The origin of order in random matrices... with symmetries

Calvin W. Johnson Dept of Physics, San Diego State University

DOE grant DE-FG-02-96ER40985

"The most beautiful result in mathematical physics..."

Emmy Noether's theorem:

A symmetry leads to a conserved quantity

If the Hamiltonian commutes with the generator(s) of a symmetry, then we can write the Hamiltonian as *block diagonal* with the blocks (subspaces) defined by the irreps of the symmetry group:

But there is a mystery that we seldom think about: the ground state is almost *always* dominated by the "most symmetric" irrep (often one of lowest dimension, too)

E.g., *translational invariance* leads to *conserved momentum*.... in QM state exp(i*px*).... lowest *energy* state has *p* =0 (also most symmetric)

rotational invariance leads to conserved angular momentum.... lowest energy state is usually L=0 (or J=0) even in many-body systems (also irrep with lowest dimension (2J+1) irrep) Of course we can "explain" the simple cases because the Hamiltonian is quadratic in momentum, p^2

...only this persists even when we erase any such argument, e.g. with *random interactions*

TABLE I. Percentage of ground states for selected random ensembles that have J=0 for our target nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers. (Statistical error is approximately 1-3%.) Entries with dashes were not computed.

MF	Nucleus		J=0 (total space)	J = 2 (total space)
···) <		So the fraction of	11.1%	14.8%
59	²² O	states with $T = 0$ is	9.8%	13.4%
	²⁴ O	$\frac{1}{2}$	11.1%	14.8%
w	⁴⁴ Ca	quite smallyou have a	5.0%	9.6%
	⁴⁶ Ca		3.5%	8.1%
	⁴⁸ Ca	nigner chance of	2.9%	7.6%
	⁵⁰ Ca	randomly aptting T = 2	2.7%	7.1%
	²⁴ Mg	randomity gerring J = 2	4%	16%
	²⁶ Mg		4%	15%
	²⁸ Mg		4%	16%

Different ensembles of matrix elements

TABLE I. Percentage of ground states for selected random ensembles that have J=0 for our target nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers. (Statistical error is approximately 1-3%.) Entries with dashes were not computed.

Nucleus	RQE	RQE-NP	TBRE	RQE-SPE	J=0 (total space)	J=2 (total space)
²⁰ O	68%	50%	50%	49%	11.1%	14.8%
²² O	72%	68%	71%	77%	9.8%	13.4%
²⁴ O	66%	51%	55%	78%	11.1%	14.8%
⁴⁴ Ca	70%	46%	41%	70%	5.0%	9.6%
⁴⁶ Ca	76%	59%	56%	74%	3.5%	8.1%
⁴⁸ Ca	72%	53%	58%	71%	2.9%	7.6%
⁵⁰ Ca	65%	45%	51%	61%	2.7%	7.1%
²⁴ Mg	66%	_	44%	54%	4%	16%
²⁶ Mg	62%	52%	48%	56%	4%	15%
²⁸ Mg	59%	46%	44%	54%	4%	16%

•Pairing-like "gap" from g.s.

•Odd-even staggering

•One-particle, one-hole collectivity among low-lying states (band structure)

•Mallman plots for J = 0,2,4,6,8 states

"...the simple question of symmetry and chaos asks for a simple answer which is still missing."

- A. Volya, PRL **100**, 162501 (2008).

Bellini, Madonna and Child

Renoir, Country Road

We're not satisfied to *merely* represent reality... in art (and science) we explore how far we can stray and yet still "represent" some aspects

14 JACKSON POLLOCK Number 2 1949

Very simple systems may not seem realistic, but they probe the fundamentals in a way we can come to appreciate as beautiful

20 MARK ROTHKO Orange Yellow Orange 1969

Can we go more abstract---

Can we impose a nontrivial symmetry on a random matrix*?

Consider C_n symmetry:

The generator of rotations is

The generator of rotations is

The general matrix invariant under $H = T^{-1}HT$ is

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} a & b & c & d & c & b \\ b & a & b & c & d & c \\ c & b & a & b & c & d \\ d & c & b & a & b & c \\ c & d & c & b & a & b \\ b & c & d & c & b & a \end{pmatrix}$$

Note that **H** is manifestly translationally invariant:

The general matrix invariant under $H = T^{-1}HT$ is

$$H_{ij} = F_{/i - j/}$$

$$F_{0} = a, F_{1} = b, F_{2} = c, F_{3} = d$$

$$H = \begin{pmatrix} a & b & c & d & c & b \\ b & a & b & c & d & c \\ c & b & a & b & c & d \\ d & c & b & a & b & c \\ c & d & c & b & a & b \\ b & c & d & c & b & a \end{pmatrix}$$

We can solve **H** by a Fourier transform; each eigenvalue is associated with a "quantum number" (momentum)

The general matrix invariant under $H = T^{-1}HT$ is

$$h_{m} = \sum_{k} 2\cos\left(\frac{\pi mk}{N}\right) F_{k}$$

$$= \sum_{k} 2\cos\left(\frac{\pi mk}{N}\right) H_{1,1+k}$$

$$H = \begin{cases} a & b & c & d & c & b \\ b & a & b & c & d & c \\ c & b & a & b & c & d \\ d & c & b & a & b & c \\ c & d & c & b & a & b \\ b & c & d & c & b & a \\ \end{cases}$$

(It's straightforward to also find the analytic eigenvectors sines and cosines, as you'd imagine)

While this is cute, can we do anything more? What if we replace each *H* = entry by a random matrix? (The dimensions of the submatrices represent internal

degrees of freedom)

We can not longer analytically solve the matrix, *but* we *can* project out matrices representing the irreps (irreducible representations) of the symmetry:

As before, we identify the submatrices with an index:

$$\mathbf{F}_{0} = \mathbf{A}, \ \mathbf{F}_{1} = \mathbf{B}, \ \mathbf{F}_{2} = \mathbf{C}...$$

$$h_{m} = \sum_{k} 2\cos\left(\frac{\pi mk}{N}\right) F_{k} \qquad H = \begin{pmatrix} A & B & C & D & C & B \\ B & A & B & C & D & C \\ C & B & A & B & C & D \\ D & C & B & A & B & C \\ D & C & B & A & B & C \\ C & D & C & B & A & B \\ B & C & D & C & B & A \end{pmatrix}$$
....only now \mathbf{h}_{m} is a matrix.

Better yet, we can compute the *width* of each \mathbf{h}_{m}

We can not longer analytically solve the matrix, *but* we *can* project out matrices representing the irreps (irreducible representations) of the symmetry:

As before, we identify the submatrices
$$Transformed so H' is block-diagonal in irreps$$

with an index:
 $\mathbf{F}_0 = \mathbf{A}, \ \mathbf{F}_1 = \mathbf{B}, \ \mathbf{F}_2 = \mathbf{C}$
 $h_m = \sum_k 2\cos\left(\frac{\pi mk}{N}\right) F_k$
....only now \mathbf{h}_m is a matrix.
Better yet, we can compute the width of each \mathbf{h}_m

$$h_m = \sum_k 2\cos\left(\frac{\pi mk}{N}\right) F_k$$

Assuming all the submatrices are independent...

$$\sigma_m^2 = \sum_k 4\cos^2\left(\frac{\pi mk}{N}\right)\sigma^2(F_k)$$

Assuming all the submatrices have the *same width*...

$$\sigma_m^2 = \sum_k 4\cos^2\left(\frac{\pi mk}{N}\right)\sigma^2 \qquad H' = \begin{bmatrix} 0 & 0 & h_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & h_4 & 0 \\ 0 & 0 & 0 & 0 & 0 & h_5 \end{bmatrix}$$

$$\approx 2\sigma^2(1+\delta_{m,0})$$

 $H = \begin{pmatrix} A & B & C & D & C & B \\ B & A & B & C & D & C \\ C & B & A & B & C & D \\ D & C & B & A & B & C \\ C & D & C & B & A & B \\ B & C & D & C & B & A \end{pmatrix}$

 $\begin{pmatrix} h_0 & 0 & 0 & 0 & 0 & 0 \\ 0 & h_1 & 0 & 0 & 0 & 0 \\ \end{pmatrix}$

$$h_m = \sum_k 2\cos\left(\frac{\pi mk}{N}\right) F_k$$

Assuming all the submatrices are independent...

$$\sigma_m^2 = \sum_k 4\cos^2\left(\frac{\pi mk}{N}\right)\sigma^2(F_k)$$

Assuming all the submatrices have the same width...

$$\sigma_m^2 = \sum_k 4\cos^2\left(\frac{\pi mk}{N}\right)\sigma^2$$
$$\approx 2\sigma^2\left(1+\delta_{m,0}\right)$$

...which also forces the ground state to be predominantly from the *m=0* irrep

So the matrix for the

irrep with *m=0* has the

largest width

The Tetrahedron

$$H = \begin{pmatrix} A & B & B & B \\ B & A & B & B \\ B & B & A & B \\ B & B & B & A \end{pmatrix}$$

One-dimensional irrep: (most symmetric)

h= A+3B
$$\sigma_{1}^{2} = 10$$

Largest width so most likely ground state

3-dimensional irrep:

$$h = A - B \qquad \sigma^2_3 = 2$$

The Tetrahedron

Transformed so block-diagonal in irreps

$$\begin{pmatrix} A+3B & 0 & 0 & 0 \\ 0 & A-B & 0 & 0 \\ 0 & 0 & A-B & 0 \\ 0 & 0 & 0 & A-B \end{pmatrix}$$

One-dimensional irrep: (most symmetric)

h= A+3B $\sigma_{1}^{2} = 10$

Largest width so most likely ground state

3-dimensional irrep:

$$h = A - B \qquad \sigma^2_3 = 2$$

One-dimensional irreps: (most symmetric)

h= A±3B +3C±D $\sigma_{1}^{2} = 20$

Largest width so most likely ground state

3-dimensional irreps:

h = A-C ± (B-D)
$$\sigma_{3}^{2} = 4$$

$$H = \begin{pmatrix} A & B & C & B & B & B \\ B & A & B & C & B & B \\ C & B & A & B & B & B \\ B & C & B & A & B & B \\ B & B & B & B & A & C \\ B & B & B & B & C & A \end{pmatrix}$$
One-dimensional irrep:
(most symmetric)

h= A+4B +C $\sigma_1^2 = 18$

Largest width so most likely ground state

2-dimensional irrep:

h = A-2B+C $\sigma_{2}^{2} = 6$

3-dimensional irrep:

$$h = A-C \qquad \sigma^2_3 = 2$$

What have we learned so far?

Starting from a rotationally invariant Hamiltonian:

 $H(\theta'\phi',\theta\phi) = F(\omega)$ $\cos\omega = \cos\theta'\cos\theta + \sin\theta'\sin\theta\cos(\phi' - \phi)$

$$H_L = 2\pi \int_0^{\pi} P_L(\cos\omega) F(\omega) d\cos\omega$$

From this we can compute the width as a function of *L*: $\sigma_L^2 = 4\pi^2 \int_0^{\pi} P_L^2(\cos \omega) \sin^2 \omega d\omega$ For *L*= 0, 1,2,3, 4 values: 1.571, 0.393, 0.245, 0.178, 0.139 Mapping onto many-body simulations is not trivial:

- -- Different *J* spaces have different dimensions
- -- Level densities is Gaussian, not GOE

To account for this, choose Gaussian with width

$$\sigma_L(eff) = \sqrt{N_L}\sigma_L$$

"single-*j* shell: (21/2)⁸

J	f _{space (%)}	f _{RM}	f _{CI} (%)	J	f _{space (%)}	f _{RM}	f _{CI} (%)
0	0.4	33	55	0	11	81	55
1	0.5	0.2	0	1	N/A	-	-
2	1	9	7	2	17	14	13
3	1	3	0.2	3	6	0.1	0.08
4	2	11	2	4	17	4	4

For even *more* results, come to HITES (a.k.a. Draayerfest) in 3 weeks...

Summary:

Symmetries lead to conserved quantities (E. Noether) = "quantum numbers"

By considering random matrices with symmetries, we find that the ground state is dominated by lowest-dimension / most symmetric irrep

...a "beautiful" results

The basic question here:

How much *choice* is there in dynamical systems? (Einstein: "What really interests me is whether God had any choice in the creation of the world.")

i.e., having a J=0 g.s. doesn't tell us much about the interaction...

...but some other features are likely more diagnostic

Work to be done:

Need to formalize results from points groups.

Make application to continuous symmetries more rigorous.

Can I better motivate mapping/modeling of many-body systems?

Symmetry breaking and partial/quasi-dynamical symmetry

What about other phenomena? Such as R_{62}/R_{42} ratio? (Preliminary results suggest a strong correlation; furthermore the equivalent R_{12}/R_{42} has no correlation – a prediction!)

Seniority: $R_{42} = R_{62} = 1$

Vibrational: R₄₂ = 2, **R**₆₂ =3

Rotational: R₄₂ = 3.33, R₆₂ =7

 $R_{42} = E_4 / E_2$ $R_{62} = E_6 / E_2$

Data taken from *all* stable even-even nuclides

Almost a one-parameter family!

Plot E(6)/E(2) vs E(4)/E(2)

Plot E(6)/E(2) vs E(4)/E(2)

Interacting Boson Model (IBM)

