?%; = 20 |50 most likely

ground state

3-dimensional irreps:
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The Octahedron

(A B C B B B
B A B C B B
C B A B B B
"=\p ¢ B A B B
B B B B A C
\B B B B C A

One-dimensional irrep:
(most symmetric)

h= A+4B +C g%, =18

2-dimensional irrep:
h = A-2B+C 0-22 =6
3-dimensional irrep:
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Largest width
so most likely
ground state



HAPPY BIRTHDAY FRANCO!

What have we learned so far?

4 2

If we impose symmetries on a
random matrix (leaving additional
degrees of freedom)....

\_

-~

\_

f

... the lowest dimension / “most
symmetric” irreps have largest widths
and thus dominate the ground state
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HAPPY BIRTHDAY FRANCO!

/

What about continuous symmetries?
Like rotation?

\_

2&3 j
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Starting from a rotationally ~ H (9'¢',9¢) = F(w)

invariant Hamiltonian: : :
cosw =cos6'cosf + sinf'sinfcos(¢' — @)

....we can project out
Hamiltonians with good L:

H, = an P, (cosw)F (w)dcosw
0

From this we can compute

2 2 2 )
the width as a function of L: 91 = 47 f P/ (cosw)sin” wdw
0

For L=0,1,23,4 wvalues: 1.571, 0.393, 0.245, 0.178, 0.139



Mapping onto many-body simulations is not trivial:
-- Different | spaces have different dimensions

-- Level densities is Gaussian, not GOE

To account for this, choose
' o, (eff)=+/N, O
Gaussian with width L( ﬁ ) L~L



80

fraction (%)

12
<o

[ 1 fraction of model space
E g.s. fraction (RM)
MM g.s.fraction (CI)

e |




“single-j shell: (21/2)3 IBM, N =7

| g | oy | (%) 3] e | | fa (%)
0 04 33 55 0o 11 81 55

1 0.5 0.2 0 1 N/A - S
2 1 9 7 2 17 14 13
3 1 3 0.2 3 6 0.1 0.08
4 2 11 2 4 17 4 4

For even more results, come to HITES (a.k.a. Draayerfest)
in 3 weeks...



Summary:

Symmetries lead to conserved quantities (E. Noether)
= “quantum numbers”

By considering random matrices with symmetries,
we find that the ground state is dominated by
lowest-dimension / most symmetric irrep

...a “beautiful” results
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The basic question here:
How much choice is there in dynamical systems?
(Einstein: “What really interests me is whether God had

any choice in the creation of the world.”)

i.e., having a J=0 g.s. doesn’t tell us much about the
interaction...

...but some other features are likely more diagnostic
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Work to be done:

Need to formalize results from points groups.
Make application to continuous symmetries more rigorous.

Can I better motivate mapping/modeling of many-body
systems?

Symmetry breaking and partial/quasi-dynamical symmetry

What about other phenomena? Such as R,/ R,, ratio?
(Preliminary results suggest a strong correlation; furthermore
the equivalent R,,/R,, has no correlation - a prediction!)
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HAPPY BIRTHDAY FRANCO!

A lot of fun work ahead!

| 7@/\}\\\,‘1

g
=N
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- Seniority:
6 _ _
Ry =Rg =1
A J=4
E . .
‘ Vibrational:
E2
J=0 Rotational:

R,, - 3.33, Ry, =7

R42 = E4/E2
R62 = E6/E2
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HAPPY BIRTHDAY FRANCO!

QL o ' i{ =% ] Data taken from all
L J stable even-even nuchides
= J
QL d
Y, 41 = Almost a one-parameter family!
2 L e
Or ——
L R i
10 - E ]
l R Vo o Dé i
m:><:‘ . m d
SE o -
; TS :
) B P :
O ] ] | ] ] | ] |
0 2 3 4

R
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HAPPY BIRTHDAY FRANCO!

Plot E(6)/E(2) vs E(4)/E(2)

“24Mg”

a rotational

5 limit

o

a4

2 vibrational

o limit
“seniority”
limit

R,, = E(J=4)/ E(=2)
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HAPPY BIRTHDAY FRANCO!

Plot E(6)/E(2) vs E(4)/E(2)
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Es/E, vs

10

9

HAPPY BIRTHDAY FRANCO!

Interacting Boson Model (IBM)

15 I I I 1 1 1 | I I J : 8
L B E]—
14 |- =
. F ayea=n Eg/E, vs
__ 12 il ] =i E4/E2
B 11 :— IIIII T~
I 104 = rotational
B o o limit
N 8- i
N 7 & =
N 61 J
N S 5
L i ~ vibrational
= \ . .
I ol 4 limit
! 1 aF -
1 1 I | 1 I 1 1 | 1 1 0 i | 1 | 1 1 | 1 1 1 1 ]
0 1 2 3 4 0 | 2 3 4
Re Ry
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