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“The liquid-drop energy of a spherical nucleus is
described by a Bethe-Weizsäcker mass formula.”

Challenging a common belief

“It is common practice to describe nuclear masses 
and radii of spherical closed-shell nuclei in terms of 
a mean field and add deformation and other shell 
effects as corrections.”



Nuclear Mass is the most fundamental 
property of nuclei

                         Some methods to predict 
                        nuclear masses:
−                The liquid drop model (LDM).
−                Algebraic extensions of the LDM.
− The Duflo-Zuker microscopic mass formula.
− The finite range droplet model (FRDM).   
− HFB methods.
− Density functional theory.
− The Garvey-Kelson relations and their 

integration.



The models

- The Liquid Drop Model (LDM)

- The Duflo-Zuker model (DZ)

- The Modified DZ model



The reference set
Atomic Mass Evaluation 2003 (AME03)

G. Audi, A.H. Wapstra y C. Thibault, 
Nucl. Phys. A 729, 337 (2003)

2149 nuclei with N ≥ 8, Z ≥ 8

The figure of merit   



Liquid Drop Model 1

6 parameters

Bulk and surface effects are treated consistently

A.E.L. Dieperink and P. Van Isacker, Eur. Phys. J. A42 269279 (2009).



ELDM2(N,Z) = −avA + asA2/3 + ac
Z(Z−1)

A1/3 (1− Z−2/3)
+asym(N − Z)2/A + apair

δnp

A1/3

δnp ≡ 2− | I | (e-e), 1(odd A), | I | (o-o)

asym ≡ csym

�
1− κ/A1/3 + (N−Z)/A

2+|N−Z|

�

Liquid Drop Model 2

6 parameters

Isospin dependence of the symmetry term and 
pairing

N. Wang, M. Liu and X. Wu, Phys. Rev. C81 044322 (2010)



ELDM3(N,Z) = −av(1− kvI2)A + as(1− ksI2)A2/3

+ 3
5

e2Z(Z−1)
r0A1/3 − fpZ2/A− ac,excZ4/3/A1/3

+ak(1− kkI2)A1/3 + Epair + EWigner

| I |≡ (N − Z)/A

Liquid Drop Model 3

11 parameters
Cuadratic isospin corrections, 
proton form factor fp + charge exchange ac,exc ,
curvature terms (ak, kk) 

G. Royer, M. Guilbaud and A. Onillon, Nucl. Phys. A847 (2010) 24.



1st fit: global of all the nuclei in AME03 
with N ≥ 8, Z ≥ 8.

2nd-8th fit: 7 regions with different 
quadrupole deformations, taken from 
FRDM, (P. Möller, J.R. Nix, W.D. Myers, W.J. 
Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185.)

9th fit: Only semi-magic nuclei.

9 fits were performed 
employing the 3 LDM formulas.
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The rms (in keV) in each region
C. Barbero, J. G. Hirsch, A. Mariano, Nucl. Phys. A84 (2012) 81-97.   

LDM1

LDM2

LDM3

global 1 2 3 4 5 6 7 semi 
magic

2387 1313 1676 2063 1746 1053 870 746 2113

2374 1254 1675 2069 1762 1021 838 656 2056

2422 1183 1597 2151 1517 986 819 629 1967

oblate           spherical       prolate



The three Liquid Drop Models
give very similar results:

- spherical  nuclei have an rms close to 
2000 keV

- deformed prolate nuclei have an rms 
around 600-900 keV.

- The same effect is observed when pairing 
effects are removed.

The more prolate the nuclei, 
the best the LDM fits them.



LDM, global fit

Differences between experimental and fitted masses



The major challenge in the 
construction of an algebraic 
microscopic mass formula is 
the proper description of the 

shell effects.



The shell effects

   



         

          

 A functional of the occupation numbers, 
includes explicitly deformation effects. 

Inspired in the shell model.
Has 33 parameters.



DZ, global fit

Differences between experimental and fitted masses



How does DZ work?
J. Mendoza Temis, J.G. Hirsch and A. Zuker, 

Nucl. Phys. A 843 (2010) 14

 The monopole part (J=0) of the many-body 
Hamiltonian can be factorized 

U is a unitary transformation which 
diagonalize the monopole Hamiltonian, 

with eigenvalues E. 



Numerical studies of realistic interactions (chiral N3LO)
show that only one eigenvalues dominates.

                                  is the degeneracy of the 
major HO shell of principal quantum number p



The master term M

 This is the basic building bock of the DZ 
model.

 Asymptotically, M scales with A, 
represents a proper volume term.



The master term minus its 
asymptotic behavior

 HO shell closures, maximum scales with A1/3



The HO-EI transition: Duflo’s magic

 The evolution from 
HO (dots) to EI 
(squares) shell 
effects for N-Z=24 
even-even nuclei.



The macroscopic DZ 
mass formula



Differences between the binding energies predicted 
by DZ10 macro, and the experimental ones. 

Even-even nuclei (RMSD=2.86 MeV). 
Lines join points at constant t=N-Z.



Microscopic terms and 
deformation effects



DZ10 deformed and spherical binding energies 
subtracted from the experimental ones for Yb 
isotopes. 
The crossings signal the onset of deformation, 
which reproduces perfectly the N=90 transition 
region.



Ma =
1
ρ

�
e2
1ν + e2

1π

�

Dpν,π = (pν,π + 1)(pν,π + 2) + 2

The master term revisited
J.G. Hirsch and J. Mendoza-Temis, 

J. Phys. G: Nucl. Part. Phys. 37 064029

 The major shells are EI instead of HO    
 It directly provides the observed shell 

closures

 e1ν =
�

pν

nν�
Dpν

, e1π =
�

pπ

nπ�
Dpπ

,



e2
1ν −

�
(3N)2/3

2

�2

e2
1ν −

�
−0.90892 + 0.54259N1/3 + 0.98851N2/3 + 0.0018N

�2

Difference between        and different 
approximations to describe its asymptotic 

behavior as a function of N
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The rms (in keV) in each region employing the 
macroscopic sector of the two DZ models

DZ1

DZ2

global 1 2 3 4 5 6 7 semi 
magic

2852 994 1969 1557 1392 2237 2562 1529 1392

3443 1425 1544 2167 1717 1729 2047 2107 1973

oblate           spherical       prolate

- The ability of both models to describe masses of nuclei in spherical, prolate 
and semi-magic groups are now comparable. 
- The global RMS are larger than those obtained with the LDM formulas. 
- The RMS are in nearly all cases smaller using DZ1 (except in region 6).
- It is hard to find any correlation between the RMS and the regions with 
different deformations.



ELDM1+DZ = LDM1 + avol(Ma −Ma,asym) + asurf (Ma −Ma,asym)/ρ.
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ELDM1+val = LDM1 + b1(nv + zv) + b2(nv + zv)2.

Combining LDM and DZ, val

 J. Mendoza-Temis, et al, Nucl. Phys. A799 , 84 (2008).
A.E.L. Dieperink and P. Van Isacker, Eur. Phys. J. A42 269279 (2009).



Combining LDM and DZ, val

 The inclusion of shell effects reduces the global RMS from 2387 keV to 
1407 (1075) keV when the LDM1+DZ (LDM1+val) model is used. 

 Still show a visible tendency to describe better the deformed than 
spherical nuclei,

 The results obtained with both formulas look very similar, with a 
smaller global RMS in the valence model and some advantage of 
the LDM1+DZ model to describe semi-magic nuclei.

LDM1+
DZ

LDM1+
val

global 1 2 3 4 5 6 7 semi 
magic

1407 668 907 1026 755 784 791 647 952

1075 796 981 1006 828 711 836 615 1037

oblate           spherical       prolate



The relative stability of the parameters b1 and b2 in the LDM1+val 
model, is behind the comparatively small global RMS. 

The shell surface and volume coefficients asurf and avol of the 
LDM1+DZ model vary both in magnitude and in sign from one 
deformation region to another. 

Being a limitation for a good global t, it offers at the same time 
the opportunity to relate these parameters with the deformation, 
a challenge which is left for future work.

Combining LDM and DZ, val
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Conclusions
 Liquid Drop Models fits deformed nuclei far 

better than spherical ones.
 The DZ model is based in a microscopic 

description of shell effects.
 An alternative DZ inspired master term was 

introduced. 
 Adding two microscopic terms reduces 

noticeably the RMS of the fits.
 Improved master terms are still required for a 

good description of shell effects.
 Accurate mass formulas remain a challenge. 



The shell corrections must be 
removed.

The LDM cannot describe them.

 A simple parameterization of shell effects: 
linear and quadratic dependence in the 
number of valence nucleons (F-spin) 



Modified LDM (LDMM)

Includes two microscopic terms, linear and 
quadratic in the number of valence nucleons 

 J. Mendoza-Temis, J. Barea, A. Frank, J.G. Hirsch, J.C. López Vieyra, I. 
Morales, P. Van Isacker, V. Velázquez, Nucl. Phys. A799 , 84 (2008).



LDMM, global fit

Differences between experimental and fitted masses



Modified Liquid Drop Model

where

A.E.L. Dieperink and P. Van Isacker, Eur. Phys. J. A42 269279 (2009).



The rms (in keV) in each region 

LDM1

LDM
M

LDM
M’

global 1 2 3 4 5 6 7 semi 
magic

2387 1313 1676 2063 1746 1053 870 746 2113

1075 796 961 1006 828 711 792 615 1037

887 627 740 902 634 561 619 574 817

oblate           spherical       prolate


