The origin of order in random matrices... with symmetries

Calvin W. Johnson
Dept of Physics, San Diego State University

DOE grant DE-FG-02-96ER40985

"BEAUTY IN PHYSICS" COCOYOC MAY 2012
"The most beautiful result in mathematical physics..."

Emmy Noether's theorem:
A symmetry leads to
a conserved quantity

If the Hamiltonian commutes with the generator(s) of a symmetry, then we can write the Hamiltonian as block diagonal with the blocks (subspaces) defined by the irreps of the symmetry group:

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

But there is a mystery that we seldom think about: the ground state is almost always dominated by the "most symmetric" irrep (often one of lowest dimension, too)

E.g., translational invariance leads to conserved momentum.... in QM state $\exp (\mathrm{ipx}) \ldots$... lowest energy state has $p=0$ (also most symmetric)
rotational invariance leads to conserved angular momentum.... lowest energy state is usually $L=0$ (or $J=0$) even in many-body systems (also irrep with lowest dimension $(2 J+1)$ irrep)

Of course we can "explain" the simple cases because the Hamiltonian is quadratic in momentum, p^{2}....
...only this persists even when we erase any such argument, e.g. with random interactions

A numerical experiment:

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

TABLE I. Percentage of ground states for selected random ensembles that have $J=0$ for our target nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers. (Statistical error is approximately $1-3 \%$.) Entries with dashes were not computed.

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

Different ensembles of matrix elements

TABLE I. Percentage of ground states for selected random ensembles that have $J=0$ for our target nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers. (Statistical error is approximately $1-3 \%$.) Entries with dashes were not computed.

Nucleus	RQE	RQE-NP	TBRE	RQE-SPE	$J=0$ (total space)	$J=2$ (total space)
${ }^{20} \mathrm{O}$	68%	50%	50%	49%	11.1%	14.8%
${ }^{22} \mathrm{O}$	72%	68%	71%	77%	9.8%	13.4%
${ }^{24} \mathrm{O}$	66%	51%	55%	78%	11.1%	14.8%
${ }^{44} \mathrm{Ca}$	70%	46%	41%	70%	5.0%	9.6%
${ }^{46} \mathrm{Ca}$	76%	59%	56%	74%	3.5%	8.1%
${ }^{48} \mathrm{Ca}$	72%	53%	58%	71%	2.9%	7.6%
${ }^{50} \mathrm{Ca}$	65%	45%	51%	61%	2.7%	7.1%
${ }^{24} \mathrm{Mg}$	66%	-	44%	54%	4%	16%
${ }^{26} \mathrm{Mg}$	62%	52%	48%	56%	4%	15%
${ }^{28} \mathrm{Mg}$	59%	46%	44%	54%	4%	16%

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

-Pairing-like "gap" from g.s.

- Odd-even staggering
- One-particle, one-hole collectivity among low-lying states (band structure)
- Mallman plots for $J=0,2,4,6,8$ states

"...the simple question of symmetry and chaos asks for a simple answer which is still missing."
- A. Volya, PRL 100, 162501 (2008).
"BEAUTY IN PHYSICS" COCOYOC MAY 2012

Bellini, Madonna
and Child

Renoir, Country Road

We're not satisfied to merely represent reality... in art (and science) we explore how far we can stray and yet still "represent" some aspects

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

I4 JACkson pollock Number 21949

Very simple systems may not seem realistic, but they probe the fundamentals in a way we can come to appreciate as beautiful

20 mark rothko Orange Yellow Orange 1969

Can we go more abstract---
Can we impose a nontrivial symmetry on a random matrix*?

Consider C_{n} symmetry:

*e.g. Broody et al, RMP, 1981

The generator of rotations is

$$
T=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

The generator of rotations is
The general matrix invariant under $\mathrm{H}=\mathrm{T}^{-1} \mathrm{H} \mathrm{T}$ is

$$
T=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \quad H=\left(\begin{array}{llllll}
a & b & c & d & c & b \\
b & a & b & c & d & c \\
c & b & a & b & c & d \\
d & c & b & a & b & c \\
c & d & c & b & a & b \\
b & c & d & c & b & a
\end{array}\right)
$$

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

Note that \mathbf{H} is manifestly translationally invariant:

The general matrix invariant under $\mathrm{H}=\mathrm{T}^{-1} \mathrm{H} \mathrm{T}$ is

$$
\begin{aligned}
& H_{i j}=\boldsymbol{F}_{|i-j|} \\
& \mathrm{F}_{0}=a, \mathrm{~F}_{1}=b, \mathrm{~F}_{2}=c, \mathrm{~F}_{3}=d
\end{aligned}
$$

$$
H=\left(\begin{array}{llllll}
a & b & c & d & c & b \\
b & a & b & c & d & c \\
c & b & a & b & c & d \\
d & c & b & a & b & c \\
c & d & c & b & a & b \\
b & c & d & c & b & a
\end{array}\right)
$$

We can solve \mathbf{H} by a
Fourier transform;
each eigenvalue is associated
with a "quantum number"
(momentum)

The general matrix invariant under $\mathrm{H}=\mathrm{T}^{-1} \mathrm{H} \mathrm{T}$ is

$$
\begin{aligned}
& h_{m}=\sum_{k} 2 \cos \left(\frac{\pi m k}{N}\right) F_{k} \\
& =\sum_{k} 2 \cos \left(\frac{\pi m k}{N}\right) H_{1, l+k}
\end{aligned} \quad H=\left(\begin{array}{llllll}
a & b & c & d & c & b \\
b & a & b & c & d & c \\
c & b & a & b & c & d \\
d & c & b & a & b & c \\
c & d & c & b & a & b \\
b & c & d & c & b & a
\end{array}\right)
$$

(It's straightforward to also
find the analytic eigenvectorssines and cosines, as you'd imagine)
"BEAUTY IN PHYSICS" COCOYOC MAY 2012

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

[^0]We can not longer analytically solve the matrix, but we can project out matrices representing the irreps (irreducible representations) of the symmetry:

As before, we identify the submatrices with an index:

$$
\begin{aligned}
& \mathbf{F}_{0}=\mathbf{A}, \mathbf{F}_{\mathbf{1}}=\mathbf{B}, \mathbf{F}_{2}=\mathbf{C} \ldots \\
& h_{m}=\sum_{k} 2 \cos \left(\frac{\pi m k}{N}\right) F_{k} \quad H=\left(\begin{array}{llllll}
A & B & C & D & C & B \\
B & A & B & C & D & C \\
C & B & A & B & C & D \\
D & C & B & A & B & C \\
C & D & C & B & A & B \\
B & C & D & C & B & A
\end{array}\right) \\
& \ldots . . \text { only now } \mathbf{h}_{\mathrm{m}} \text { is a matrix. }
\end{aligned}
$$

Better yet, we can compute

 the width of each \mathbf{h}_{m}[^1]We can not longer analytically solve the matrix, but we can project out matrices representing the irreps (irreducible representations) of the symmetry:

As before, we identify the submatrices
Transformed so \mathbf{H}^{\prime} is with an index:
block-diagonal in irreps

$$
\begin{aligned}
& \mathbf{F}_{0}=\mathbf{A}, \mathbf{F}_{\mathbf{1}}=\mathbf{B}, \mathbf{F}_{2}=\mathbf{C} \\
& h_{m}=\sum_{k} 2 \cos \left(\frac{\pi m k}{N}\right) . . \quad F_{k} \\
& \left.\ldots . . . \begin{array}{cccccc}
h_{0} & 0 & 0 & 0 & 0 & 0 \\
0 & h_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & h_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & h_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & h_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & h_{5}
\end{array}\right), ~ \mathbf{h}_{\mathrm{m}} \text { is a matrix. }
\end{aligned}
$$

Better yet, we can compute
the width of each \mathbf{h}_{m}

$$
\begin{aligned}
& h_{m}=\sum_{k} 2 \cos \left(\frac{\pi m k}{N}\right) F_{k} \\
& \begin{array}{l}
\text { Assuming all the submatrices } \\
\text { are independent... } \\
\sigma_{m}^{2}=\sum_{k} 4 \cos ^{2}\left(\frac{\pi m k}{N}\right) \sigma^{2}\left(F_{k}\right) \\
\begin{array}{l}
\text { Assuming all the submatrices } \\
\text { have the same width... }
\end{array} \\
\sigma_{m}^{2}=\sum_{k} 4 \cos ^{2}\left(\frac{\pi m k}{N}\right) \sigma^{2} \\
\approx 2 \sigma^{2}\left(1+\delta_{m, 0}\right)
\end{array} \quad H^{\prime}=\left(\begin{array}{cccccc}
A & B & C & D & C & B \\
B & A & B & C & D & C \\
C & B & A & B & C & D \\
D & C & B & A & B & C \\
C & D & C & B & A & B \\
B & C & D & C & B & A
\end{array}\right) \\
& \approx\left(\begin{array}{cccccc}
h_{0} & 0 & 0 & 0 & 0 & 0 \\
0 & h_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & h_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & h_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & h_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & h_{5}
\end{array}\right)
\end{aligned}
$$

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

$$
h_{m}=\sum_{k} 2 \cos \left(\frac{\pi m k}{N}\right) F_{k}
$$

Assuming all the submatrices are independent...
$\sigma_{m}^{2}=\sum_{k} 4 \cos ^{2}\left(\frac{\pi m k}{N}\right) \sigma^{2}\left(F_{k}\right)$

So the matrix for the irrep with $m=0$ has the largest width

Assuming all the submatrices have the same width...

$$
\begin{aligned}
& \sigma_{m}^{2}=\sum_{k} 4 \cos ^{2}\left(\frac{\pi m k}{N}\right) \sigma^{2} \\
& \approx 2 \sigma^{2}\left(1+\delta_{m, 0}\right)
\end{aligned}
$$

...which also forces the ground state to be predominantly from the $m=0$ irrep
"BEAUTY IN PHYSICS" COCOYOC MAY 2012

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

The Tetrahedron

$$
H=\left(\begin{array}{llll}
A & B & B & B \\
B & A & B & B \\
B & B & A & B \\
B & B & B & A
\end{array}\right)
$$

One-dimensional irrep: (most symmetric)

$$
\mathbf{h}=\mathbf{A}+3 \mathbf{B} \quad \sigma^{2}{ }_{1}=10
$$

Largest width so most likely ground state
3-dimensional irrep:

$$
\mathbf{h}=\mathbf{A}-\mathbf{B} \quad \sigma^{2}{ }_{3}=2
$$

"BEAUTY IN PHYSICS" COCOYOC MAY 2012
$H^{\prime}=\left(\begin{array}{cccc}A+3 B & 0 & 0 & 0 \\ 0 & A-B & 0 & 0 \\ 0 & 0 & A-B & 0 \\ 0 & 0 & 0 & A-B\end{array}\right)$

$$
H=\left(\begin{array}{llllllll}
A & B & C & B & B & C & D & C \\
B & A & B & C & C & B & C & D \\
C & B & A & B & D & C & B & C \\
B & C & B & A & C & D & C & B \\
B & C & D & C & A & B & C & B \\
C & B & C & D & B & A & B & C \\
D & C & B & C & C & B & A & B \\
C & D & C & B & B & C & B & A
\end{array}\right)
$$

One-dimensional irreps: (most symmetric)

$$
h=A \pm 3 B+3 C \pm D \quad \sigma^{2}{ }_{1}=20
$$

3-dimensional irreps:

$$
h=A-C \pm(B-D) \quad \sigma_{3}^{2}=4
$$

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

$$
H=\left(\begin{array}{llllll}
A & B & C & B & B & B \\
B & A & B & C & B & B \\
C & B & A & B & B & B \\
B & C & B & A & B & B \\
B & B & B & B & A & C \\
B & B & B & B & C & A
\end{array}\right)
$$

One-dimensional irrep: (most symmetric)

$$
\mathbf{h}=\mathbf{A}+4 \mathrm{~B}+\mathrm{C} \quad \sigma^{2}{ }_{1}=18
$$

2-dimensional irrep:

$$
\mathbf{h}=\mathbf{A}-2 \mathbf{B}+\mathbf{C} \quad \sigma_{2}^{2}=6
$$

3-dimensional irrep:

$$
\mathbf{h}=\mathrm{A}-\mathrm{C} \quad \sigma^{2}{ }_{3}=2
$$

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

What have we learned so far?

What about continuous symmetries?
Like rotation?

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

Starting from a rotationally invariant Hamiltonian:

$$
\begin{aligned}
& H\left(\theta^{\prime} \phi^{\prime}, \theta \phi\right)=F(\omega) \\
& \cos \omega=\cos \theta^{\prime} \cos \theta+\sin \theta^{\prime} \sin \theta \cos \left(\phi^{\prime}-\phi\right)
\end{aligned}
$$

....we can project out
Hamiltonians with good L :
$H_{L}=2 \pi \int_{0}^{\pi} P_{L}(\cos \omega) F(\omega) d \cos \omega$

From this we can compute the width as a function of L :

$$
\sigma_{L}^{2}=4 \pi^{2} \int_{0}^{\pi} P_{L}^{2}(\cos \omega) \sin ^{2} \omega d \omega
$$

For $L=0,1,2,3,4$ values: $1.571,0.393,0.245,0.178,0.139$

Mapping onto many-body simulations is not trivial:
-- Different J spaces have different dimensions
-- Level densities is Gaussian, not GOE

To account for this, choose Gaussian with width

$$
\sigma_{L}(e f f)=\sqrt{N_{L}} \sigma_{L}
$$

"single-j shell: $(21 / 2)^{8}$

J	$\mathbf{f}_{\text {space (\%) }}$	f_{RM}	$\mathrm{f}_{\mathrm{Cl}}(\%)$
0	0.4	33	55
1	0.5	0.2	0
2	1	9	7
3	1	3	0.2
4	2	11	2

IBM, $N=7$

J	$f_{\text {space (\%) }}$	$f_{R M}$	$f_{C l}(\%)$
0	11	81	55
1	N / A	-	-
2	17	14	13
3	6	0.1	0.08
4	17	4	4

For even more results, come to HITES (a.k.a. Draayerfest) in 3 weeks...

Summary:
Symmetries lead to conserved quantities (E. Noether) = "quantum numbers"

By considering random matrices with symmetries, we find that the ground state is dominated by lowest-dimension / most symmetric irrep
...a "beautiful" results

The basic question here:
How much choice is there in dynamical systems?
(Einstein: "What really interests me is whether God had any choice in the creation of the world.")
i.e., having a $\mathrm{J}=0$ g.s. doesn't tell us much about the interaction...
...but some other features are likely more diagnostic

Work to be done:

Need to formalize results from points groups.
Make application to continuous symmetries more rigorous.
Can I better motivate mapping/modeling of many-body systems?

Symmetry breaking and partial/quasi-dynamical symmetry
What about other phenomena? Such as R_{62} / R_{42} ratio?
(Preliminary results suggest a strong correlation; furthermore the equivalent R_{12} / R_{42} has no correlation - a prediction!)

A lot of fun work ahead!

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

Data taken from all stable even-even nuclides

Almost a one-parameter family!

```
Plot E(6)/E(2) vs E(4)/E(2)
```


"24Mg"

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

HAPPY BIRTHDAY FRANCO!

Plot $\mathrm{E}(6) / \mathrm{E}(2)$ vs $\mathrm{E}(4) / \mathrm{E}(2)$

HAPPY BIRTHDAY FRANCO!

$$
J=6
$$

$\mathrm{E}_{6} / \mathrm{E}_{2}$ vs $\mathrm{E}_{4} / \mathrm{E}_{2}$

Interacting Boson Model (IBM)

"BEAUTY IN PHYSICS" COCOYOC MAY 2012

[^0]: "BEAUTY IN PHYSICS" COCOYOC MAY 2012

[^1]: "BEAUTY IN PHYSICS" COCOYOC MAY 2012

