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“The most beautiful result 
in mathematical physics...” 

Emmy Noether’s theorem: 

A symmetry leads to  
a conserved quantity 
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If the Hamiltonian commutes with the generator(s) 
of a symmetry, then we can write the Hamiltonian  
as block diagonal with the blocks (subspaces) defined  
by the irreps of the symmetry group: 

0 0 

0 

0 

0 

0 
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But there is a mystery that we seldom think about: 
the ground state is almost always dominated by  
the “most symmetric” irrep (often one of lowest  
dimension, too) 

E.g., translational invariance leads to conserved momentum.... 
in QM state exp(ipx).... lowest energy state has p =0 (also most symmetric) 

rotational invariance leads to conserved angular momentum.... 
lowest energy state is usually L=0 (or J= 0) even in many-body systems 
(also irrep with lowest dimension (2J+1) irrep) 
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Of course we can “explain” the simple cases  
because the Hamiltonian is quadratic in  
momentum, p2 .... 

...only this persists even when we erase any  
such argument, e.g. with random interactions 

A numerical 

experiment:


General many-body 
structure code 

Draw interaction from  
“two-body random ensemble” 



48Ca in pf shell (8 neutrons) 
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So the fraction of 
states with J = 0 is 

quite small...you have a 
higher chance of 

randomly getting J = 2
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48Ca in pf shell (8 neutrons) 
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48Ca in pf shell (8 neutrons) 

That’s a huge 
difference!
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Different ensembles of matrix elements 
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We have a long list of 
results that 

qualitatively resemble 
nuclear structure:


• Pairing-like “gap” from g.s.  
• Odd-even staggering 
• One-particle, one-hole collectivity among low-lying states 
(band structure) 

• Mallman plots for J = 0,2,4,6,8 states 
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This is amazing! 


Do we understand this?


      “...the simple question of symmetry and chaos  
     asks for a simple answer which  
    is still missing.”         
-           A. Volya, PRL 100, 162501 (2008). 
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Bellini, Madonna  
and Child 

Renoir, Country Road 
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We’re not satisfied to merely represent reality... 
in art (and science) we explore how far we can  
stray and yet still “represent” some aspects 
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Very simple systems may  
not seem realistic, but they 
probe the fundamentals in a  
way we can come to appreciate 
as beautiful 



Can we go more abstract--- 
Can we impose a nontrivial symmetry on a random matrix*? 

Consider Cn symmetry: 

1
1 

6 

2 

3 

4 

5 

€ 

v1
v2
v3
v4
v5
v6

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
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*e.g. Brody et al, RMP, 1981




The generator of rotations is  

1
1 

6 

2 

3 

4 

5 

€ 

T =

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
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The generator of rotations is  
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T =

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
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The general matrix invariant  
under H = T-1 H T  is  

€ 

H =

a b c d c b
b a b c d c
c b a b c d
d c b a b c
c d c b a b
b c d c b a
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 
 
 
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 
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 
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Note that H is manifestly  
translationally invariant: 

Hij = F|i – j| 

F0 =a, F1 = b, F2 =c, F3 = d 

The general matrix invariant  
under H = T-1 H T  is  

€ 

H =

a b c d c b
b a b c d c
c b a b c d
d c b a b c
c d c b a b
b c d c b a
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 
 
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 
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 
 
 
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The general matrix invariant  
under H = T-1 H T  is  

€ 

H =

a b c d c b
b a b c d c
c b a b c d
d c b a b c
c d c b a b
b c d c b a
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We can solve H by a  
Fourier transform;  
each eigenvalue is associated 
with a “quantum number”  
(momentum) 

€ 

hm = 2cos πmk
N

 

 
 

 

 
 

k
∑ Fk

= 2cos πmk
N

 

 
 

 

 
 

k
∑ H1,1+k

(It’s straightforward to also  
find the analytic eigenvectors— 
sines and cosines, as you’d imagine) 

“Beauty in Physics” Cocoyoc May 2012!



€ 

H =

a b c d c b
b a b c d c
c b a b c d
d c b a b c
c d c b a b
b c d c b a
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 
 
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 
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 
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 
 
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 
 
 

While this is 
cute, can we do 
anything more?


What if we 
replace each 
entry by a 

random matrix?
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€ 

H =

A B C D C B
B A B C D C
C B A B C D
D C B A B C
C D C B A B
B C D C B A

 
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 
 
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 
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 
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 
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 
 
 

While this is 
cute, can we do 
anything more?


What if we 
replace each 
entry by a 

random matrix?


(The dimensions of 
the submatrices 
represent internal 
degrees of freedom)
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€ 

H =

A B C D C B
B A B C D C
C B A B C D
D C B A B C
C D C B A B
B C D C B A
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 
 
 
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 
 
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We can not longer analytically solve the matrix,    but 
we can project out matrices representing the irreps 
(irreducible representations) of the symmetry: 

As before, we identify the submatrices 
with an index: 

F0 = A,  F1 = B, F2 = C... 

€ 

hm = 2cos πmk
N

 

 
 

 

 
 

k
∑ Fk

....only now hm is a matrix. 

Better yet, we can compute  
the width of each hm 
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€ 

′ H =

h0 0 0 0 0 0
0 h1 0 0 0 0
0 0 h2 0 0 0
0 0 0 h3 0 0
0 0 0 0 h4 0
0 0 0 0 0 h5
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We can not longer analytically solve the matrix,    but 
we can project out matrices representing the irreps 
(irreducible representations) of the symmetry: 

As before, we identify the submatrices 
with an index: 

F0 = A,  F1 = B, F2 = C... 

€ 

hm = 2cos πmk
N

 

 
 

 

 
 

k
∑ Fk

....only now hm is a matrix. 

Better yet, we can compute  
the width of each hm 
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Transformed so H’ is  
block-diagonal in irreps 



€ 

hm = 2cos πmk
N

 

 
 

 

 
 

k
∑ Fk

€ 

σm
2 = 4cos2 πmk

N
 

 
 

 

 
 σ 2

k
∑ Fk( )

Assuming all the submatrices 
are independent... 

Assuming all the submatrices 
have the same width... 

€ 

σm
2 = 4cos2 πmk

N
 

 
 

 

 
 σ 2

k
∑

≈ 2σ 2 1+ δm,0( )
“Beauty in Physics” Cocoyoc May 2012!

€ 

′ H =

h0 0 0 0 0 0
0 h1 0 0 0 0
0 0 h2 0 0 0
0 0 0 h3 0 0
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€ 

hm = 2cos πmk
N
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 
 

 

 
 

k
∑ Fk

€ 

σm
2 = 4cos2 πmk

N
 

 
 

 

 
 σ 2

k
∑ Fk( )

Assuming all the submatrices 
are independent... 

Assuming all the submatrices 
have the same width... 

€ 

σm
2 = 4cos2 πmk

N
 

 
 

 

 
 σ 2

k
∑

≈ 2σ 2 1+ δm,0( )

So the matrix for the 
irrep with m=0 has the 

largest width


...which also forces 
the ground state to 
be predominantly 

from the m=0 irrep
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What about other 
symmetries... particularly 
nonabelian symmetries?


Like the point 
groups?
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The Tetrahedron 

2 

1 

3 4 

€ 

H =

A B B B
B A B B
B B A B
B B B A

 

 

 
 
 
 

 

 

 
 
 
 

One-dimensional irrep: 
(most symmetric) 

h= A+3B        σ2
1 = 10  

3-dimensional irrep: 

h = A – B         σ2
3 = 2  

Largest width

so most likely

ground state
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The Tetrahedron 

2 

1 

3 4 

€ 

H '=

A + 3B 0 0 0
0 A − B 0 0
0 0 A − B 0
0 0 0 A − B

 

 

 
 
 
 

 

 

 
 
 
 

One-dimensional irrep: 
(most symmetric) 

h= A+3B        σ2
1 = 10  

3-dimensional irrep: 

h = A – B         σ2
3 = 2  

Largest width

so most likely

ground state
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Transformed so block-diagonal in irreps




The Cube 

2 

1 
4 

3 

€ 

H =

A B C B B C D C
B A B C C B C D
C B A B D C B C
B C B A C D C B
B C D C A B C B
C B C D B A B C
D C B C C B A B
C D C B B C B A

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

One-dimensional irreps: 
(most symmetric) 

h= A±3B +3C±D   σ2
1 = 20  

3-dimensional irreps: 

h = A-C ± (B-D)     σ2
3 = 4  

Largest width

so most likely

ground state


6 

5 
8 

7 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The Octahedron 

2 

1 

5 

3 

€ 

H =

A B C B B B
B A B C B B
C B A B B B
B C B A B B
B B B B A C
B B B B C A

 
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 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

One-dimensional irrep: 
(most symmetric) 

h= A+4B +C         σ2
1 = 18  

2-dimensional irrep: 

h = A-2B+C         σ2
2 = 6


3-dimensional irrep: 

h = A-C                 σ2
3 = 2 

Largest width

so most likely

ground state


6 

4 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If we impose symmetries on a 
random matrix (leaving additional 

degrees of freedom)....


What have we learned so far? 

... the lowest dimension / “most 
symmetric” irreps have largest widths

and thus dominate the ground state
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What about continuous symmetries?

Like rotation?


“Beauty in Physics” Cocoyoc May 2012!

Happy Birthday Franco!!



Starting from a rotationally  
invariant Hamiltonian: 

€ 

H ′ θ ′ φ ,θφ( ) = F(ω)
cosω = cos ′ θ cosθ + sin ′ θ sinθ cos( ′ φ −φ)

....we can project out  
Hamiltonians with good  L: 

€ 

HL = 2π PL (cosω)F(ω)dcosω
0

π

∫

From this we can compute 
the width as a function of  L: 

€ 

σ L
2 = 4π 2 PL

2(cosω)sin2ωdω
0

π

∫

For  L= 0, 1,2,3, 4      values: 1.571,  0.393,   0.245,  0.178,  0.139 



Mapping onto many-body simulations is not trivial: 

-- Different J spaces have different dimensions 

-- Level densities is Gaussian, not GOE 

To account for this, choose  
Gaussian with width 

€ 

σ L (eff ) = NLσ L



48Ca in pf shell (8 neutrons) 



J    fspace (%)  fRM  fCI (%) 

0  0.4  33  55 

1  0.5  0.2  0 

2  1  9  7 

3  1  3  0.2 

4  2  11  2 

J    fspace (%)  fRM  fCI (%) 

0  11  81  55 

1  N/A  ‐  ‐ 

2  17  14  13 

3  6  0.1  0.08 

4  17  4  4 

IBM, N  = 7  “single‐j shell: (21/2)8 

For even more results, come to HITES (a.k.a. Draayerfest)  
in 3 weeks... 



Summary: 

Symmetries lead to conserved quantities (E. Noether) 
= “quantum numbers” 

By considering random matrices with symmetries,  
we find that the ground state is dominated by  
lowest-dimension / most symmetric irrep 

...a “beautiful” results 
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The basic question here: 

How much choice is there in dynamical systems? 
(Einstein: “What really interests me is whether God had 


any choice in the creation of  the world.”) 

i.e., having a J=0 g.s. doesn’t tell us much about the  
interaction... 

...but some other features are likely more diagnostic 
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Work to be done: 

Need to formalize results from points groups. 

Make application to continuous symmetries more rigorous. 

Can I better motivate mapping/modeling of many-body 
systems? 

Symmetry breaking and partial/quasi-dynamical symmetry 

What about other phenomena? Such as R62/ R42 ratio? 
(Preliminary results suggest a strong correlation; furthermore  
the equivalent R12/R42 has no correlation – a prediction!) 
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A lot of fun work ahead!
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J = 0 

J = 2 

J = 4 

J = 6 

E2 

E4 

E6 

€ 

R42 = E4 E2

R62 = E6 E2

Seniority: 
R42 = R62 = 1 

Vibrational: 
R42 = 2, R62 =3  

Rotational: 
R42 = 3.33, R62 =7  
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The origin of nuclear spin


Iowa State University Dec 2, 2011!

Data taken from all 
stable even-even nuclides 

Almost a one-parameter family! 
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Plot E(6)/E(2)  vs  E(4)/E(2) 

rotational 
limit 

vibrational 
limit 

“seniority” 
limit 

“24Mg” 
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XXIVth Symposium on Nuclear Physics              
Cocoyoc 2006 

Plot E(6)/E(2)  vs  E(4)/E(2) 

24Ne 

20O 22O 

28Si 
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Interacting Boson Model (IBM) 

rotational 
limit 

vibrational 
limit 

E6/E2 vs 
E4/E2 

E8/E2 vs 
E4/E2 

J = 6 J = 8 
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